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Quantum computation relies on accurate measurements of qubits not only for reading the output of the
calculation, but also to perform error correction. Most proposed scalable silicon architectures utilize Pauli
blockade of triplet states for spin-to-charge conversion. In recent experiments there have been instances
when instead of conventional triplet blockade readout, Pauli blockade is sustained only between paral-
lel spin configurations, with |T0〉 relaxing quickly to the singlet state and leaving |T+〉 and |T−〉 states
blockaded—which we call parity readout. Both types of blockade can be used for readout in quantum
computing, but it is crucial to maximize the fidelity and understand in which regime the system operates.
We devise and perform an experiment in which the crossover between parity and singlet-triplet readout
can be identified by investigating the underlying physics of the |T0〉 relaxation rate. This rate is tunable
over 4 orders of magnitude by controlling the Zeeman energy difference between the dots induced by
spin-orbit coupling, which in turn depends on the direction of the applied magnetic field. We suggest a
theoretical model incorporating charge noise and relaxation effects that explains quantitatively our results.
Investigating the model both analytically and numerically, we identify strategies to obtain on demand
either singlet-triplet or parity readout consistently across large arrays of dots. We also discuss how parity
readout can be used to perform full two-qubit state tomography and its impact on quantum error-detection
schemes in large-scale silicon quantum computers.

DOI: 10.1103/PRXQuantum.2.010303

I. INTRODUCTION

The recent demonstration of large-scale quantum com-
putation [1] has opened the door to the exploration of near-
term applications of noisy, intermediate-scale devices.
This, however, does not change the long-term vision
wherein quantum error correction is essential to achieve
the full advantages of quantum computing [2]. Theoretical
estimates predict a large overhead in terms of the number
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of required physical qubits for this task [3]. As quantum-
computing technologies progress from demonstrations to
industrial platforms, silicon-based architectures become
increasingly competitive due to the possibility of mass pro-
duction of few-nanometer-sized qubit systems [4–7]. Such
qubits have high control fidelity at the one- [8–13] and
two-qubit [14–16] levels.

Error-correcting codes require a highly connected net-
work of qubits [17], setting topological constraints on
large-scale designs. Pauli spin blockade can be employed
to readout the state of silicon qubits [4,5,18], which
removes the need for reservoirs near the dots, and loosens
design constrains. Recent experiments have validated
the operation of single spin qubits together with Pauli-
blockade readout in silicon-metal-oxide-semiconductor
(SiMOS) quantum dots [19–21]. In some experiments [21],
this singlet-triplet readout has not been complete. The non-
polarized triplet T0 state in these experiments decays faster
than the measurement bandwidth limits, leading to a parity
readout [22] where the blockade is selective to whether
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the total parity of the spins is odd or even. This result
is not consistent for all silicon devices of the same type,
since some silicon samples preserve singlet-triplet block-
ade [19,20], raising the question: what conditions give rise
to parity readout? This question becomes especially impor-
tant in large arrays of dots, since some readout pairs might
end up being in parity and some in singlet-triplet readout
mode. Additionally, qubit encoded based on pairs of spins
in which the logical 0 and 1 states are represented by sin-
glets and triplets, respectively, cannot be read out using
parity readout [23].

Here, we explore a device that operates at the inter-
face of the parity and singlet-triplet readout, allowing us
to study the origin of the T0 blockade lifting. We can
tune the T0 blockade lifting rate by 4 orders of magnitude
by controlling Zeeman energy difference, which is tuned
in our system by varying the angle of the external mag-
netic field relative to the crystal lattice, since the Zeeman
energy difference is dominated by spin-orbit interaction
[24]. Incorporating this observation, we use perturbation
theory to model the blockade time in the system both ana-
lytically [25] and computationally. We investigate both
charge relaxation and dephasing as the mechanisms for T0
blockade lifting. We find that both models fit qualitatively
the experimental data, but the fitted charge-dephasing time
is more reasonable than the fitted relaxation time, suggest-
ing a different type of underlying mechanism in silicon
than in GaAs [23].

