
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Moe, Nils Brede; Šmite, Darja; Paasivaara, Maria; Lassenius, Casper
Finding the sweet spot for organizational control and team autonomy in large-scale agile
software development

Published in:
Empirical Software Engineering

DOI:
10.1007/s10664-021-09967-3

Published: 01/09/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Moe, N. B., Šmite, D., Paasivaara, M., & Lassenius, C. (2021). Finding the sweet spot for organizational control
and team autonomy in large-scale agile software development. Empirical Software Engineering, 26(5), Article
101. https://doi.org/10.1007/s10664-021-09967-3

https://doi.org/10.1007/s10664-021-09967-3
https://doi.org/10.1007/s10664-021-09967-3

Vol.:(0123456789)

https://doi.org/10.1007/s10664-021-09967-3

1 3

Finding the sweet spot for organizational control and team
autonomy in large‑scale agile software development

Nils Brede Moe1,2 · Darja Šmite1,2 · Maria Paasivaara3,4 · Casper Lassenius3,5

Accepted: 26 March 2021
© The Author(s) 2021

Abstract
Agile methods and the related concepts of employee empowerment, self-management, and
autonomy have reached large-scale software organizations and raise questions about com-
monly adopted principles for authority distribution. However, the optimum mechanism to
balance the need for alignment, quality, and process control with the need or willingness of
teams to be autonomous remains an unresolved issue. In this paper, we report our findings
from a multiple-case study in two large-scale software development organizations in the
telecom industry. We analysed the autonomy of the agile teams in the organizations using
Hackman’s classification of unit authority and found that the teams were partly self-manag-
ing. Further, we found that alignment across teams can be achieved top-down by manage-
ment and bottom-up through membership in communities or through dialogue between the
team and management. However, the degree of team autonomy was limited by the need
for organizational alignment. Top-down alignment and control were maintained through
centralized decision-making for certain areas, the use of supervisory roles, mandatory
processes, and checklists. One case employed a bottom-up approach to alignment through
the formation of a community composed of all teams, experts, and supporting roles, but
excluding managers. This community-based alignment involved teams in decision-making
and engaged them in alignment initiatives. We conclude that implementation of such bot-
tom-up structures seems to provide one possible mechanism for balancing organizational
control and team autonomy in large-scale software development.

Keywords Large-scale agile · Autonomy · Self-management · Communities of practice ·
Multiple-case study

Communicated by Robert Feldt and Thomas Zimmermann.

 * Nils Brede Moe
 nilsm@sintef.no

1 Blekinge Institute of Technology, Karlskrona, Sweden
2 SINTEF Digital, Trondheim, Norway
3 Aalto University, Helsinki, Finland
4 LUT University, Lahti, Finland
5 Simula Metropolitan Center for Digital Engineering, Oslo, Norway

/ Published online: 14 July 2021

Empirical Software Engineering (2021) 26: 101

http://orcid.org/0000-0003-2669-0778
http://orcid.org/0000-0003-1744-3118
http://orcid.org/0000-0001-7451-7772
http://orcid.org/0000-0003-4192-7024
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09967-3&domain=pdf

1 3

1 Introduction

Large-scale software development has traditionally been recognized as an initiative best
approached using conventional top-down management with a clear governance structure,
predefined decision-making mechanisms, and roles with varying levels of responsibility.
However, the development of large-scale software systems can never be completely pre-
dicted beforehand because the system constantly grows in complexity and often needs to
deviate from the original specifications. Further, when large-scale projects become more
complex, critical, and urgent, they become more difficult to control (Klakegg et al. 2016).
The inherent tension between stability and change in large-scale software projects requires
a governance strategy that supports both perspectives. As a consequence, many large soft-
ware development organizations are moving from a top-down to a more balanced govern-
ance approach that combines bottom-up and top-down decision making and increasingly
adopts alternative organizational models to strengthen the company’s ability to change and
avoid the challenges of traditional hierarchies (Olsson Holmström and Bosch 2016). In
practice, many larger development projects would then follow agile methods at the team
level, combined with a project management framework such as the Project Management
Body of Knowledge or PRINCE2 (Dingsøyr et al. 2019).

With the rise in popularity of agile software development methods and associated con-
cepts such as autonomous and empowered teams, software companies have found new ways
of distributing authority between those who do the work and those who are in manage-
rial positions (Hoda and Noble 2017; Lee and Edmondson 2017). In agile development,
the locus of decision-making moves from the project manager to the software development
team, and the decision-making process changes from individual and centralized to shared
and decentralized (Barney et al. 2009; Hoda et al. 2012; Paasivaara and Lassenius 2014).
However, when many autonomous agile teams together work towards the same goal, a lot
of additional coordination and management effort is required (Petersen and Wohlin 2010),
which in earlier studies on large-scale agile projects was found to be challenging (Paasivaara
et al. 2012). Likewise, studies from management science (Ingvaldsen and Rolfsen 2012)
suggest that inter-group coordination is a major challenge when groups are empowered. A
variety of mechanisms can be used to coordinate different teams, e.g. Dingsøyr et al. (2018)
describe 14 mechanisms for inter-team coordination in a large-scale software project and
found that such coordination influences the teams’ internal processes and decision mak-
ing. Further, when implementing a shared decentralized decision-making process in large
projects with many teams, alignment problems must be tackled. Previous studies have
addressed the challenges associated with the lack of alignment among teams (Bick et al.
2017). If each team works independently, team development processes and technical solu-
tions will ultimately differ and may be highly disconnected from one another. Further, the
absence of knowledge sharing between teams can lead to duplicated work, misunderstand-
ings, and integration problems. However, when practices in teams become dependent upon
other teams’ practices, teams can hardly be described as autonomous (Rolland et al. 2016).

To summarize, balancing the need for alignment and achieving the benefits of a decen-
tralized decision-making structure involving many autonomous teams in large-scale soft-
ware projects remains challenging. Several important questions remain open: If each team
were given the authority and responsibility for organizing their work, how can the organi-
zation ensure the overall coordination and success of a large-scale project? Who is respon-
sible for the overall compliance with the project goals? What are effective decision-mak-
ing structures for cross-team coordination? Finally, because agile methods are emergent

Empirical Software Engineering (2021) 26: 101101 Page 2 of 41

1 3

(Boehm and Turner 2005), processes, principles, decision-making, and work structures are
rarely completely predetermined. Consequently, the authority of an autonomous team and
how such a team organizes the work in a large-scale context will need to be adapted to the
project and its context. Therefore, to understand team autonomy in large-scale agile envi-
ronments, there is a need to study multiple projects in various contexts.

The goal of this paper is to deepen our understanding of how to balance team autonomy
and decentralized decision-making with the need for organizational control and alignment
in large-scale agile development efforts, i.e., what kind of authority teams should have. In
addition, we seek to explore where a sweet spot for team autonomy and organizational con-
trol might be. Our research is driven by the following research question:

RQ: How is organizational authority allocated in large-scale agile software develop-
ment?

To address our research question, we studied two large-scale agile organizations that are
at different stages of their agile adoption in different branches of a large international tel-
ecom company, Ericsson. In this paper, we use the definition of large-scale software devel-
opment by Dikert et al. (2016), i.e. as development done in:

“software development organizations with 50 or more people or at least six teams.
All people do not need to be developers but must belong to the same software devel-
opment organization developing a common product or project, and thus have a need
to collaborate”.

The rest of the paper is structured as follows: In Section 2, we present related work. Sec-
tion 3 describes our research method and empirical background. Results are presented in
Section 4 and discussed in Section 5. Section 6 concludes the paper.

2 Background and Related Work

Autonomy and self-management have become the new guiding stars for organizations, as
they promise to significantly increase employee motivation and job satisfaction (Langfred
2000), as well as boost creativity, innovation, and productivity (Fenton-O’Creevy 1998;
Hoegl and Parboteeah 2006; Mathieu et al. 2008). Further, for knowledge-intensive com-
panies to succeed, organizations must empower individuals to contribute information and
ideas at all levels. However, while there is a growing number of self-managing organiza-
tions (Lee and Edmondson 2017) and participatory management have clear benefits, one
obstacle when implementing such a strategy is unit size (Semler 1989). In this section,
we describe the concept of autonomous teams, cross-functional software teams, a model
that describes the different levels of autonomy in an organization, and finally autonomy in
large-scale set-ups.

2.1 Team Autonomy

Autonomy is a central principle in agile methods. However, the notion of autonomous
teams is not new and has been studied and described from various perspectives in the
past (Hoda et al. 2012); research in this area has been around since Trist and Bam-
forth (1951) studied self-regulated coal miners in the 1950s. Such teams were described

Empirical Software Engineering (2021) 26: 101 Page 3 of 41 101

1 3

from the sociotechnical perspective as having 10 − 15 cross-trained members guided by
a vision, motivated by peer pressure, and taking on the responsibilities of their former
supervisors. Members of such teams should actively seek data and feedback to learn
how well they are accomplishing their tasks and take corrective actions at their own
initiative to improve their performance. In this work, we rely on the widely used defini-
tion of autonomous teams by Guzzo and Dickson (1996) in their review on team perfor-
mance: “employees that typically perform highly related or interdependent jobs, who
are identified and identifiable as a social unit in an organization, and who are given
significant authority and responsibility for many aspects of their work, such as plan-
ning, scheduling and assigning tasks to members, and making decisions with economic
consequence.”

Autonomous teams have been described from an organizational theory perspective.
Morgan (2006), in his book “Images of Organizations”, describes four principles for ena-
bling such teams:

(a) learning to learn, which emphasises the importance of the team’s ability to engage in
double-loop learning and drive continuous improvement;

(b) minimum critical specification, in which the management describes only the critical
aspects required for teams to function effectively;

(c) requisite variety, which is the need for matching the complexity and diversity of the
environment; and

(d) redundancy of function.

The three latter principles suggest that teams should be composed of members with
a variety of skills to handle the variety in their external environment and that individu-
als within the team should, to a high degree, be able to assist and replace each other as
required. The advantage of cross-functional teams lies much in their capacity to draw
knowledge from multiple sources and conduct multiple activities simultaneously, rather
than sequentially, which saves time (Brown and Eisenhardt 1995). A cross-functional soft-
ware development team often consists of members with different roles, e.g., testers, devel-
opers, architects, designers, and analysts. However, knowledge sharing in cross-functional
agile teams is challenging due to the complexity of the interactions between different spe-
cialists and stakeholders. Moe et al. (2009) found that members of such teams often divide
tasks according to their role or responsibility, which leads to a focus on their individual
performance and less on assisting one other. Low redundancy and high individual auton-
omy break the fourth principle suggested by Morgan (2006).

While autonomous teams should have responsibilities for many aspects of their work,
there is still a requirement for leadership in such teams. Leadership should be diffused
rather than centralized (Morgan 2006), which means that leadership is transferred to the
person with the key knowledge, skills, and abilities related to the specific task the team is
facing at any given moment (Pearce 2004). While the manager maintains leadership for
project management duties, the team members lead and are responsible for decisions when
they possess the knowledge that needs to be shared during different phases of the project
(Hewitt and Walz 2005). Moe et al (2012) found that the main challenges to shared deci-
sion-making in agile environments are related to various conflicts, including the need for
short-term progress versus long-term quality, full-time versus part-time members, and new
development versus maintenance work. In other words, such teams need a clear direction
and shared goals.

Empirical Software Engineering (2021) 26: 101101 Page 4 of 41

1 3

2.2 Levels of Autonomy

While autonomy and self-management have been found to impact teams positively, the
amount of autonomy that is appropriate under specific conditions remains an important
but unresolved issue. Autonomy has a range of implications and is affected by a number of
factors, including task interdependency, task complexity, and team design (Mathieu et al.
2008). Cohen and Bailey (1997), for example, reported that the positive effects of auton-
omy were reduced in short-term teams and were conditioned by task complexity. Addition-
ally, Langfred (2007) suggested that flexibility and adaptability, traditionally regarded as
benefits of autonomous teams, may also be associated with dysfunctional outcomes, sug-
gesting that organizations must carefully consider the proper level of autonomy and discre-
tion given to teams. Guzzo and Dickson (1996) described autonomous teams as teams that
are given significant authority and responsibility for many aspects of their work. Therefore,
we will use the expression “level of autonomy” to refer to the amount of authority held by
the team.

In her work on the airline and health industries, Gittell (2006) explored the utility of
mechanisms other than hierarchical authority. Gittell observed that in cross-functional
work processes (across departments and hierarchies), the companies that performed best
had higher levels of relational coordination between roles. However, in these contexts,
hierarchical authority could still be relied upon when needed, such as in cases of conflict
or disagreement. Based on studies on airlines, Hackman (1986) discussed the relationship
between different types of performing units and the amount of authority. Hackman paid
special attention to how authority was distributed between those who execute work and
those whose responsibilities are mainly managerial. The self-managing performing unit has
a certain but limited amount of authority, while the self-designing and self-governing unit
has more responsibility (see Fig. 1). In agile software development, the team is accorded
full authority to do whatever it decides is necessary to achieve the “goal” (Schwaber and

Fig. 1 Hackman’s authority matrix (Hackman 1986)

Empirical Software Engineering (2021) 26: 101 Page 5 of 41 101

1 3

Beedle 2001), however, what this means in a large-scale setting is not understood. Lee and
Edmondson (2017), in their study of two large software companies and a large processing
company, give examples of how Hackman’s understating of authority can be applied. Lee
and Edmondson found that authority over work execution was fully decentralized in their
cases, but not for other decision domains.