These results are an important tool to be able to under-
stand how to tune the readout from parity to singlet-triplet
and vice versa. Due to the statistical variability of Zee-
man energies in an array of dots, gate control of tunnel
rates between each pair of dots is necessary. The detun-
ing at which readout is performed can also be used to
control the readout regime, but the range of a workable
detuning is limited by valley or orbital excitations. More-
over, the magnetic field angle can be set to point along
(100), which removes the Dresselhauss contribution to the
spin-orbit coupling [24], consequently reducing the over-
all variability of g factors between dots (which will then
be dominated only by Rashba effect). The particular val-
ues of tunnel coupling required for each qubit pair are
obtained within our theoretical analysis. We also explain
how parity and singlet-triplet readout may be more appro-
priate for scaling up architectures compared to the latched
Pauli-spin-blockade readout, or Elzerman readout which
require routing reservoirs to nearby the dots. Finally we
discuss how to perform full two-qubit state tomography as
well as error detection [4,5,18], utilizing parity readout.

II. EXPERIMENTS ON RATE OF BLOCKADE
LIFTING AND G-FACTOR DIFFERENCE

Figure 1(a) shows the scanning electron microscope
image of a device nominally identical to the one used in

the experiments, together with the schematic cross section.
This device accumulates electrons in the isotopically puri-
fied silicon slab (800 ppm residual 29Si [26]) and has been
used in experiments reported in Ref. [20]. This device can
be operated in singlet-triplet readout mode in contrast to
the device in Ref. [21], where due to the micromagnet
only the parity readout was possible. Left and right dots
are formed under gates G1 and G3 (made of palladium),
respectively, and are laterally surrounded by the confine-
ment barrier gate (CB). Figure 1(b) depicts our operating
regime near the (1,3)-(0,4) charge transition (the numbers
in brackets represent the total amount of electrons in the
left and right dots, respectively). The two lowest energy
electrons in the right dot lie in the lower valley state, which
is separated from the upper valley state by a large enough
excitation energy to be easily discernible experimentally
(typically larger than 0.1 meV). This results in a spin-
0 closed shell that does not impact the spin dynamics of
the two extra electrons. For simplicity, we ignore the two
lowest energy electrons in the right dot and refer to the
possible charge configurations as (1,1) or (0,2) later in the
text.

The details of the measurement scheme are illustrated in
Fig. 1(c). The experiment starts in the (0,1) charge state.
An electron is then loaded into the right dot, leading to a
singlet ground state |S(0, 2)〉. Then, the detuning between
the dots is changed across the (0, 2) → (1, 1) transition,
allowing one electron to tunnel into the left dot. The ini-
tial spin state depends on the ramp rate going from (0,2) to
(1,1), which determines whether the energy anticrossings
with |T−(1, 1)〉 or |S(1, 1)〉 are swept adiabatically or not.
Following this, the electrons are manipulated in different
ways, either by electron spin resonance or detuning con-
trol. Finally, the resulting two-spin state would normally
be measured by returning to the (0,2) charge configuration
near the transition from (1,1)—the readout configuration
in the Pauli-blockaded region [27]. This way, only the spin
singlet would be able to tunnel back into the (0,2) state;
therefore, the charge state of the double dot would reflect
what the spin state was at the time of the measurement.
This simplified picture, as we show next, only holds imme-
diately after the dot is brought to the readout configuration.
We initialize the |T0〉 state with 97% initialization fidelity
by preparing a singlet state and consequently waiting for
half the period of the spin-orbit-induced singlet-triplet
oscillations. The details of the experiment are explained in
the Supplemental material in Ref. [20]. Alternatively, we
also initialize |T−〉 states by adiabatically preparing a | ↑↓〉
state and pulsing a microwave in resonance with the tran-
sition in the left dot to | ↓↓〉, which can be distinguished
from the transition in the right dot through spin-orbit inter-
action (see Ref. [24] for more details). This initialization
has a limited visibility of around 30% because the elec-
tron spin resonance (ESR) antenna in the present device is
defective.
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FIG. 1. Pauli spin blockade and latched readout. (a) False-colored scanning electron microscope (SEM) image of a device nominally
identical to the one used in the experiments. The dashed line shows the location of the cross section of the device represented at the
bottom of the image. (b) The charge stability diagram showing the electron occupancy in the device. The valence electrons in each
dot are shown by the numbers highlighted in yellow; the actual electron occupancy is shown by the numbers highlighted in blue.
The arrows show the different loading and unloading stages of the experiment and the symbols represent the different stages of the
experiment. The circle represents the initialization point, which is beyond the region of the stability diagram shown here (the arrow
pointing out of the figure represents this). (c) A diagram representing the different stages of the experimental process and how the Pauli
blockade allows for spin readout. The decay of |T0〉 and |T−〉 triplets is shown in (d) as a function of wait time τ at the blockade region
near the (1,1)-(0,2) transition. We normalize the probabilities of the decay of the states according to their initialization fidelity. (e)
Energy diagram showing the Zeeman energy difference coupling the |T0(1, 1)〉 and |S(1, 1)〉 states. The decay of |S(1, 1)〉 into |S(0, 2)〉
is shown by the arrow between the two states.