As the motivation for our research is to understand how authority is distributed
in a large-scale agile setting with many teams, we use Hackman’s work as a basis
for our analysis. His work originated from studying teams in a large-scale context,
and part of his authority matrix has previously been tested at an organizational level
(Lee and Edmondson 2017).

Hackman (1986) explains that a performing unit is a group that consists of several indi-
viduals working interdependently on a common task. The performing unit in our study is
an agile software team. According to Hackman, in a manager-led team, members have the
authority to execute the task only, while a self-managing team is given the responsibility to
execute its tasks, as well as monitor and manage its own work processes and progress. As
the amount of authority increases, the team is given responsibility for both designing the
team and its context and setting the overall direction, and thus teams progress from self-
designing to self-governing. A summary of the different levels of team responsibility or
authority is shown in Table 1, together with our specific examples. A team may be author-
ised to perform functions beyond a general level of their given authority or have responsi-
bility for only parts of certain functions.

2.3 Autonomy in Large‑Scale Software Development

Research on team performance indicates that the productivity of autonomous work groups
is highly situational and that the effects of the practices these groups use depend on such
factors as the nature of the workforce and the nature of the organization (Moe et al. 2010).
It is, thus, fair to question whether teams in large-scale software development contexts ben-
efit from an increased amount of authority and whether reduced authority brings about
unwanted negative impacts on team performance.

Most studies on autonomy are conducted in small-scale one-team projects. Sim-
ilarly, related theories, such as the one by Hackman (1986), focus on group-level
autonomy, where a group is a performing unit working on a task in an organizational
context. Even though Hackman’s studies were conducted in a large-scale setting (air-
lines), the interpretation of this theory in the context of large-scale agile software
projects is not straightforward. In such projects, many teams are working on tasks
that together contribute to the development of a system that is frequently released to
customers, which gives constant feedback. Tasks can vary in detail; for example, a
task can be a feature or a component. Thus, the system may be viewed as a combina-
tion of several independent or interdependent tasks that are to be integrated. There-
fore, the level of authority for teams working in large-scale multi-team projects may
be limited due to the need to coordinate with other teams and stakeholders (Moe
et al. 2019) and the necessity to align the inputs, outputs, and processes across the
system development. Further, as teams depend on one other, they often need to wait
for other teams to finalize work, which might influence a team’s authority. Stray and
Moe (2020), in their study of coordination in large-scale distributed agile projects,
found access to good coordination and communication tools to be enablers for team
autonomy.

Empirical Software Engineering (2021) 26: 101101 Page 6 of 41

1 3

Ta
bl

e
1

 T
yp

es
 o

f t
ea

m
s (

 a
do

pt
ed

 fr
om

 H
ac

km
an

 1
98

6)

Ty
pe

 o
f t

ea
m

Le
ve

l o
f r

es
po

ns
ib

ili
ty

Ex
am

pl
es

 fr
om

 so
ftw

ar
e

pr
oj

ec
ts

M
an

ag
er

-le
d

te
am

Te
am

 m
em

be
rs

 h
av

e
au

th
or

ity
 o

nl
y

fo
r e

xe
cu

tin
g

th
e

ta
sk

. M
an

ag
er

s
m

on
ito

r a
nd

 m
an

ag
e

pe
rfo

rm
an

ce
 a

nd
 d

efi
ne

 th
e

pr
oc

es
se

s,
str

uc
tu

re

th
e

te
am

 a
nd

 it
s c

on
te

xt
, a

nd
 se

t t
he

 o
ve

ra
ll

di
re

ct
io

ns

Ex
te

rn
al

 te
am

 le
ad

er
s d

ec
id

e
w

ho
 p

er
fo

rm
s w

hi
ch

 ta
sk

, h
ow

 th
e

ta
sk

 sh
al

l
be

 so
lv

ed
, a

nd
 th

e
so

ftw
ar

e
de

ve
lo

pm
en

t p
ro

ce
ss

 th
at

 th
e

te
am

 n
ee

ds
 to

fo

llo
w

Se
lf-

m
an

ag
in

g
te

am
Te

am
 m

em
be

rs
 h

av
e

re
sp

on
si

bi
lit

y
no

t o
nl

y
fo

r e
xe

cu
tin

g
th

e
ta

sk
 b

ut

al
so

 fo
r m

on
ito

rin
g

an
d

m
an

ag
in

g
th

ei
r o

w
n

pe
rfo

rm
an

ce
Th

e
te

am
 d

ec
id

es
 h

ow
 a

 n
ew

 fe
at

ur
e

sh
ou

ld
 b

e
de

ve
lo

pe
d

an
d

w
ho

 sh
ou

ld
 d

o
w

ha
t.

Th
e

te
am

 m
on

ito
rs

 th
e

w
or

k
by

 se
ek

in
g

da
ta

 a
nd

 fe
ed

ba
ck

 to
 le

ar
n

ho
w

 w
el

l t
he

y
ar

e
ac

co
m

pl
is

hi
ng

 th
e

de
ve

lo
pm

en
t (

e.
g.

, s
pe

ed
, q

ua
lit

y,
 a

nd

cu
sto

m
er

 sa
tis

fa
ct

io
n)

. T
he

 te
am

 c
on

tin
uo

us
ly

 im
pr

ov
es

 th
e

de
ve

lo
pm

en
t

pr
oc

es
s b

as
ed

 o
n

th
e

da
ta

. T
he

 te
am

 c
an

 h
el

p
ot

he
r t

ea
m

s w
he

n
th

ei
r o

w
n

re
sp

on
si

bi
lit

ie
s a

re
 m

et
Se

lf-
de

si
gn

in
g

te
am

Te
am

 m
em

be
rs

 h
av

e
th

e
au

th
or

ity
 to

 m
od

ify
 th

e
de

si
gn

 o
f t

he
 te

am

its
el

f o
r

as
pe

ct
s o

f t
he

 o
rg

an
iz

at
io

na
l c

on
te

xt
 in

 w
hi

ch
 th

e
te

am

fu
nc

tio
ns

. M
an

ag
er

s s
et

 th
e

di
re

ct
io

n
fo

r t
he

se
 te

am
s b

ut
 a

ss
ig

n
fu

ll
au

th
or

ity
 to

 m
em

be
rs

 to
 d

o
w

ha
t n

ee
ds

 to
 b

e
do

ne
 to

 a
cc

om
pl

is
h

th
e

w
or

k

In
 a

dd
iti

on
 to

 th
e

pr
ev

io
us

 fu
nc

tio
ns

, t
he

 te
am

 c
an

 m
od

ify
 it

se
lf

to
 so

lv
e

th
e

w
or

k
as

si
gn

ed
 to

 th
e

te
am

. T
he

 te
am

 is
 a

ls
o

re
sp

on
si

bl
e

fo
r l

ia
is

in
g

w
ith

 o
th

er
 te

am
s t

o
so

lv
e

de
pe

nd
en

ci
es

 (e
.g

.,
ch

an
ge

s i
n

a
su

b-
sy

ste
m

 o
r

su
pp

or
t f

ro
m

 a
 c

on
tin

uo
us

 in
te

gr
at

io
n

te
am

) a
nd

 c
al

ls
 fo

r h
el

p
fro

m
 o

th
er

s
(e

.g
.,

U
X

, a
rc

hi
te

ct
ur

e,
 in

fr
as

tru
ct

ur
e,

 o
r o

pe
ra

tio
ns

 e
xp

er
ts

)
Se

lf-
go

ve
rn

in
g

te
am

s
Te

am
 m

em
be

rs
 d

ec
id

e
w

ha
t i

s t
o

be
 d

on
e,

 st
ru

ct
ur

e
th

e
te

am
 a

nd
 it

s
co

nt
ex

t,
m

an
ag

e
th

ei
r o

w
n

pe
rfo

rm
an

ce
, a

nd
 c

ar
ry

 o
ut

 th
e

w
or

k
A

fte
r r

ec
ei

vi
ng

 fe
ed

ba
ck

 fr
om

 th
e

m
ar

ke
t,

th
e

te
am

 is
 re

sp
on

si
bl

e
fo

r
de

ci
di

ng
 w

he
n

an
d

if
to

 m
ak

e
a

str
uc

tu
ra

l c
ou

rs
e

co
rr

ec
tio

n
to

 te
st

a
ne

w

fu
nd

am
en

ta
l h

yp
ot

he
si

s a
bo

ut
 th

e
pr

od
uc

t o
r s

tra
te

gy
. E

xa
m

pl
es

 o
f s

uc
h

te
am

s a
re

 le
an

 st
ar

tu
p

te
am

s d
ec

id
in

g
to

 p
iv

ot
 o

r c
on

tin
ue

Empirical Software Engineering (2021) 26: 101 Page 7 of 41 101

1 3

In work systems where teams enjoy high levels of authority, inter-team coordination
has been found to be a major challenge (Ingvaldsen and Rolfsen 2012; Lewis and Neher
2007). In large agile projects, there are a number of problems that span development
teams as well as decisions that simultaneously affect many teams. Lewis and Neher
(2007) found inter-team coordination to be particularly difficult when teams worked
independently for different customers, although the applications being built were inter-
dependent. When the team goals conflict with the organizational goals, many teams
choose to act in self-interest (Berczuk and Lv 2010), and disrespect the larger context
(Farrow and Greene 2008). A study of a large-scale agile environment (Dingsøyr et al.
2018) found that the ability to balance a decentralised decision process and a centralized
structure was an important success factor. However, they argue that there is a need to
better understand how multi-team development programmes or projects balance inter-
team coordination and team authority.

In a literature review of the challenges and success factors of large-scale agile
transformations (Dikert et al. 2016), team autonomy was mentioned as both a chal-
lenge and a success factor. On one hand, grassroots-level empowerment was highly
important for transformation success. On the other hand, team autonomy was chal-
lenging to arrange in large-scale settings. In particular, challenges arose if the organi-
zation had developed their software development model according to agile principles,
and thus allowed teams to operate independently while dependencies existed between
the teams, requiring constant collaboration. Further, it was challenging to balance
the team goals and the broader goals of the organization. A team could easily place
more emphasis on their own goals over the goals of the whole organization. Thus,
being part of a large-scale organization might limit the amount of authority that can
be given to each team.

Moreover, Dikert et al. (2016) discussed whether the whole organization should
conform to one single agile approach or allow the teams to choose their agile approach
themselves. A single approach helps the organization adopt a consistent vocabulary,
making it easier to collaborate across teams, compare work between teams, and even
relocate members more easily to other teams. Giving teams the authority to choose
their own approach might be more efficient for the team but might make collabora-
tion across teams more difficult, e.g., if different teams use different agile methods
and practices, or even different interpretations of agile. One remarkable example men-
tioned was that teams with different sprint durations could create problems in delivery.
Finally, Dikert et al. (2016) concluded that between projects in the same large-scale
organization, different types of agile processes might be required for different types of
development, depending on the type of software being developed and the project size.
Thus, based on the systematic literature, it is important that in a large-scale agile envi-
ronment, an organization finds a balance between the amount of authority the team has
on the development process and the imperative to conform to the same agile approach
as well as to comply with central decisions on dependencies and coordination across
teams.

Increasing team authority is a transformational process. Olsson Holmström and Bosch
(2016) studied empowerment in seven inherently traditional companies working with large-
scale software development, in which selected teams were exposed to increased autonomy
and allowed to bypass formal hierarchies. The authors suggest that initiatives that challenge
traditional organizational structures still need to align with business goals, existing formal
and approved structures, and balance bottom-up decisions (often limited to short-term tac-
tical decisions) with top-down strategies and central decision-making. Importantly, one of

Empirical Software Engineering (2021) 26: 101101 Page 8 of 41

1 3

the main reasons for balancing is the need to align the work of multiple teams involved in
one programme.

Despite the dearth of research on team autonomy in large-scale agile software devel-
opment, practitioner reports and agile frameworks touch upon the subject. Perhaps most
saliently, the approach used by Spotify (Kniberg 2014a, b; Mankins and Garton 2017)
is built around the idea of autonomous agile teams aligned through common goals and
a number of bottom-up coordination mechanisms, including communities of practice
called guilds (Smite et al. 2020, 2019). The agile coaches at Spotify attempt to balance
autonomy alignment across teams (Bäcklander 2019). The major scaling frameworks
are more restrictive in their approach to team autonomy. In the Scaled Agile Framework,
SAFe (Leffingwell 2018), teams are required to work according to a common high-
level rhythm, called the Program Increment, which typically lasts about 12 weeks. The
teams can work according to either ScrumXP, an amalgamation of Scrum (Schwaber
and Sutherland 2017) and XP (Beck 2000), or team-level Kanban. In the LeSS frame-
work (Larman and Vodde 2016), all teams follow the Scrum process with a synchro-
nized rhythm. In the discussion, we contrast these approaches with our findings in more
detail.

3 Research Methods

In this paper, we address the question of how to strike the right balance between
team autonomy and organizational alignment in large-scale agile software develop-
ment. Understanding how much authority to give to teams without jeopardising the
overall performance is critical when implementing organizational change to increase
the agility and performance of large-scale development. We address this issue by
examining ways to allocate organizational authority in large-scale agile software
projects, building upon Hackman’s authority distribution matrix, and exploring prac-
tical ways to make decisions regarding team task execution, managing the ways of
working, designing the team, and setting the overall direction. Furthermore, we aim
to understand how the various amounts of team authority are perceived by the teams,
the reasons for centralizing certain decisions, and the need for cross-team alignment.

In this section, we present our research methods, give an overview of our case projects,
and present our data collection and analysis methods.

3.1 Case Study Design

Since the goal of this research is to explore and provide insight into how organizational
authority is allocated in large-scale agile software development, it is important to study
software development teams in practice. The study reported in this paper is an exploratory
multiple-case study (Yin 2009). When conducting the multiple-case study, we followed the
five-step process proposed by Yin:

1. Case study design: objectives are defined, and the case study is planned.
2. Preparation for data collection: procedures and protocols for data collection are defined.
3. Collecting evidence: execution of data collection for the studied case.
4. Analysis of collected data.
5. Reporting.

Empirical Software Engineering (2021) 26: 101 Page 9 of 41 101

1 3

To understand how authority is allocated between the teams and the rest of the organi-
zation, we designed a multiple case study of two large-scale agile software development
projects at Ericsson, a global leader in telecommunications systems. We selected Eric-
sson as a subject based on our ongoing long-time collaboration with the company and
our knowledge about their existing large-scale development programmes. In our study, we
explore the amount of authority agile teams have in comparison to organizational control.
Team authority is explored by investigating who is involved in different types of deci-
sions, how much freedom or authority is given to the agile teams, and what decisions
are aligned on a project level. As a framework for describing the amount of authority
allocated to the teams, we used the four-level authority matrix presented by (Hackman
1986). We structured our data collection according to Hackman’s authority areas: 1) set-
ting the overall direction, 2) designing the performing unit and its context, 3) monitor-
ing and managing work processes, and 4) executing the task. We elicited decision points
within the four authority areas.

Based on the collected data, we attempted to understand how much organizational
control and alignment is needed for self-managing agile teams to be able to collaborate
towards a common goal. In contrast to (Olsson Holmström and Bosch 2016), who studied
extraordinary teams that, due to special circumstances, are given higher levels of author-
ity, such as teams working in new strategic focus areas and on innovations, or pilot teams
adopting new development practices, we study development teams that are working on
well-established products. Therefore, we expect that no single team can have full author-
ity in the studied environments. Consequently, we aim to discuss how much authority the
teams can and should have and regarding which aspects, as well as how much and what
kind of organizational control is needed.

3.2 Study Context

3.2.1 The Company Overview and Case Selection

Ericsson is a leading provider of telecommunication systems and equipment for
mobile and fixed network operators. The company develops generic software products
offered to an open market and complex compound systems with customer- and mar-
ket segment-specific versions. Many of these systems consist of many million lines of
code and several technologies, and their development and maintenance involve many
developers and supporting personnel. Around 2007 − 2009, many divisions of Erics-
son committed to an agile transformation, which fundamentally changed their ways
of working. For our investigation, we selected two cases that we call Project Mobility
and Project Cloud. The projects were selected based on convenience sampling (Patton
2014). Both projects were familiar to us, as we had studied them in relation to other
large-scale agile topics and found them interesting and suitable for this study. Project
Mobility was part of a research project focusing on determining how to balance the
needs for governance and quality control in large-scale distributed organizations and
the team’s needs for autonomy. Project Cloud was the successor to a project that was
deemed exemplary by the organization from the point of view of adopting and using
agile methods, and had been used as a benchmarking case for agile adoption interna-
tionally within Ericsson. While both selected projects were large and followed an agile
software development methodology, the way they implemented agile differed. Project
Cloud had, for example, implemented communities of practice (CoPs) (Wenger et al.

Empirical Software Engineering (2021) 26: 101101 Page 10 of 41

1 3

2002) as support for scaling agile development, while such parallel structures were not
present in project Mobility. Further, the projects came from different divisions within
Ericsson and had different backgrounds and histories of their agile transformation.
Therefore, by selecting these cases, we expected to find differences in how authority
was allocated and how much freedom and authority was given to agile software teams
in each of these cases.

3.2.2 Case 1—Project Mobility

Project Mobility, see Fig. 2, is a large-scale development of a software-intensive system
responsible for the mobile broadband network. By the time of our investigation, in April
and May 2016, the system had evolved over almost 20 years and comprised 30 sub-sys-
tems accounting for more than five million lines of code written in different programming
languages, and in addition integrated with third-party products. The organization had fol-
lowed a traditional, plan-driven software development process until 2008, when the agile
transformation started and had since implemented many changes to the process and to the
governance of the development. Project mobility relied on a Scrum-based (Schwaber and
Sutherland 2017) approach.

At the time of our study, the system was developed by around 30 teams from three loca-
tions: Sweden, China, and Russia. Our analysis focused on the Swedish part of the pro-
ject organization. The Swedish teams in Project Mobility were all cross-functional feature
teams comprising developers, system managers, testers, a scrum master, and a documen-
tation writer (the latter two were shared among several teams). Although the goal of the
company was to enable the teams to do anything anywhere in the system, in practice, teams
specialized in the application, platform, or virtualization development, and could also spe-
cialize in a number of specific sub-systems.

Due to the large scale, complexity, and number of changes in the organization and
the process (e.g., moving from disciplined component teams to cross-functional feature
teams), the organization employed rigorous performance monitoring and control. This
was performed by a variety of governance roles. Technical coordinators closely review

Fig. 2 Organization of Project Mobility at the Swedish site

Empirical Software Engineering (2021) 26: 101 Page 11 of 41 101

1 3

team progress. Design owners are responsible for the sub-systems, the maintenance
of quality throughout the product lifecycle, and the availability of key competence in
the area (i.e., key competence should not reside with a single individual). Previously,
the technical quality of the team outcomes was reviewed by technical area responsible
experts (TARs), who reviewed feature design proposals, code, and final solutions. How-
ever, as teams became more experienced, the supervisory functions were minimized to
foster team responsibility for their work outcomes, and the TAR role was transformed
into a more proactive role called design architect (DA). The DAs bridge product own-
ers, system architects, and teams and act as stakeholders in the early phases of feature
development for non-trivial features and features with an architectural impact. Some of
these roles require a full-time focus, while others are part-time jobs. For example, the
design owner’s role is usually assigned to a line manager, while TARs/DAs usually work
as senior developers 50% of their time. By the time of our investigation, the teams were
expected to be relatively independent, although the supporting organization around the
teams was still quite large.

3.2.3 Case 2—Project Cloud

Project Cloud deals with the migration of a core node in the telecommunications net-
work from dedicated hardware to virtualized hardware in the cloud. The original node
was, at the time of our study, in use by over 300 telecom operators worldwide. The sys-
tem is large, consisting of over 30 million lines of code, and its development started over
15 years ago. Until 2009, the system was developed using a waterfall software process.
Starting in the spring of 2009, the organization transitioned to a “lean and agile” way of
working, in their own words and taking inspiration from the Large-Scale Scrum (LeSS)
scaling framework (Larman and Vodde 2016). The main reason for the transformation
was the need to shorten the development cycle and build capacity for more rapid reac-
tions to market and customer needs. The development process was Scrum-based, with an
iteration length of two weeks.

In 2014, a decision was made to drop the custom hardware and to migrate to a virtual-
ized platform running in the cloud. This migration was organized as a project with separate
teams, while other teams continued to develop and maintain the old system in parallel.
As the migration project got up to speed and the need for support of the old product was
reduced, teams gradually moved from the original system to Project Cloud. During our
data collection, around 30 customers were testing the cloud product.

The development organization for Project Cloud consisted of ten teams at two sites
located in two countries, Finland and another European country.1 Here, we focus on the
Finnish site, at which eight teams were located, as shown in Fig. 3.

Most teams in Project Cloud were cross-functional, i.e., they were capable of archi-
tectural work, development, testing, and integration. The organization aimed for the agile
ideal, in which any team would be able to work on any feature, end-to-end. In addition,
certain types of specialized testing tasks that could not be done in the feature teams were
handled by a couple of separate testing teams.

Cloud migration was technically challenging and represented a greenfield for all pro-
ject participants, diminishing the knowledge disparity between the technical specialists
and the developers. Despite being developed by cross-functional teams, the development

1 For confidentiality reasons, we cannot identify the second country.

Empirical Software Engineering (2021) 26: 101101 Page 12 of 41

1 3

organization for the old product consisted of several roles outside of the teams. In Project
Cloud, on the other hand, as many of these as possible were integrated into the teams in
order to build end-to-end capable teams. Only two experts, an architect and a technical spe-
cialist studying future technologies, remained outside the teams.

As part of adopting agile methods in the development of the original product, com-
munities of practice2 (CoPs) were introduced and gained a central role. CoPs were initially
used to support the transformation and later, to help coordinate the work between the agile
teams (see Paasivaara and Lassenius (2014)).

In the development organization for the old product, several CoPs were formed,
including coaching CoPs, Scrum master CoPs, and continuous integration CoPs. Any-
one in the organization was welcome to participate in the CoPs, and anyone in the com-
munity who wanted to discuss a topic he or she deemed important to the product or
the organization could schedule a CoP meeting, invite participants, and start building a
community around it. The CoPs were used to discuss topics common to several teams,
to coordinate work, and to make product-and development-related decisions. The fre-
quency and regularity of CoP meetings varied. Some CoPs met regularly on an ongoing
basis, e.g., the CoPs dealing with coordinating work across teams building a joint fea-
ture. Others were arranged ad hoc, e.g., to handle a need for joint architectural planning
or joint feature designing.

Using this CoP culture as a basis, Project Cloud further developed it towards what they
called community-based decision-making (Paasivaara and Lassenius 2019). In this way of
working, as explained by our interviewees, the individual CoPs were merged into a single
empowered community. All team members and all product owners were members of this
community, but managers were not. For decisions with wide impact, the community as a
whole makes the decision, rather than a more specialized CoP or a few decision makers.
The community had several fixed meeting slots every week, and they were reserved and
used as needed.

Fig. 3 Organization of Project Cloud at the Finnish site

2 Wenger et al. (2002) defines a community of practice as “a group of people who share a concern, a set of
problems, or a passion about a topic, and who deepen their knowledge and expertise in this area by inter-
acting on an ongoing basis”.

Empirical Software Engineering (2021) 26: 101 Page 13 of 41 101

1 3

3.3 Data Collection

We collected the data through individual and pair interviews. The interviewees were
nominated, per our request, by the company representatives involved in our research
projects and selected with the goal of reaching maximum variability with respect to the
role, experience, and attitudes, as well as to cover the whole development lifecycle. We
performed semi-structured interviews with people occupying different roles, both at the
team level and in managerial and support positions. We elicited information regarding
the interviewee’s participation in decision-making and their insights and experiences.
Whenever possible, we specifically asked about team authority and non/involvement in
decision-making. The interview guides can be found in the Appendix.

In Project Mobility, we had limited opportunities to visit the project site, which was in
another city, and therefore decided to conduct pair interviews, as they can generate a large
amount of data and include a wide range of responses within a limited timeframe. Another
benefit of pair interviews is that participants can build on the responses of the other, which
leads to ideas and observations that might not emerge during individual interviews. Kitz-
inger (1995) notes that the interaction between participants in a group highlights their
view of the world, the language they use about various topics, and their values and beliefs
about particular situations. Group processes can, according to her, help people discover
and elucidate their views in ways that cannot be done in individual interviews. To achieve
this effect, our pairs consisted of people with the same role. Pair interviews are, however,
not without drawbacks. First of all, the discussions require skilful facilitation from the
researcher in terms of allowing the discussion to flow but at the same time keeping the
discussion focused on the topic. Another task for the facilitator is to provide space for both
participants to contribute. As there were two researchers in the pair interviews, one person
led the interview and the other took notes. The one taking notes also supported the main
interviewer and made sure all important aspects were covered.

In Project Mobility, we report our findings based on eight interviews with 14 inter-
viewees dedicated to discussing the process of decision-making. These interviews were
a part of a larger longitudinal study, in which a total of 28 interviews and seven work-
shops with teams were conducted, in addition to the analysis of the organizational charts
and role descriptions.

In Project Cloud, we conducted four semi-structured interviews. Similar to Project
Mobility, these interviews were part of a larger longitudinal study on agile transformation in
this organization, during which we performed 78 interviews, see, e.g., (Heikkila et al. 2017;
Paasivaara et al. 2013). While comparing the data from Project Mobility and Project Cloud
in a meeting among all four researchers, we identified a need for additional data collection
in Project Cloud to acquire matching data from both projects on the particulars of decision-
making authority. To that end, we conducted four additional interviews with a team member,
a product owner, a line manager, and a coach. Thus, in total, we had 82 interviews from
Project Cloud. For this paper, the original 78 interviews provided background information
on the history, organization structure, processes, and ways of working, as presented in Sec-
tion 3.2.3. The analysis of decision making and autonomy in the Results section is based on
the four new interviews; therefore, we include only these four interviews while presenting
the data collection next.

All interviews were recorded and transcribed. The average duration of the twelve
main interviews, eight from Project Mobility and four from Project Cloud, included in
this study was 73 min. All interviews in Project Mobility were conducted in English,

Empirical Software Engineering (2021) 26: 101101 Page 14 of 41

1 3

while in Project Cloud, three of the interviews were conducted in Finnish, and one in
English. The quotes used in the paper from Project Cloud have been translated from
Finnish by the researchers. A summary of the interviews is available in Table 2. When
more than one person attended an interview, this is indicated under the column “inter-
viewee role”.