To study the lifetime of the Pauli blockade of the spin
triplet configurations, we use latched singlet-triplet readout
[19,20,28,29]. This process is schematically illustrated in
Fig. 1(c). After some wait time τ in the (0,2) readout con-
figuration, we move to the latched readout region within
the (1,2) configuration space. Latching detects the differ-
ence in initial charge state, because of the slow loading of
an electron to the left dot. The |S(0, 2)〉 state will stay in
the (0,2) configuration and the blockaded triplet states will
allow the fast transition from the (1,1) into the (1,2) charge
state. Now the charge state represents a mapping of the

spin states at the moment when the latching pulse occurred.
A slow charge sensing step will no longer compromise the
conclusion regarding the spin state at the readout point. In
summary, we end up with three possible readout schemes:
latched Pauli spin blockade, singlet-triplet readout and par-
ity readout. The former, latched readout, is not scalable
but is used as a tool to investigate the other two readout
mechanisms.

During the wait time in the Pauli-blockade region, all
triplet states will eventually decay to the ground state
|S(0, 2)〉. We observe that this rate is different for different
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triplet states, as shown in Fig. 1(d). The odd-parity triplet
|T0〉 decays in roughly 200 μs and the |T−〉 decays in
5 ms. We mention, without showing here, that the |T+〉
configuration also outlasts the |T0〉 decay by orders of mag-
nitude (see Ref. [21] for further evidence). If the charge
sensor (a continuous current single electron transistor in
our case) requires a data-acquisition time between these
two blockade-lifting time scales, we do not distinguish
between the two odd-parity spin configurations (|S〉 and
|T0〉), but we do distinguish between these and the even-
parity configurations (|T+〉 and |T−〉). We call this a parity
readout. This indicates that the physical mechanism for
triplet blockade lifting is different between the even-parity
triplets and |T0〉.

We describe our hypothesis. Even-parity triplet states
require a spin-flip process accompanied by the emission of
a phonon in order to relax into the singlet ground state—a
process that is very slow in silicon [30]. On the other
hand, the triplet |T0(1, 1)〉 and the singlet |S(1, 1)〉 belong
to the same subspace spanned by the |↑↓〉 , |↓↑〉 states,
which are approximately the system eigenstates in the (1,1)
charge state, in the presence of a substantial difference in
g factor between the dots (see below). The g-factor dif-
ference induces a fast oscillation between |T0(1, 1)〉 and
|S(1, 1)〉. While at the readout position, the wavefunc-
tion component that evolves into the singlet |S(1, 1)〉 state
rapidly oscillates between that and the singlet |S(0, 2)〉
state due to the fast interdot tunnel rate. Charge dephasing
and phonon-mediated relaxation damp these oscillations,
which results in a steady state in which both electrons
eventually are found in the (0,2) state. This is made clearer
in Fig. 1(e), which shows a schematic energy diagram with
the |T0(1, 1)〉 and |S(1, 1)〉 oscillations, mediated through
the Zeeman energy difference, and the decay into the
|S(0, 2)〉 state.