3.4 Data Analysis

The transcribed interviews were imported into a qualitative data analysis software tool,
NVivo.3 We coded using a predefined coding scheme based on the concepts of authority
presented by Hackman (1986). According to Hackman, four different functions must be
fulfilled when work is done in an organization. We developed Table 3, in which we have
provided examples of how we understand these functions in a software development set-
ting. First, someone must set the direction for the team. Second, someone must design the
team, arrange for needed organizational support for the work-structuring tasks, decide who
will perform them, establish core norms of conduct in the work setting, and make sure peo-
ple have the resources and support they need. Third, someone must monitor and manage
the work process—collecting and interpreting data about how the work is proceeding and
initiating corrective action as required. And finally, someone must execute the work. Hack-
man argued that all these functions need to be present in an organization. Coding for the
analysis of data on Project Mobility and Project Cloud was performed by the first two and
last two authors of this paper, respectively.

We followed a holistic coding process (Saldana 2009) to understand the four areas
of authority discussed in the interviews by assigning pieces of text to categories
(‘‘node” in NVivo). We classified the interview fragments related to decision-making
in terms of the decision-maker (the team, not the team) or a role (line manager, prod-
uct owner, etc.). While reading the transcripts, we found different types of decisions
that could be aggregated under the four areas of authority. For example, one inter-
viewee discussed his involvement in mandatory courses, which we have added under
a new category “Who Decides What Will Improve Practice” under “Monitoring and
Managing Work Process and Progress”.

Within the open coding, we also coded interesting expressions of opinions, prob-
lems, events, good large-scale practices, happenings or actions/interactions, and con-
text-related information.

Creating a common understanding of how to code the four levels of authority
(Table 3) was an iterative process. Part of the interviews in Project Mobility was coded
first by the two first authors, and then all authors met to discuss the coding process,
examples of codes, and how to understand the data. After this meeting, the two first
authors completed the coding of Project Mobility, and the two last authors coded Pro-
ject Cloud. After the coding was completed, we synthesized our findings. First, we
revisited the codes related to the four areas of authority and summarized how certain
decisions were made in each case project. During the synthesis, we not only highlighted
who had the mandate to decide on a certain topic, but also whether the decision was
made in consultation with or based on input from others. We had multiple meetings
with all authors during the synthesizing process. Illustrative quotations were added to
enrich the summaries. An example of the coding process can be found in Fig. 4.

3 www. qsrin terna tional. com

Empirical Software Engineering (2021) 26: 101 Page 15 of 41 101

http://www.qsrinternational.com

1 3

Ta
bl

e
2

 D
at

a
co

lle
ct

io
n

th
ro

ug
h

in
te

rv
ie

w
s

Pr
oj

ec
t M

ob
ili

ty
In

te
rv

ie
w

ee
 r

ol
e

C
om

pa
ny

ex

pe
ri

en
ce

Pr
ev

io
us

 p
os

iti
on

s a
t E

ri
cs

so
n

In
te

rv
ie

w

du
ra

tio
n

Ti
m

e
an

d
lo

ca
tio

n

D
ev

el
op

m
en

t M
an

ag
er

11
 y

ea
rs

H
ea

d
of

 R
&

D
, P

ro
du

ct
 M

an
ag

er
, P

ro
je

ct
 M

an
ag

er
, S

al
es

an

d
M

ar
ke

tin
g

M
an

ag
er

48
 m

in
A

pr
il

an
d

M
ay

 2
01

6,
 S

w
ed

en

Tw
o

A
re

a
Pr

od
uc

t O
w

ne
rs

16
 y

ea
rs

Pr
oj

ec
t M

an
ag

er
, D

ire
ct

or
 o

f S
ys

te
m

s M
an

ag
em

en
t

54
 m

in
18

 y
ea

rs
Pr

og
ra

m
 M

an
ag

er
, P

ro
je

ct
 M

an
ag

er
Tw

o
O

pe
ra

tiv
e

Pr
od

uc
t O

w
ne

rs
4

ye
ar

s
–

55
 m

in
4

ye
ar

s
–

Tw
o

Sc
ru

m
 M

as
te

rs
5

ye
ar

s
So

ftw
ar

e
D

es
ig

ne
r a

nd
 D

ev
el

op
er

56
 m

in
18

 y
ea

rs
So

ftw
ar

e
D

ev
el

op
er

, P
ro

je
ct

 L
ea

de
r

Sy
ste

m
 O

w
ne

r
20

 y
ea

rs
Sy

ste
m

 E
ng

in
ee

r,
Li

ne
 M

an
ag

er
, N

et
w

or
k

En
gi

ne
er

,
Sy

ste
m

 T
es

t E
ng

in
ee

r
55

 m
in

Tw
o

Te
ch

ni
ca

l A
re

a
Re

sp
on

si
bl

es
20

 y
ea

rs
D

es
ig

ne
r,

So
ftw

ar
e

En
gi

ne
er

67
 m

in
18

 y
ea

rs
Se

ni
or

 S
of

tw
ar

e
En

gi
ne

er
Tw

o
Li

ne
 M

an
ag

er
s/

 D
es

ig
n

O
w

ne
rs

25
 y

ea
rs

Pr
oj

ec
t M

an
ag

er
, D

es
ig

ne
r

37
 m

in
20

 y
ea

rs
H

ea
d

of
 D

ep
ar

tm
en

t,
B

us
in

es
s M

an
ag

er
Tw

o
Li

ne
 M

an
ag

er
s/

 D
es

ig
n

O
w

ne
rs

6
ye

ar
s

R
&

D
 M

an
ag

er
61

 m
in

9
ye

ar
s

Pr
oj

ec
t M

an
ag

er
, R

el
ea

se
 L

ea
de

r
Pr

oj
ec

t C
lo

ud
In

te
rv

ie
w

ee
 r

ol
e

C
om

pa
ny

ex

pe
ri

en
ce

Pr
ev

io
us

 p
os

iti
on

s a
t E

ri
cs

so
n

In
te

rv
ie

w

du
ra

tio
n

Ti
m

e
an

d
lo

ca
tio

n

Li
ne

 M
an

ag
er

, P
ro

du
ct

 O
w

ne
r

3
ye

ar
s

Pr
od

uc
t O

w
ne

r,
D

ev
el

op
er

59
 m

in
M

ar
ch

 2
01

7,
 F

in
la

nd
Pr

od
uc

t O
w

ne
r

9
ye

ar
s

D
ev

el
op

er
, T

es
te

r
97

 m
in

Te
am

 M
em

be
r

17
 y

ea
rs

D
ev

el
op

er
, P

ro
je

ct
 M

an
ag

er
, P

ro
du

ct
 C

om
m

itt
ee

 L
ea

de
r

57
 m

in
C

oa
ch

5
ye

ar
s

Sc
ru

m
 M

as
te

r,
D

ev
el

op
er

61
 m

in

Empirical Software Engineering (2021) 26: 101101 Page 16 of 41

1 3

4 Results

According to Hackman (1986), four different functions must be fulfilled when the work
is done in an organization. First, someone must set the direction for the organizational
work to be done. Second, someone must design the performing unit and arrange for the
organizational support necessary for the work. Third, someone must outline, monitor,
and manage the work process. Finally, someone must execute the work. We categorized
the observed phenomena into these four types of organizational authority (see also Sec-
tion 2, Fig. 1.).

4.1 Team Authority in Project Mobility

In Project Mobility, we analysed the cross-functional feature teams from Sweden work-
ing on feature assignments. Several roles interacted regularly with the cross-functional

Table 3 Examples of how we understand the four functions found in a software development company

Categories

Setting the overall direction
• Who decides what shall be in the system?
• Who designs the product architecture?
• Who chooses specializations and work items for
 teams?

Monitoring and managing work processes and
progress
• Who defines, changes, and improves project
 processes?
• Who defines, changes, and improves team internal
 processes?
• Who monitors team progress?
• Who checks quality?

Designing the team and its organizational context
• Who decides who is on the team?
• Who can remove people from the team?
• Who decides which supporting roles are needed

for the teams?

Executing team tasks
• Who designs features?
• Who develops features?
• Who delivers features?

Fig. 4 Example of the coding process

Empirical Software Engineering (2021) 26: 101 Page 17 of 41 101

1 3

teams. These were the operative product owner (usually one per team), the line manager
(one per team), the Scrum master (which can be inside or outside the team, or shared
among several teams), as well as the design owner and technical area responsibles
(TARs) who support the teams during task implementation. The other important roles
that emerged in Project Mobility were system owner and the area product owner (one
for each product area); the team of architects consisting of a chief architect, software
architects, and design architects; and the leadership group, which primarily consists of
line managers.

4.1.1 Setting the Overall Direction

The overall direction for the product in Project Mobility was set by the area product
owners and the system owner, who had the final decision on what should be in the sys-
tem. Together, they defined and prioritized the backlog and assigned feature tasks to the
teams. The architecture also sets the direction for the product. The product architecture
was defined by the team of architects, consisting of experts occupying architecture-related
roles from the product and the team level, i.e., design architects who were all part of regu-
lar teams and work 50% as senior developers. Teams were expected to consult the design
architects whenever the feature they were implementing affected the architecture. In other
words, the teams were allowed to change the architecture as long as the changes were
approved by the architects.

The features that were assigned to teams, i.e., the specialization of the teams, also
affected the direction of the organization and the teams. Specialization was determined by
market demand and decided by the area product owners. The lack of involvement in what
a team was going to work on was regarded as a limitation and something that reduced a
team’s level of empowerment, as a Scrum master complained:

“The team has been back and forth on different projects, but the team has no say on
that part either. And now there is actually a discussion to move the team to another
area, from operation and maintenance to the application area, or divide the team...
And that is totally up to the “power hands”. The team is not involved in those discus-
sions, in that loop… We don’t know from one day to another day what the day will
bring. That is bad for morale”.

While the area product owner and the system owner defined which features the teams
would work on, teams could contribute to the system vision and content during hack-
athons, in which the teams were expected to come up with their own ideas beyond those
in the backlog. Hackathons are product-specific monthly initiatives that were introduced
by the leadership team to provide teams with the platform to influence the direction of the
product and elicit innovative ideas. As the development manager described:

“I also have decided that one day a month every section should conduct innovation
day. And they can do whatever innovation or improvement they like. It should even-
tually lead to better results for Ericsson, but it should not be backlog item APOs
order.”

Hackathons were quite new for the organization, and not every team or team member
had participated in hackathons, and therefore their effect was yet to be determined, as
described by a Scrum master:

Empirical Software Engineering (2021) 26: 101101 Page 18 of 41

1 3

“Yeah (I participate), we had one last week for section actually. I really like the idea,
but it is hard to get time aside. But now this is the thing from above, you should do
this one day in a month. Now we try to attend it more and plan for it. I will try. But
for the first one I was quite stressed because I was trying to get something working at
the end of the day”.

4.1.2 Designing the Team and its Organizational Context

The decisions about who belonged to a cross-functional team in Project Mobility were
made by the leadership group. Most of these decisions were made without consulting the
teams. A line manager explained that while decisions regarding the team size and profile
might be discussed with teams, teams were not consulted about certain staffing decisions,
especially regarding individuals returning from parental leave, when teams changed spe-
cialization, existing teams merged, or new teams created. This, however, was reported to
affect team morale, as a Scrum Master explained:

“We got some new members. Not that we should, we just got them. So that is very
un-empowering. But great guys and we like them. But we didn’t have anything to say
about that decision. That was really bad.”

The supporting roles for teams were changed continuously by management. For exam-
ple, the role of TARs was introduced to ensure the quality of team outcomes by focusing on
reviewing design proposals, code, and feature solutions. This role was later replaced by the
design owner role to give teams more responsibility by focusing on on-demand consulta-
tion regarding product architecture in the early phases of development. The introduction,
redefinition, and removal of these roles were part of a large improvement process that was
run by the leadership group. As in the team staffing decisions, teams were hardly involved.

4.1.3 Monitoring and Managing Work Processes and Progress

The teams in Project Mobility were entitled to a large degree of autonomy regarding their
internal ways of working. Further, team retrospectives were used to discuss whether adjust-
ments were needed to find better ways of working and become more productive. A Scrum
master described the freedom of choosing how to work as follows:

“We started with Scrum in theory maybe, but we adapted our own ways of working
that fit the team. And we are constantly changing things…. we can use Scrum, we
can use Kanban for a while. So, there is no overall decision on what to follow.”

Team performance was monitored and discussed by each cross-functional team and its
close collaborators, i.e., the team members, the operative product owner, and the line man-
ager. Performance monitoring included feedback on the deliverables and their quality. We
found that operative product owners and TARs previously handled quality control through
mandatory code reviews and demos. However, as the teams became more experienced, the
need for “policing functions” was discussed and questioned, as an operative product owner
described:

“I see one risk with the TAR role as a gatekeeping role: a team might use it as
a safety buffer. If teams think ’Okay, if something is wrong, that will be dis-

Empirical Software Engineering (2021) 26: 101 Page 19 of 41 101

1 3

covered by TAR’, and I think, we have to get away from that. So, teams take
that responsibility, and not rely on someone else to look and make sure that it is
really good.”

While a team had freedom to choose the work process, there was a high need for
aligning the teams; many mandatory processes and even improvements were defined by
the line managers and the leadership group. These included a quality checklist before
delivery, sprint length, mandatory reporting meetings, and training courses. The inabil-
ity to influence the mandatory processes, however, was not always well received by the
teams, since teams at different levels of maturity were treated equally. Consequently,
targeted improvements were sometimes perceived as meaningless if the mandatory solu-
tions addressed a problem that a particular team did not experience, as explained by a
Scrum master:

“Now, what I have not seen before is a lot of directives. Every team should do that
and that, instead of work with teams and go forward to find what are the problems
with your team, what can you do to improve a team...
Because someone did that, and that was good, so everyone should do it... instead
of trying to focus on what could be improved in different areas in different teams.
That I would prefer.”

Each team was responsible for unit testing, while integration and system testing were
performed by the continuous integration (CI) team.

4.1.4 Executing the Team Task

Teams received tasks from the backlog with features prioritized by the area prod-
uct owner. Tasks usually contained a brief description, which the team subsequently
detailed and designed. Teams interacted with operative product owners when designing
the features and could consult design owners if a technical expert opinion or architec-
tural expertise and advice were needed.

When the feature work was completed and tested, a team packaged the feature, verified
its completeness by filling in the readiness checklist, and sent it to the continuous integra-
tion unit. The final delivery to the customer was undertaken by the release managers.

4.2 Team authority in project cloud

In Project Cloud, all teams were members of the community, which was the central deci-
sion-making body in the project. This gave the teams authority both on the team and the
project level. As stated previously, the community was formed by all project teams and
product owners. Under special circumstances, product managers and line managers could
take part in the community meetings, but they were not considered community members.

The community made decisions that used to belong to management, including strate-
gic technical issues, as well as process-related ones, e.g., setting the overall development
direction and specifying the ways of working. This change of decision-making power
from management to the community was a major cultural change in the organization.

Empirical Software Engineering (2021) 26: 101101 Page 20 of 41

1 3

4.2.1 Setting the Overall Direction

Given that the product was in a mature market segment, product management retained the
main responsibility for the overall direction of the system. Compared to the old project, the
technological change from dedicated hardware to a virtualized cloud-based solution pro-
vided opportunities for novel features. This, in turn, resulted in the development organiza-
tion providing both feedback on existing requirements and ideas for completely new ones.
The interaction between development and product management changed from a command-
and-control style towards one based on trust and dialogue—and a little sense of rebellion
against the traditional way of working, as described by a product owner:

“In practice we don’t have top-down management anymore, so if the PO decides
something, or if the architect decides something, nobody takes it seriously unless it
has the community behind it. The decision has to be made by the community and be
accepted by it.”
“The overall direction is set by the community… But it is very challenging, e.g., if
they [headquarters] have an architect who has the power to decide, and he comes
here and commands us to do something, and then he is told that he cannot decide…
that you don’t have the power, you can say whatever you want, but the community
will decide and make the implementation anyway. So, we have kind of the reputation
of a pirate ship in the sense that we have bravely made decisions outside the main-
stream that in retrospect have turned out to be very good.”

The change from an executing organization towards one intimately involved in decid-
ing what to do was based on the fact that the community in Project Cloud gained valuable
knowledge about the possibilities and limitations of the new technology. This gave them
the confidence to weigh in on requirements-related decisions and negotiate with product
management. A product manager argued that this open discussion and negotiation based
on a deep understanding of the product and customers in the community led to better
requirements:

“We [the community] are really a strange creature in the sense that if there comes
a requirement [that we think does not make sense], we … tell that it really does
not work this way, we won’t do it. And in particular, if this requirement comes
from a person who has not done hands-on work with the cloud, and he argues
against twenty guys [who are technical experts], doing real development work,
you can guess whose arguments are better… Or sometimes we question the cus-
tomer value [the requirement] provides, and that often leads to interesting dis-
cussions. At least with our product management. If we tell them that this does
not produce customer value, and we can motivate it well, then the requirement is
rather quickly forgotten.”

In addition to discussing the requirements, the community was responsible for architec-
tural decisions. While the old organization had separate architect roles, in Project Cloud,
the technical leads and experts were part of the cross-functional teams. Thus, they were
immersed in the technology while participating in the daily technical work rather than liv-
ing in an “architectural ivory tower” far away from the actual development. This allowed
the teams to undertake end-to-end development, as explained by a product owner:

“We [in the CoP] share information and solve problems together and make decisions.
And everybody is on the same line, and the decisions mostly come from the teams

Empirical Software Engineering (2021) 26: 101 Page 21 of 41 101

1 3

and the community. In the old days,…, we had a systems department that would
study the issue several years beforehand, and would write specifications that were
carved in stone and handed over to the developers. Now it is kind of the opposite.
Basically, the biggest change was that the old systems experts and system testers
were all integrated into the teams…. The teams really became end-to-end capable.”

The project had one remaining architect role, although that role had morphed from deci-
sion-maker to assistant, supporting the community and helping to ensure that the architec-
turally significant decisions made by the community conformed to corporate guidelines.

Through the community, the teams felt that they were able to affect the overall direction
in the organization, and that the decisions made by the community made use of the best
knowledge in the organization. A team member explained how much they could influence
the overall direction:

“In my opinion, quite a lot. In particular, now that we started this virtualized version
of our product, there were a lot of people in the community assessing options and
pushing it in the right direction. And that is maybe one strength of Ericsson Finland,
that we have made the right decisions because we have discussed issues broadly and
tried to elicit all knowledge that is available in-house.”

While the organization strived to form teams that would be able to work on any feature,
without any areas of specialization, this turned out to be tricky in practice. The main con-
cern was related to productivity, and this meant that the product owners mostly decided
what each team would work on next. A team member explained:

“I think it is maybe a bit bad. Of course, they [product owners] would certainly listen
to us if we told them that we would like to make more of this and less of this, but
they really don’t ask us a lot... And if some team has got… kind of stamp… that it
focuses on certain types of tasks, the POs, because they focus on throughput, always
give the same kind of tasks to that team, which might not be optimal from the point
of view of competence development. So, I think that the PO and line management
should think a bit about the competence development needs and wants of people.”

4.2.2 Designing the Team and its Organizational Context

Although line management was responsible for recruiting and staffing decisions, teams
were actively consulted, and their recommendations were typically followed. Many deci-
sions were made based on a dialogue between the teams and the line managers. During a
recent external recruitment process, selected team members participated in the job inter-
views and actively contributed in the technical parts of the interviews, giving them influ-
ence on who should be part of the team.

The level of authority given to the teams when it comes to designing the teams and their
organizational context can be illustrated by the way a recent major organizational change was
handled. Since some teams were too small, half of the teams were designated for restructur-
ing. This was achieved by offering the teams a choice: either the teams drive these decisions,
or the line managers drive them in consultation with the teams. A coach described:

“... The teams thought that it would be better if the line management decided, and
teams were only consulted.... It would be fair to say that the line management was
a bit frustrated at the slowness of having to discuss with people, hear them out, and
then discuss more with somebody else… But the end result, based upon feedback

Empirical Software Engineering (2021) 26: 101101 Page 22 of 41

1 3

from the teams, seems to be quite good because the teams themselves feel that they
have been able to influence things, and that makes them feel much more comfortable
[with the decisions].”

In terms of organizational context, product owners or other members of the community
assisted in connecting the teams with the right experts whenever external expertise was
needed. As a result, teams in Project Cloud were in direct contact with the other teams and
with supporting roles inside and outside the project.

4.2.3 Monitoring and Managing Work Processes and Progress

The decisions related to ways of working and what tools to use were made both at the team
and the community levels. If a decision was not in conflict with what had been agreed upon
at the community level, nor created problems for other teams, a single team could make
the decision. The teams were authorised to define their own ways of working, as long as
other teams were not affected. This guideline in Project Cloud aimed to maximize team
autonomy, restricting it only to avoid conflict or chaos in the organization. If a team wanted
to make a change affecting others or change an agreed-upon community decision, they had
to call a community meeting. This was explained to us by a team member:

“The team decides [its working processes] independently... Yes, and for example
when some new people came [into the team] around a year and a half ago, we had
this session [in our team], where we discussed how to work, how do we want to work,
and we created some kind of instructions…. When something has been decided in
the community, a team cannot change it, but has to take it back to the community
[and suggest changing it]. For example, commonly agreed things, like we use Gerrit
[a tool] etc., we cannot decide ourselves that we don’t like it and won’t use it.”

To better understand the type of process-related issues that a team could address inde-
pendently and what belonged to the community, we asked whether a team could, for exam-
ple, decide for themselves to use Scrum or Kanban. We learned that since certain alignment
points existed between the teams, decisions affecting this alignment required everyone to
change, and thus must be made in the community. At the time of the interviews, all teams
had synchronized two-week sprints. However, inside the sprints, each team could work
the way they wanted. For example, many teams used Kanban boards, some had physical
boards, and some had electronic boards.

Each team agreed with their product owner on how team progress and performance were
monitored. Teams were required to trace their progress using Kanban or Scrum boards and
to hold daily stand-up meetings in which their product owner also participated. The teams
considered the daily stand-up meetings as reporting meetings and not team internal meet-
ings held for coordination purposes because of the presence of the product owners. The
POs required each team to maintain some kind of board, as well as hold daily stand-ups.

Quality was mainly ensured through automated testing, which was performed on sev-
eral levels and in different cycles. When working on new features, teams implemented
new automated tests as a part of the feature development. Teams were also responsible for
continuous integration and the automated testing system, called the “washing machines”.
Teams took two-week turns in monitoring the washing machines. Therefore, we can say
that the teams and the community as a whole were responsible for quality and also for
checking quality.

Empirical Software Engineering (2021) 26: 101 Page 23 of 41 101

1 3

4.2.4 Executing the Team Task

When teams were assigned features to develop by the product owners, they performed
the development work independently, taking full responsibility for designing, imple-
menting, and testing the features. In cases where their work affected other teams or the
product design or architecture, related decisions were deferred to the community. In the
community meetings, other teams and experts, such as architects, weighed in on the
decision.

The final delivery to the customer was undertaken by the release managers in collab-
oration with the product owners, because the preparation of a release requires “bureau-
cratic” work that the teams were shielded from.

4.3 Level of Team Autonomy in the Case Projects

In Table 4, we summarize the distribution of authority in the two studied projects. The
white cells represent the areas and decisions that individual teams are responsible for.
The light grey cells represent the areas aligned across the teams and were influenced by
the teams or decided by the teams jointly as a community, while the dark grey cells rep-
resent areas and decisions made by line management, product owners, or other manage-
rial roles without prior consultations with the teams. Note that product owners are not
considered part of the teams, as this was the setup in both our cases. The reason for this
was that the POs in Project Cloud, and the OPOs in Project Mobility served several
teams. This means that our teams refer to the Development Team in the Scrum guide
sense, not the Scrum Team, which includes the PO (Schwaber and Sutherland 2017).
The newest version of the Scrum guide (Schwaber and Sutherland 2020) has dropped
the concept of Development Team, referring only to Developers instead.

Our intention was to understand the amount of authority given to a single team
working in a large-scale software development project, what decisions a single team
could influence, and which decisions were made without consulting the teams. Next, we
briefly compare the cases.

4.3.1 Setting the Overall Direction

In Project Mobility, the area product owners and the system owner decided what should
be in the system, while teams could contribute to the system vision and content by intro-
ducing ideas during hackathons. In Project Cloud, having an open discussion with the
community had a strong influence on the overall direction by providing both feedback
on existing requirements and ideas for new ones, while product management retained
the final responsibility for the overall direction of the system.

Further, in Project Mobility, the product architecture was designed by the team of
architects that consisted of design architects from the teams, while in Project Cloud the
community was responsible for architectural decisions. Finally, in Project Mobility, the
team specialization and features developed were decided by the area product owners,
while in Project Cloud the product owners decided on team specializations but listened
to input from teams regarding what they wanted to work on.

Empirical Software Engineering (2021) 26: 101101 Page 24 of 41

1 3

4.3.2 Designing the Team and its Organizational Context

The leadership group in Project Mobility decided who was part of each team and which
supporting roles there were, mostly without consulting the teams, which negatively affected
team morale.

In Project Cloud, line management took the final responsibility for recruiting new team
members, as well as for moving people between the teams, while actively involving the
teams in the process. The community assisted teams in connecting to key experts and to the
other teams.

Table 4 Summary of the distribution of authority. The white cells represent areas of team responsibility,
while the light grey cells represent areas, in which teams can influence decisions or in which teams are con-
sulted. The dark grey cells represent areas in which decisions are made without consulting the teams

* PO product owner, OPO operative product owner, APO area product owner, LG leadership group, LM
line management, SO system owner, RM release manager, PM product management

Empirical Software Engineering (2021) 26: 101 Page 25 of 41 101

1 3

4.3.3 Monitoring and Managing Work Processes and Progress

Each team had the main authority to decide their internal process in Project Mobility. How-
ever, to align between the teams, many mandatory processes, such as a quality checklist
before delivery and sprint length, were defined by the line managers and the leadership
group.

Team progress and quality were monitored by the team and their OPO and line man-
ager. Integration and system tests were performed by a separate CI team. In Project Cloud,
the overall project processes and changes to it were aligned in the community. The team’s
internal process and ways of working were decided by each team, as long as they were
not in conflict with the community-level agreements. Team progress was monitored by the
team and their PO, and teams and the community were responsible for the quality of their
work.

4.3.4 Executing the Team Task

In Project Mobility, teams took full responsibility for designing, implementing, and unit
testing the features, and were supported by their area and operative product owners, as
well as by design owners. In the same way, in Project Cloud, teams took full responsibility
for designing, implementing, and testing the features, and were supported by their product
owners.