The S − T0 mixing is caused by the difference in Zee-
man energies�EZ between the electrons in each dot. Since
our device is fabricated on enriched 28Si, the Overhauser
magnetic field is minimal and is not the main cause for
�EZ (as confirmed a posteriori). Additionally, no mag-
netic materials are used for the metal stack and there is
no Meissner effect since the gates are not superconducting.
Therefore, �EZ is mostly determined by the spatial varia-
tions of the effective Landé g factor due to the spin-orbit
coupling induced by the interface. Under this approxima-
tion, we have �EZ = �gμBB/h, where the difference in
g factors between the two quantum dots is �g, μB is the
Bohr magneton constant, and B is the magnitude of the
magnetic field, where B = 600 mT for all experiments.
These spin-orbit effects include a large Dresselhaus com-
ponent, which can be controlled by the direction of the
external magnetic field with regard to the silicon lattice
(the presence of an interface breaks the inversion symme-
try of the lattice) [24,31]. We use this controllability to

correlate the blockade rate and the difference in Zeeman
energies.

Firstly, we repeat the analysis described in Fig. 1(d) for
all magnetic field angles in the plane of the device. Figure
2(a) shows the extracted rate of blockade lifting, �blockade,
for |T0〉 as red squares, which changes by 3 to 4 orders of
magnitude. Next, the measurement of �EZ is carried out
using two methods, with results shown in Fig. 2(b). One
method is to use ESR to rotate a single spin in one of the
dots. This is accomplished by initialising |↓↑〉 by ramping
adiabatically through the avoided crossing between |↓↑〉
and |↑↓〉 represented Fig. 2(c). Then, a microwave pulse
is applied using the ESR antenna, which, at resonance
frequencies fESR1 and fESR2, may rotate |↓↑〉 to |↑↑〉 and
|↓↑〉 to |↓↓〉, respectively [see Fig. 2(c)]. Returning to the
positive detuning ε configuration, the probability of a suc-
cessful return to (0,2) depends whether the ESR pulse is in
resonance with one of the transitions. The frequencies that
are resonant show a dip in the return probability plotted
in Fig. 2(d). The difference in these two frequencies gives
approximately �EZ in the region where �EZ � J , where
J is the energy splitting between |T0(1, 1)〉 and |S(1, 1)〉.

The other method to measure �EZ is to use singlet-
triplet oscillations, where the spins are left to oscillate
between the |S(1, 1)〉 state and the |T0(1, 1)〉 states with
frequency �EZ . To enable this oscillation, the state needs
to be initialized in a |S(1, 1)〉 state. Referring back to
Fig. 2(c), we now ramp quickly through the (0,2)-(1,1)
anticrossing, diabatically with respect to the Zeeman split-
ting differences, but still slowly with comparison to the
tunnel rates so that the electrons always end up in the
|S(1, 1)〉 configuration. The oscillations initiate immedi-
ately after the condition �EZ � J is met. Figure 2(e)
shows the S − T0 oscillations as a function of magnetic
field angle and the dwell time spent at the (1,1) configu-
ration.

The extracted �EZ data for both of these methods,
shown in Fig. 2(b), are in excellent agreement. Compar-
ing the rate of blockade lifting and the Zeeman energies in
Figs. 2(a) and 2(b), it is obvious that �blockade increases as
�EZ increases. When �EZ reaches a minimum at a mag-
netic field angle of −20 and 100◦, there is a minimum in
�blockade at −30 and 105◦. The small deviation is possi-
bly due to Stark shift—�EZ is measured deep in the (1,1)
regime, while �blockade is determined at the readout point,
where (0,2) is the charge ground state.