In both projects, the release managers took care of the final delivery to customers.

4.3.5 Comparing the Cases

The results of the cross-case analysis indicate that teams in Project Mobility had similar
levels of authority as in Project Cloud when it came to executing team tasks and decid-
ing on team internal processes. However, project-level decisions in Project Mobility were
handled to a large extent without consulting the teams, while the teams in Project Cloud
either jointly decided or at least influenced decisions with respect to managing ways of
working within the project, designing the teams and project context, and setting the overall
direction for the system they developed. This was done through a community formed by
the teams that included the technical and product experts, as well as the Product Owners.
Due to the high levels of technical uncertainty at the beginning of the project, there was a
need to combine the competencies and together find the best possible solutions to the chal-
lenges that arose. Due to this technical uncertainty, everybody was at the same starting line
regarding competencies. The success of the early decisions proved that community-based
decisions had a higher likelihood of success than individual decisions, which was the rea-
son to enforce the community as the central decision-making forum, especially regarding
technical decisions. The only decisions that were made without consulting the teams for
Project Cloud were related to how tasks and specializations were distributed between dif-
ferent teams. Here, teams did not traditionally have much influence on the decisions, as
the product owners made the decisions. However, the interviewed team members viewed
this as problematic and hoped that teams would also have more influence in this area in the
future.

Empirical Software Engineering (2021) 26: 101101 Page 26 of 41

1 3

5 Discussion

Large and complex software systems can be characterized by unprecedented scale in terms
of lines of code, the amount of data stored, accessed, manipulated, and refined, as well as
the number of connections, interdependencies, hardware, computational elements, and cus-
tomers. Such systems are developed in complex multi-team contexts, where a team needs
to network with experts and to align many decisions regarding the tasks and the process
with other teams and the organization (Šmite et al. 2017). As a result, team autonomy is
reduced. For these reasons, large-scale software projects often have a complex governance
structure with centralized authority (Dingsøyr et al. 2018; Olsson Holmström and Bosch
2016). However, agile software development relies on the idea of autonomous teams with
broad authority to decide on their own work.

In this paper, we looked at how to balance team autonomy with the need for organi-
zational control and alignment in large-scale agile development efforts. To this end, we
examined how organizational authority was allocated in large-scale agile software devel-
opment in two empirical cases at Ericsson—one at a Finnish site and one at a Swedish site.
This question is interesting because in agile environments, the focus of decision-making
is expected to move from the project manager to the software development team, and the
decision-making process changes from individual and centralized to shared and decentral-
ized (Barney et al. 2009). At the same time, the organization needs to ensure that all the
agile teams in the large-scale project are working towards the same goal and that work is
coordinated between the teams, which is traditionally achieved by formal organizational
control. In the following, we discuss how organizational authority was allocated in the
studied projects and what we can learn from it with respect to balancing team autonomy
and organizational control.

5.1 Authority in Large‑Scale Agile Projects

To understand how much authority the teams have, we used the framework proposed by
Hackman (1986) and Table 1 to map the distribution of authority in the studied projects
(see the results of the mapping in Table 5).

In both case projects, the teams had full control only of executing the tasks. For the
other three levels, authority either rested with the management, was shared between
the teams and management and/or supporting roles, or was taken in a collective
forum. The latter form of decision-making was of particular interest because Hackman
(1986) considered that authority either rests with the work unit or with the manage-
ment (which can consult or allow influence from the work units). Our findings indicate
that authority could also formally rest with a development community (shared between
teams).

Furthermore, we learned that team authority tended to increase over time. First, in Pro-
ject Cloud, the introduction of communities reduced management authority since many
decisions (e.g., regarding features, process, product, and teams) were now transferred to
the teams. Second, in Project Mobility, the level of monitoring functions (external experts
checking the work of the team) was reduced, and teams became responsible for quality and
compliance management. Our results are in accordance with Langfred (2007), who sug-
gests that organizations must carefully consider the proper level of autonomy and discre-
tion given to teams. While we found evidence of teams claiming to have too little authority,
we did not find evidence of teams receiving too much.

Empirical Software Engineering (2021) 26: 101 Page 27 of 41 101

1 3

Table 5 Authority in our case projects vs. popular agile scaling frameworks. The white cells represent areas
of team responsibility, while the light grey cells represent areas, in which teams can influence decisions or
in which teams are consulted. The dark grey cells represent areas in which decisions are made without con-
sulting the teams. N/A means that the model does not say anything about it

PO product owner, OPO operative product owner, APO area product owner, L leadership group, LM line
management, SO system owner, RM release manager, PM product management, ART agile release train
(Leffingwell 2018)
a Product increment planning with all teams in an agile release train is typically held every 12 weeks

Empirical Software Engineering (2021) 26: 101101 Page 28 of 41

1 3

When classifying teams in Project Mobility and Project Cloud according to Hack-
man’s authority matrix (Fig. 1), it is fair to say that teams in both large-scale projects have
more authority than a typical manager-led unit, but the level of authority is still insuffi-
cient to qualify their categorization as self-managed, self-designing, or self-directing units.
According to Hackman (1986), self-management occurs when a unit controls the decisions
regarding the execution of tasks and the management and monitoring of work and pro-
gress. Thus, we consider teams in both projects as partly self-managing, since the authority
is often shared with management and/or the community. Further, the influence that indi-
vidual teams have on higher-level decisions varies. In Project Mobility, the team’s author-
ity over the organizational context and the unit’s design, as well as the overall direction, is
lower than in Project Cloud, in which teams are engaged in community-made decisions.

Due to the popularity of various commercial and non-commercial prescriptive scaling
approaches and frameworks, we added three of the most popular ones to our comparison to
see how their recommendations match our results and how much autonomy they prescribe.
The result is visible in Table 5, where we added the SAFe—Scaled Agile framework (Leff-
ingwell 2018), the LeSS—Large-Scale Scrum framework (Larman and Vodde 2016), and
the Scrum adaptation made popular by Spotify, often referred to as the “Spotify Model”
(Kniberg 2014a, b). The community in the Spotify Model refers to the guilds (Smite et al.
2020) and other cross-company units with team representatives. The entries in the table
are based on our interpretation of the frameworks’ prescriptive recommendations and not
single cases implementing them.

Looking at team autonomy in the scaling frameworks, SAFe represents the most tra-
ditional model, with the highest level of standardization and management responsibility
and subsequently the lowest degree of team autonomy. Teams are focused on delivering
features in synchronized sprints as part of 12-week release trains, using either Scrum or
Kanban processes. Even though Project Mobility did not rely on the SAFe model, the level
of team autonomy was close to what the SAFe model prescribes.

The LeSS model has a different take on management, stressing the need for managers
to facilitate the development teams, and taking responsibility for systemic improvement
of the development organization, but letting the teams and product owners take care of
all product decisions, as well as process improvements (Larman and Vodde 2016). This
view is visible in allowing teams a higher degree of autonomy, as indicated in Table 5.
As mentioned previously, the development model used in Project Cloud was inspired
by LeSS, which is also seen in the very similar approach to team autonomy, with the
major difference being that Project Cloud explicitly defined a community as a decision-
making authority.

The Spotify model, also based on Scrum, has a high level of team autonomy, as the
teams are involved in or are able to influence all kinds of decisions, from executing the
task to setting the overall direction. Of special importance, as the community in Pro-
ject Cloud, and a community of teams in the LeSS model, there are also communities
of practice in the Spotify model, called guilds. Management seems to have a slightly
higher involvement in decision making in the Spotify model than in Project Cloud or in
the LeSS model, as it is involved through line management or the leadership group in
both decisions regarding designing the team and its organizational context and setting
the overall direction.

Empirical Software Engineering (2021) 26: 101 Page 29 of 41 101

1 3

5.2 Team Alignment in Large‑Scale Agile Projects

The reasons for limiting team authority in the studied cases were not because the organiza-
tion used an authoritarian management style (the elements of which we have also found),
but to ensure that all the teams involved in the large-scale development efforts achieved the
expected outcomes towards the shared goals. (Kirsch et al. 2010) suggest that organizations
may achieve alignment and ensure goal attainment through two major control modes: for-
mal (behaviour and outcome) and informal control (clan and self-control) modes. Formal,
top-down control is exercised by relying on documentation, written rules, and procedures
that require particular behaviours to be followed in order to achieve the desired outcomes
and could be related to managerial control. Informal or bottom-up control encourages
groups and individuals to monitor their own work, which they are able to do if group and
personal goals are largely compatible with the goals of the broader organization. Such con-
trol can be exercised as a collective action in what is called a clan, the members of which
socialize and agree upon a set of norms and values, which empowers the clan members
(Ouchi 1979).

We found that in Project Mobility teams were influenced by top-down alignment
directives, while teams in Project Cloud exercised bottom-up alignment mechanisms,
in which the community of teams can be understood as a clan. As in previous research
that demonstrated that teams that are not involved in designing the general policies
and alignment initiatives might not fully commit to those initiatives (Moe et al. 2009),
we found that the top-down approach in Project Mobility was not suitable for all
teams, and especially not for the experienced teams that constantly reflected upon and
improved their own process. The experienced teams perceived the offered best prac-
tices (as proposed by the management) as a threat to their ability to make good deci-
sions regarding their work. Our findings are in accordance with (Conboy and Carroll
2019) who found that a top-down approach to implementing processes in large-scale
agile environments achieved mixed success because many members felt that the pro-
cesses were imposed by those who did not understand the implications or problems to
be solved. Alignment enforced by external stakeholders reduces team authority and is,
therefore, a barrier to team autonomy in large-scale agile environments.

In contrast to the largely formal control mechanisms in Project Mobility, the bot-
tom-up approach in Project Cloud emerged over time, as management allowed and
encouraged teams to take more responsibility. A bottom-up approach to aligning joint
efforts confers a higher potential for team empowerment and increased autonomy
since team members participate in decision-making. The results of these initiatives
can thus take not only the form of a “one-size-fits-all-solution,” as is often the case
in formal rules- and procedures-oriented control, but also consider initiatives tailored
to the specific needs of the teams. Therefore, this alignment approach might better
support teams in large-scale agile environments, in which the needs of each team can
vary substantially. Empowerment in Project Cloud was established through mutual
adjustments by team representatives in the community, a new informal governance
unit comprising all teams working in the project, product owners, and technical
experts. Notably, line management was not a part of the community. While individual
teams in this project did not have full authority in all the levels defined by Hackman
(1986), we believe that having a strong influence on the team design and the overall
system direction as part of the community satisfies the needs of the teams and, at the
same time, the needs for alignment held by the organization. It is also important to

Empirical Software Engineering (2021) 26: 101101 Page 30 of 41

1 3

note that the community was eligible to make the decisions, and not just recommend
the decisions for approval by management. At the same time, we found that neither
the teams nor the community in Project Cloud had much influence on team speciali-
zation and competence management. Therefore, although the level of authority given
to the community as a unit is above the self-management level, it does not fulfil the
criteria for a self-designing or a self-governing unit. However, the results of our anal-
ysis could help the project reflect on the areas where community authority is limited
and decide whether more authority should be granted to raise the level of community
autonomy to satisfy team requirements for further autonomy.

5.3 Identifying the Sweet Spot for Team Autonomy and Organizational Control

Dingsøyr et al. (2018) found that the ability to balance a decentralised decision process
and a centralized structure was an important success factor for large-scale projects. Simi-
larly, our data indicate that neither full autonomy of individual teams nor full autocracy
of management seems to be a valid approach to authority distribution in large-scale agile
development. Full autonomy of individual teams is unrealistic because teams in large-
scale organizations do not deliver their work outcomes alone, and alignment is needed to
ensure quality and avoid jeopardizing interdependencies (Olsson Holmström and Bosch
2016). Management-taken decisions in large and complex contexts can easily fail to rec-
ognize the needs and the complexity of the work performed by the individual teams, mak-
ing at least some management-led alignment efforts viewed as unnecessary and discour-
aging by the teams.

So, what is the alternative? Our findings demonstrate how the decentralization of
authority can be achieved by fostering the formation of communities for shared bottom-
up decision-making, which at the same time fulfils the need for a centralized structure
and alignment. This is in line with Kirsch et al. (2010) who found that in knowledge-
intensive work, where tasks are less repetitive and more ambiguous, or in an environ-
ment where innovation and creativity are required, clan control is an appropriate and
strong control mechanism for organizations. In our case, the community in Project Cloud
can be regarded as a clan, where empowered members take a wide range of decisions
together and then control the teams and individuals within that community. As all teams
are involved in the clan, the teams largely control themselves, with the exception of deci-
sions that affect the whole community. Similar clan or community control mechanisms
have been found in three organizations that foster self-management (Lee and Edmond-
son 2017). Notably, the level of decentralization in the three cases studied by Lee and
Edmondson differs, with the level of bottom-up authority growing proportionally with the
size of the organizations (the largest organization had the lowest level of decentralization).
Thus, the strategy of balancing decentralised authority with centralized structures seems
to ensure the alignment necessary for handling the complexity and dependencies inher-
ent in large-scale software development while leveraging the benefits of team autonomy.
While it would be premature to claim that this represents an ideal “sweet spot” between
the two opposing forces, we do think that this balance struck in Project Cloud, and sup-
ported by the LeSS and Spotify models, might approximate one. Indeed, it is possible
that no single sweet spot exists, but that the right balance between formal control and
team autonomy is context-dependent and could vary, e.g., based on organizational culture,
the maturity of the agile implementation, the skill level of developers, attributes of the

Empirical Software Engineering (2021) 26: 101 Page 31 of 41 101

1 3

product and its markets, etc. Exploring this further through additional empirical studies
could be fruitful.

5.4 Implications for Practice and Theory

Our study generates a number of findings with practical implications. With respect to for-
mal control, we found that:

• Enforcement of formal control can be problematic, especially for well-functioning and
experienced teams, and lead to discouragement and a lack of commitment to such ini-
tiatives;

• The need for formal control changes over time, depending, for example, on the maturity
of the teams.

For managers of large-scale agile projects searching for ways to increase the
level of team authority without jeopardising the needs for alignment, we recom-
mend finding ways to foster the mechanisms of clan control, which are suggested
as an appropriate control mechanism for knowledge-intensive, less repetitive, and
more ambiguous work, and when innovation and creativity are required (Kirsch
et al. 2010):

• Facilitate the formation of strong organizational communities.
• Coach community members in creation of shared mental models, developing trust and

connections.
• Foster communities with decision-making authority.

Besides the practical implications, our work has implications for theory. We used
Hackman’s model (Hackman 1986) to study authority distribution in the context of
large-scale development efforts. The model explains most of our observations but
does not sufficiently model the situation when authority is shared. As in Lee and
Edmondson (2017), who have used Hackman’s work to study the decentralization of
decisions in organizations, our findings show that decision-making authority can be
partially decentralized or shared, and we have further specified whether the decisions
are made by the teams, shared by the teams with management or supporting roles, or
made in a community setting. In addition, Hackman did not describe certain impor-
tant factors, such as changes over time or the situational nature of authority distribu-
tion. Thus, this study shows that Hackman’s model (Hackman 1986), although use-
ful, needs to be amended to portray better the complexity of authority distribution in
large-scale agile settings.

5.5 Limitations and Threats to Validity

In this paper, we sought to understand how the conflict between the teams’ quest for auton-
omy as understood in the context of agile software development and the organizational
quest for alignment and control associated with the large-scale manifests in industrial set-
tings. This was done by conducting a multiple-case study of two large-scale software
development projects at Ericsson, in which multiple teams developed the same product.

Empirical Software Engineering (2021) 26: 101101 Page 32 of 41

1 3

Our empirical enquiry is descriptive in nature and resulted in a detailed analysis of the
authority distribution. In the following, we discuss the limitations and threats to the valid-
ity of our findings according to the definitions of validity and reliability proposed by Yin
(2009).

Internal validity is concerned with the validity of causal relationships, and it is only rel-
evant to explanatory or causal results (Yin 2009), and therefore not relevant in our case, as
this research is exploratory in nature.

The construct validity of a case study concerns the identification of the correct
operational measures for the concepts being studied (Yin 2009). The main threat to
the construct validity of this research was the definition of what constitutes team
autonomy and organizational control in large-scale software development projects. To
do so, we have used Hackman’s authority matrix as the theoretical ground (Hack-
man 1986), which differentiates between the area of responsibility of a work unit
(autonomy) and the area of responsibility of the management (control), using four
different areas of responsibility. One potential threat to the construct validity in our
work is related to the accuracy of our interpretation of Hackman’s authority matrix in
the software engineering context, i.e., the types of decisions included in each area of
responsibility, and the multi-team project context, i.e., the additional horizontal unit-
to-unit relationship in addition to the vertical unit-to-management dimension included
in the original authority matrix. We have suggested concrete types of decisions in
Table 3, based on the definitions of the areas of responsibility and examples given by
Hackman (1986) (see also Table 1). Our suggestions are in accordance with the work
by Lee and Edmondson (2017), who studied decentralization of authority in three
companies (two of which were software companies) and based their empirical work
on Hackman (1986) and Puranam et al. (Puranam et al. 2014). The authors argue that
decision authority can be centrally held by managers or decentralized in the following
domains: (1) personnel and performance management; (2) managing and monitoring
work execution; (3) work execution; (4) work and resource allocation; (5) organiza-
tion and work design; and (6) firm strategy. Our interpretation of Hackman’s model
overlaps (with respect to responsibility areas) and extends (with respect to the types
of decisions) the interpretation by Lee and Edmondson (2017), and the differences
in the interpretation of the concepts are motivated by the different object of study
(teams in our enquiry and organizations in theirs). To increase the validity of our
observations, we particularly relied on data and investigator triangulation. We held
joint workshops with the four authors to discuss the interpretation of the Hackman
model cooperatively and to construct a set of definitions that were used to gather and
analyse the interview data. The construct validity could also be affected by how the
interviewees understood the studied phenomenon. To address this, we explicitly did
not include questions regarding the levels of autonomy, but instead asked questions
regarding different decision situations relevant to the daily duties of the interviewees.
Notably, our findings are limited to the types of decisions included in the study, and
repeating the study in new contexts could require adding new or changing the types
of decisions relating to the four areas of responsibility, or additional new or changing
the very areas of responsibility, for example, as done by Lee and Edmondson (2017).
To ensure the construct validity of our own findings, we have reported the results at
the level of individual decision types and have avoided aggregating the data based on
authority levels or the areas of responsibility (Table 4).

The external validity of a case study concerns the domain to which the results can
be generalized, which is known as the analytical generalization of a case study (Yin

Empirical Software Engineering (2021) 26: 101 Page 33 of 41 101

1 3

2009). First, we would like to note that we studied two individual cases and thus gener-
alize by similarity and variety, as opposed to statistical properties in sample-based gen-
eralizations (Wieringa and Daneva 2015). In the context of our study, external valid-
ity relates to the degree of support for the generalization of our findings with respect
to the distribution of authority in large-scale agile software development projects.
Our findings suggest that authority in large-scale settings in a number of responsibil-
ity areas can rest with the teams or with the management, as also found by Hackman
(1986), or with a community, as also found by Lee and Edmondson (2017). Notably,
we do not claim that the authority will be or shall be distributed in a particular way.
The variability of the real world, the main problem of external validity (Wieringa and
Daneva 2015) means that in other contexts, the actual way the authority is distributed
may differ, as it differs in the two studied cases. However, we believe that the observed
community-based mode of decision-making as an alternative to team-based or man-
agement-led decisions could have relevance and practicality (Wieringa and Daneva
2015) for similar projects. Based on our study, we can hypothesize that the theoretical
population relevant in our context can be characterised by the following three aspects.
First, in both studied cases, the systems under development were large, multifaceted,
and technically demanding. Second, both case organizations had transformed their
software development from a waterfall-type process to agile development. Third, the
number of development teams was relatively large. In other words, the community-
based authority could be of particular interest for organizations developing large-scale
complex software systems involving many development teams, which have transitioned
from traditional waterfall development to agile ways of working. It is worth noting
that although both studied cases were distributed across multiple locations, we have
not studied the authority distribution in all sites and cannot make specific claims as to
whether the authority is distributed similarly or differently. Further research is needed
to understand the nature of authority distribution across multiple locations. Finally, to
increase the analytical generalizability of our descriptive findings, we have provided
rich contextual descriptions of each of the studied cases to allow analytical compari-
sons and synthesis with other studies on similar subjects, as suggested by Yin (2009).

The reliability of research concerns the repeatability of the research (Yin 2009). If
other researchers conducted the same study, would they arrive at the same findings? The
main threat to the reliability (Yin 2009) of this research is the variability in the data col-
lection. Data collection was conducted using the general interview guide approach (Patton
2014), which introduced variability to the topics discussed in the interviews. Our results
could also be subjected to further reliability threats in terms of the reliability of the data
collected through the interviews. To address this threat, we triangulated the data sources
by recruiting a sufficiently “wide and varied” set of interviewees, i.e., a (large) set con-
taining interviewees holding different roles in both cases (Patton 2014). We also triangu-
lated the investigators by conducting all interviews with two interviewers cooperatively.
The total number of interviews for Project Cloud was 82, with four focusing specifically
on the division of authority in the project. The low number of interviewees with only one
representative for each role can be considered a weakness, as we could not triangulate the
results for each specific role. However, all responses from the interviewees in different
roles were in agreement with respect to how authority was divided in the project, mak-
ing us believe that adding more interviewees would have been of limited value. In Project
Mobility, the number of interviews and interviewees was larger: eight interviews with 14
interviewees. In Project Mobility, the interviews were part of a larger longitudinal study
in which a total of 28 interviews and seven workshops with teams were conducted, and

Empirical Software Engineering (2021) 26: 101101 Page 34 of 41

1 3

thus we acquired a good background knowledge of this case. Further, we have verified
our case description with the representatives of the project, who have acknowledged that
our interpretation with respect to authority distribution is accurate. Based on the afore-
mentioned triangulation, we are confident that our findings, especially regarding Project
Mobility, accurately reflect the perceptions of the members of the organizations.

6 Conclusions

The recent trend towards agile transformations at both the development and corporate levels
has challenged the common authority distribution principles to allow for more bottom-up
decisions to emerge. However, how to best achieve a balance between the need for alignment
and the associated quality and process control, and the need for teams to be autonomous
remains an open question. In our multiple-case study, we confirmed that large-scale software
development efforts require alignment as well as autonomy, and that autonomy changes over
time. Methods for implementing alignment are wide and varied. Top-down alignment ini-
tiatives include the centralization of decision-making power in the hands of management,
introduction of supervisory roles and functions, and mandatory processes and checklists.
Bottom-up alignment initiatives include conferring decision-making powers to the teams,
consensus-based decision-making processes, and the delegation of certain functions from
the experts to the teams. At the same time, the freedom of individual teams working in a
large-scale software development environment cannot be limitless due to the complex
dependencies of the work with other teams and stakeholders. Thus, community-like struc-
tures, similar to clans structures (Kirsch et al. 2010), have emerged as alternative control
mechanisms. Therefore, while pure top-down control may reduce individual team authority
and morale, clan control satisfies the need of the individual teams to influence decisions
and participate in the decision-making process while enabling non-authoritative alignment
and control across the teams. Indeed, a single sweet spot may not exist for team autonomy
and organizational control. The right balance between formal control and team autonomy
might be context-dependent and vary, e.g., based on organizational culture, the maturity of
the agile implementation, developers’ skill level, and attributes of the product and its mar-
kets. Further studies should be conducted to better understand various ways of balancing the
need for alignment and autonomy and the impact on the context on how to do it successfully.

Appendix

Interview Guide for Project Mobility

Introductory questions:

– What is your role in the organization?
– Which decisions are you involved in?
– What do you think are the key current enablers (today) of efficiency in the organiza-

tion?
– What do you think are the key current obstacles to efficiency in the organization?
– How would you describe the balance of control and autonomy?

Empirical Software Engineering (2021) 26: 101 Page 35 of 41 101

1 3

Questions about the decision-making processes:
Structure

– Who do you coordinate your activities with?
– Who is involved in decisions you are responsible for?
– Are such decisions taken in different arenas (by different people)?
– Are similar decisions taken in remote sites as well? Is this done independently or in a

coordinated fashion?
– How are decisions (taken in different arenas and/or in different sites) aligned? What

happens if they are not aligned?
– How are conflicting priorities handled?

People

– Are decisions taken without informing people that should have been involved?
– Are all necessary roles involved in the decision-making? Anyone missing?
– Are there too many people involved in the decision-making process? Any redundancy?
– Are people from remote sites involved in decision-making?
– (if applicable) Can teams make these decisions, and if so, under which circumstances

(team maturity, team composition)?

Information

– Do you have enough information to make the decisions?
– Do you receive any input when making decisions?
– Do you reach out to the remote sites when information is needed?

Practices:

– How can decision-making be improved (speed, information input, people)?

Interview Guide for Project Cloud

Introductory questions:

– Personal background

What is your current role and tasks in the organization?
What were your previous roles and tasks in the organization?

– Environment where works

What is your current team/organization?
How do your team collaboration with the rest of the organization?

Communities of practice:

– Which are the most important CoPs that participate?
– How do the CoPs work currently? (meetings, wiki, etc.)
– On which topics do the CoPs (that participates) make decisions?

Empirical Software Engineering (2021) 26: 101101 Page 36 of 41

1 3

– How are the decisions made?

Executing the team task:

– Who decides how to execute team tasks?
– Who designs features?
– Who develops features?
– Who performs quality control functions?
– Who delivers features?

Monitoring and managing ways of working and progress:

– Who monitors and manages ways of working and progress?
– Who defines team processes?
– Who can change and improve team processes?

Designing the team and its organizational context

– Who designs the team?
– Who decides who is on the team?
– Who is able to remove people from the team?
– Who links teams with supporting roles?

Setting overall direction:

– Who sets the overall direction?
– Who decides what shall be in the system?
– Who designs the product architecture?
– Who chooses specialization and work items for teams?

Change of authority over time:

– Has the level of team autonomy changed over time, and if so, why?
– Is the given level of authority sufficient?

Acknowledgements We are grateful to Ericsson and the interviewees from both projects for their sincere
interest and continuous support.