III. NONUNITARY PROCESSES, PREDICTING
BLOCKADE RATE

The numerical model is based on the Lindbladian form
of the master equation [32,33] to allow for the implemen-
tation of Markovian noise, details can be found in the
appendix. In this model, an operator is chosen to model the
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FIG. 2. Correlation between Zeeman energy difference and the rate of lifting the triplet blockade. (a) The rate of lifting the triplet
blockade (red squares) extracted from decay plots similar to Fig. 1(d) and is plotted as a function of in-plane magnetic field angle for
B = 600 mT. (b) The difference in Zeeman energies plotted as a function of in-plane magnetic field angle, experimentally determined
with two different methods, ESR (blue squares) and S − T0 oscillations (green squares). (c) The energy diagram of a double-dot system
as a function of detuning, showing schematically the initialization and control strategy for each of the methods presented in (b) to find
the Zeeman energies. The arrow shows the fast, diabatic plunge into (1,1), which initializes into |S(1, 1)〉 and allows for observation of
S − T0 oscillations. The two frequencies fESR1 and fESR2 in (c) are shown as dips in (d), which are the individual resonance frequencies
of the electron spins in each dot. (e) The S − T0 oscillations as a function of dwell time and in-plane magnetic field angle.

impact of the environment on the quantum system—either
a dephasing channel, which is a consequence of charge
noise, or a phonon-mediated relaxation channel.

The charge-dephasing noise model describes fluctua-
tions in the detuning ε due to charge fluctuations and how
it impacts the energy separation between (1,1) and (0,2)
states. In our model, noise in the tunnel rate is not con-
sidered because we expect the detuning noise to be the
most significant given that it is caused by the dipole com-
ponent of any far-away fluctuators, while the tunnel rate
noise is caused by the quadrupole moment [34]. That said,
the quadrupole stray fields may couple exponentially to
the tunnel rate, so it is hard to determine without further
experiments what would be the leading cause of charge
dephasing. We do expect that our results are qualitatively
preserved even in the presence of tunnel rate noise, but the
Lindbladian model might differ in that case. Furthermore,
the dependence of the T2 parameter on the target detuning ε
is not included, which is a good approximation for ε � t.
Dephasing between spin states in the (1,1) configuration

due to fluctuations of �EZ occur at the order of hundreds
of kHz. This is much slower than the scale of noise we
are studying here. For the relaxation process, some depen-
dence of T1 on detuning is also expected [35], but we do
not include that information in our analysis.

We specifically study the time evolution of the density
operator when the initial state is a pure |T0〉 state ρ̂(t =
0) = |T0〉〈T0|. A few examples are shown in Fig. 3(a) for
the case of a dephasing channel with charge coherence
time Tcharge

2 . It is clear from these plots that there is an
exponential damping of the T0 − S oscillations, which is
marked by red dashed lines showing a fitting curve of
Ae−t�blockade + B, which is used to extract �blockade from
simulations. The evolution of the |T0〉 state shows the
oscillations between itself and |S(1, 1)〉 becoming damped
over time. The dephasing term damps the oscillation until
it has reached a fully mixed state. In principle, the model
would also describe the overdamped single-shot tunneling
across the double dot. In the example given in Fig. 3(a)
the |T0〉 probability saturates at a value of 1/3. This is
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because the dephasing channel mixes the three states at
equal weights. This is an artifact of a model that only con-
siders dephasing. When relaxation is taken into account,
eventually the state is fully polarized in the |S(0, 2)〉 state.
Due to the use of a simplified Markovian model, the two
effects are not captured together. Instead, the relaxation
channel is investigated independently to the dephasing,
where �blockade values are extracted in a similar way to that
described using dephasing channels.

Since neither the charge relaxation or the charge-
dephasing times are known a priori for this device, we
study the blockade rate as a function of both parameters
in the plots shown in Fig. 3(b). The value of the tunnel
coupling at this operation configuration is determined to
be t ≈ 3 GHz using a spin-funnel experiment [36]. The
detuning of ε ≈ 140 GHz is extracted from the operation

point and known lever arm (measured using magnetospec-
troscopy). The Zeeman energy difference varies between
�EZ ≈ 0 − 20 MHz [see also Fig. 2(b)].