Funding Open access funding provided by SINTEF AS. This research is partially funded by the GoLD project and
the Swedish Knowledge Foundation under the KK-Hög grant 2016/0191, by the A-team project and the Research
Council of Norway under the grants 235359, and by TEKES as part of the Need for Speed research programme of
DIMECC (Finnish Strategic Center for Science, Technology and Innovation in the field of ICT and digital business).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Empirical Software Engineering (2021) 26: 101 Page 37 of 41 101

http://creativecommons.org/licenses/by/4.0/

1 3

References

Barney HT, Moe NB, Dybå T, Aurum A, Winata M (2009) Balancing individual and collaborative work in
agile teams. In: International Conference on Agile Processes and Extreme Programming in Software
Engineering. Springer, pp 53-62

Beck K (2000) Extreme programming explained: embrace change. addison-wesley professional
Berczuk S, Lv Y (2010) We’re all in this together. IEEE Softw 27:12–15
Bick S, Spohrer K, Hoda R, Scheerer A, Heinzl A (2017) Coordination challenges in large-scale software devel-

opment: a case study of planning misalignment in hybrid settings. IEEE Trans Softw Eng 44:932–950
Boehm B, Turner R (2005) Management challenges to implementing agile processes in traditional develop-

ment organizations. IEEE Softw 22:30–39
Brown SL, Eisenhardt KM (1995) Product development: Past research, present findings, and future direc-

tions. Acad Manag Rev 20:343–378
Bäcklander G (2019) Doing complexity leadership theory: How agile coaches at Spotify practise enabling

leadership. Creativity Innov Manag 28:42–60
Cohen SG, Bailey DE (1997) What makes teams work: Group effectiveness research from the shop floor to

the executive suite. J Manag 23:239–290
Conboy K, Carroll N (2019) Implementing large-scale agile frameworks: Challenges and recommendations.

IEEE Softw 36:44–50
Dikert K, Paasivaara M, Lassenius C (2016) Challenges and success factors for large-scale agile transforma-

tions: A systematic literature review. J Syst Softw 119:87–108. https:// doi. org/ 10. 1016/j. jss. 2016. 06. 013
Dingsøyr T, Falessi D, Power K (2019) Agile development at scale: The next frontier. IEEE Softw 36:30–38
Dingsøyr T, Moe NB, Fægri TE, Seim EA (2018) Exploring software development at the very large-scale:

A revelatory case study and research agenda for agile method adaptation. Empir Softw Eng 23:490–
520. https:// doi. org/ 10. 1007/ s10664- 017- 9524-2

Farrow A, Greene S (2008) Fast & predictable a lightweight release framework promotes agility through
rhythm and flow. In: Agile 2008 Conference. IEEE, pp 224–228

Fenton-O’Creevy M (1998) Employee involvement and the middle manager: Evidence from a survey of
organizations. J Organ Behav 19:67–84

Gittell J (2006) Relational coordination: Coordinating work through relationships of shared goals, shared
knowledge and mutual respect. Relational Perspectives in Organizational Studies: A Research Com-
panion 74–94. https:// doi. org/ 10. 4337/ 97817 81950 548. 00011

Guzzo RA, Dickson MW (1996) Teams in organizations: Recent research on performance and effectiveness.
Annu Rev Psychol 47:307–338

Hackman JR (1986) The psychology of self-management in organizations. In: Pallack MS, Perloff RO (eds) Psy-
chology and work: Productivity, change, and employment. American Psycological Association, Washington

Heikkila VT, Paasivaara M, Lasssenius C, Damian D, Engblom C (2017) Managing the requirements flow
from strategy to release in large-scale agile development: A case study at Ericsson. Empir Softw Eng
22:2892–2936. https:// doi. org/ 10. 1007/ s10664- 016- 9491-z

Hewitt B, Walz D (2005) Using shared leadership to foster knowledge sharing in information systems devel-
opment projects. In: Proceedings of the 38th Annual Hawaii International Conference on System Sci-
ences. IEEE, pp 256a-256a

Hoda R, Noble J (2017) Becoming agile: a grounded theory of agile transitions in practice. Paper presented at
the Proceedings of the 39th International Conference on Software Engineering, Buenos Aires, Argentina

Hoda R, Noble J, Marshall S (2012) Self-organizing roles on agile software development teams. IEEE Trans
Software Eng 39:422–444

Hoegl M, Parboteeah P (2006) Autonomy and teamwork in innovative projects. Hum Resour Manage 45:67
Ingvaldsen JA, Rolfsen M (2012) Autonomous work groups and the challenge of inter-group coordination.

Human Relations 65:861–881
Kirsch LJ, Ko D-G, Haney MH (2010) Investigating the antecedents of team-based clan control: Adding

social capital as a predictor. Organ Sci 21:469–489
Kitzinger J (1995) Qualitative research: introducing focus groups Bmj 311:299–302
Klakegg OJ, Williams T, Shiferaw AT (2016) Taming the ‘trolls’: Major public projects in the making. Int J

Proj Manag 34:282–296. https:// doi. org/ 10. 1016/j. ijpro man. 2015. 03. 008
Kniberg H (2014a) Spotify Engineering Culture (Part 1). https:// www. youtu be. com/ watch?v= Yvfz4 HGtoPc
Kniberg H (2014b) Spotify Engineering Culture (part 2). https:// www. youtu be. com/ watch?v= vOt4B

bWLWQw
Langfred CW (2000) The paradox of self-management: Individual and group autonomy in work groups. J

Organ Behav 21:563–585

Empirical Software Engineering (2021) 26: 101101 Page 38 of 41

https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/10.1007/s10664-017-9524-2
https://doi.org/10.4337/9781781950548.00011
https://doi.org/10.1007/s10664-016-9491-z
https://doi.org/10.1016/j.ijproman.2015.03.008
https://www.youtube.com/watch?v=Yvfz4HGtoPc
https://www.youtube.com/watch?v=vOt4BbWLWQw
https://www.youtube.com/watch?v=vOt4BbWLWQw

1 3

Langfred CW (2007) The downside of self-management: A longitudinal study of the effects tf conflict on
trust autonomy, and task interdependence in self-managing teams. Acad Manag J 50:885–900

Larman C, Vodde B (2016) Large-scale scrum: More with LeSS Addison-Wesley Signature Series (Cohn).
Addison-Wesley Professional, p. 368

Lee MY, Edmondson AC (2017) Self-managing organizations: Exploring the limits of less-hierarchical
organizing. Res Organ Behav 37:35–58

Leffingwell D (2018) SAFe 4.5 Reference Guide: Scaled Agile Framework for Lean Enterprises. Addison-
Wesley Professional

Lewis J, Neher K (2007) Over the waterfall in a barrel-MSIT adventures in scrum. In: Agile 2007. IEEE, pp
389–394. https:// doi. org/ 10. 1109/ AGILE. 2007. 45

Mankins M, Garton E (2017) How Spotify balances employee autonomy and accountability. Harv Bus Rev 95.1
Mathieu J, Maynard MT, Rapp T, Gilson L (2008) Team effectiveness 1997–2007: A review of recent advance-

ments and a glimpse into the future. J Manag 34:410–476. https:// doi. org/ 10. 1177/ 01492 06308 316061
Moe NB, Aurum A, Dybå T (2012) Challenges of shared decision-making: A multiple case study of agile

software development. Information and Software Technology 54(8):853–865
Moe NB, Dahl B, Stray V, Karlsen LS, Schjødt-Osmo S (2019) Team autonomy in large-scale agile. In: Pro-

ceedings of the 52nd Hawaii International Conference on System Sciences
Moe NB, Dingsøyr T, Dybå T (2009) Overcoming barriers to self-management in software teams. IEEE

Softw 26:20–26
Moe NB, Dingsøyr T, Dybå T (2010) A teamwork model for understanding an agile team: A case study of a

Scrum project. Inform Software Tech 52:480–491. https:// doi. org/ 10. 1016/j. infsof. 2009. 11. 004
Morgan G (2006) Images of organization. SAGE Publications, Thousand Oaks
Olsson Holmström H, Bosch J (2016) No more bosses?: A multi-case study on the emerging use of non-

hierarchical principles in large-scale software development. In: Product-focused software process
improvement: 17th international conference PROFES 2016. Springer, pp 86-101

Ouchi WG (1979) A conceptual framework for the design of organizational control mechanisms. Manage
Sci 25:833–848

Patton MQ (2014) Qualitative research and evaluation methods. Sage
Pearce CL (2004) The future of leadership: Combining vertical and shared leadership to transform knowl-

edge work. Acad Manag Perspect 18:47–57
Petersen K, Wohlin C (2010) The effect of moving from a plan-driven to an incremental software develop-

ment approach with agile practices. Empir Softw Eng 15:654–693
Puranam P, Alexy O, Reitzig M (2014) What’s “new” about new forms of organizing? Acad Manag Rev

39:162–180
Paasivaara M, Lassenius C (2014) Communities of practice in a large distributed agile software develop-

ment organization – Case Ericsson. Inform Softw Technol 56:1556–1577
Paasivaara M, Lassenius C (2019) Empower your agile organization: Community-based decision making in

large-scale agile development at ericsson. IEEE Softw 36:64–69
Paasivaara M, Lassenius C, Heikkila VT, Dikert K, Engblom C, Ieee (2013) Integrating Global Sites into

the Lean and Agile Transformation at Ericsson. 2013 Ieee 8th International Conference on Global
Software Engineering. Ieee, New York. https:// doi. org/ 10. 1109/ icgse. 2013. 25

Paasivaara M, Lassenius C, Heikkilä VT (2012) Inter-team coordination in large-scale globally distributed
scrum: Do scrum-of-scrums really work? In: Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement. pp 235–238

Rolland KH, Fitzgerald B, Dingsøyr T, Stol K-J (2016) Problematizing agile in the large: Alternative assumptions
for large-scale agile development. In: International Conference on Information Systems, Dublin, Ireland

Saldana J (2009) An introduction to codes and coding. The coding manual for qualitative researchers. Sage,
Thousand Oaks

Beedle SK (2001) Agile Software Development with Scrum. Prentice Hall, Upper Saddle River
Semler R (1989) Managing without managers. Harv Bus Rev 67:76–84
Smite D, Moe N, Floryan M, Lavinta G, Chatzipetrou P (2020) Spotify Guilds: When the Value Increases

Engagement, Engagement Increases the Value. Communications of the ACM
Smite D, Moe NB, Levinta G, Floryan M (2019) Spotify guilds: how to succeed with knowledge sharing in

large-scale agile organizations. IEEE Softw 36:51–57
Šmite D, Moe NB, Šāblis A, Wohlin C (2017) Software teams and their knowledge networks in large-scale

software development. Inf Softw Technol 86:71–86
Stray V, Moe NB (2020) Understanding coordination in global software engineering: A mixed-methods study

on the use of meetings and Slack. J Syst Softw 170:110717. https:// doi. org/ 10. 1016/j. jss. 2020. 110717
Schwaber K, Sutherland J (2017) The scrum guide. Scrum Alliance
Schwaber K, Sutherland J (2020) The scrum guide. Scrum Alliance

Empirical Software Engineering (2021) 26: 101 Page 39 of 41 101

https://doi.org/10.1109/AGILE.2007.45
https://doi.org/10.1177/0149206308316061
https://doi.org/10.1016/j.infsof.2009.11.004
https://doi.org/10.1109/icgse.2013.25
https://doi.org/10.1016/j.jss.2020.110717

1 3

Trist EL, Bamforth KW (1951) Some social and psychological consequences of the longwall method of
coal-getting: An examination of the psychological situation and defences of a work group in relation to
the social structure and technological content of the work system. Hum Relat 4:3–38

Wenger E, McDermott RA, Snyder W (2002) Cultivating communities of practice: A guide to managing
knowledge. Harvard Business Press

Wieringa R, Daneva M (2015) Six strategies for generalizing software engineering theories. Sci Comput
Program 101:136–152

Yin RK (2009) Case study research: Design and methods. Sage, Thousand Oaks

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Nils Brede Moe is a chief scientist at SINTEF. He works with software process improvement, intellectual
capital, autonomous teams, and agile and global software development. He has led several nationally funded
software engineering research projects covering organizational, sociotechnical, and global/distributed
aspects. Moe received a dr.philos. in computer science from the Norwegian University of Science and Tech-
nology, and holds an adjunct position at the Blekinge Institute of Technology in Sweden.

Darja Šmite is a full professor of software engineering at the Blekinge Institute of Technology, where she
leads research efforts and education on global software development. She has led a number of nationally
funded research projects related to the effects of offshoring for the Swedish software industry. Her other
research interests include large-scale agile software development and software process improvement. Šmite
received a Ph.D. in computer science from the University of Latvia. She holds a research scientist position
at SINTEF and a part-time adjunct professorship at NTNU.

Empirical Software Engineering (2021) 26: 101101 Page 40 of 41

1 3

Maria Paasivaara is a professor of empirical software engineering at LUT University and an Adjunct Pro-
fessor at Aalto University. Her research interests include software engineering processes and practices,
agile software development, large-scale agile, software project management, global software engineering
and software engineering educational research. She performs empirical research in close collaboration with
industrial and academic partners and aims at solving real-world problems that are important to the software
industry. She has a D.Sc. degree from Helsinki University of Technology.

Casper Lassenius is an associate professor at Aalto University, Helsinki, Finland, and an adjunct research
scientist at the Simula Metropolitan Center for Digital Engineering, Oslo, Norway. His research interests
include software engineering management, with a focus on agile methods and organizational transforma-
tions. Lassenius received an M.Sc. in industrial management, and a Dr.Sc. (Tech.) in software engineering,
both from Helsinki University of Technology.

Empirical Software Engineering (2021) 26: 101 Page 41 of 41 101