IV. CHARGE RELAXATION AND DEPHASING
TIMES

Experimentally, there is a corresponding �blockade value
for each �EZ . [The horizontal black dashed lines in
Fig. 3(b) indicate these.] We analyze four values of �EZ
and how they lead to blockade lifting for different values of
T1 or T2. Most of these �EZ values are chosen to be large
in order to minimize the impact caused by the Stark shift
between the points where �blockade and �EZ are measured.
These are used to find the most suited Tcharge

1 and Tcharge
2

values that fit the data accurately [the vertical black dashed

Time (µs)
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FIG. 3. Numerical model for the blockade lifting. (a) For an initial state |ψ(t = 0)〉 = |T0(1, 1)〉, the probability as a function of
time p(t) = |〈T0(1, 1)|ψ(t)〉|2 is calculated numerically using Eqs. (A1), (A2), and (A4), including dephasing processes only. The
blockade rate �blockade can be extracted from the decay (red dashed line). Comparison between all three plots shows that the decay rate
is not monotonically dependent on the dephasing time Tcharge

2 . (b) The extracted decay rates �blockade as a function of charge relaxation
and dephasing calculated from the simulation for four values of �EZ (blue). The values of �blockade that correspond to �EZ from
the experimental data (black dashed lines) are then used to extract the relaxation and dephasing times. These are Tcharge

2 = 0.2 ns and
Tcharge

1 = 0.15 μs. For small values of Tcharge
2 and Tcharge

1 , the blockade lifting is halted [37]. (c) The comparison of �blockade and�EZ for
the experiment (black dots) against the numerical (squares) and analytical (solid line) theoretical decay processes adopting Tcharge

2 = 0.2
ns (red) or Tcharge

1 = 0.15 μs (green). The blue stars indicate the sampled points used to match the relaxation and dephasing times
in (b).

010303-6



PAULI BLOCKADE IN SILICON QUANTUM DOTS. . . PRX QUANTUM 2, 010303 (2021)

lines in Fig. 3(b)]. From the simulations Tcharge
2 = 0.2 ns

and Tcharge
1 = 0.15 μs are found to most accurately fit the

data.
We note that when the charge relaxation or dephasing

become very fast, the rate of blockade lifting �blockade starts
to decrease. The root of this nonmonotonic behavior is
interpreted as a decoherence-based freezing of the quan-
tum states akin to the quantum Zeno effect [37], where the
Hamiltonian dynamics are halted. We do not consider these
smaller values of T1 and T2 since they are not physical, and
this regime is not achieved in the experiments presented
here.

Values for charge dephasing are found experimentally
to range from 0.127 to 0.760 ns for a charge qubit in a
Si/SiGe heterostructure [38]. This is in agreement with
Tcharge

2 found in the present work. The relaxation time of
a charge qubit in another Si/SiGe device is found to vary
depending on the detuning and tunnel rates of the sys-
tem as well as the geometry of the double quantum dot
[35]. Assuming the same analysis extends to MOS devices,
the expected Tcharge

1 values should be on the order of 10
ms, which would be 4 orders of magnitude larger than
the value that fits our experimental data. One cannot com-
pletely rule out the relatively short Tcharge

1 concluded here
without a direct measurement. Several nonidealities could
impact the real relaxation time in our device, such as oxide
imperfections, piezoelectric phonons in silicon dioxide and
the complications deriving from the additional electrons in
our dots. To confirm this, a direct measurement of Tcharge

1

and Tcharge
2 should be done for a similar device to the one

in the present work. This is not possible with our current
experimental setup, which relies on subgigahertz filtering
of electric noise.

For the Tcharge
1 and Tcharge

2 values found, the rate of
blockade lifting �blockade is calculated as a function of the
Zeeman energy difference �EZ . This is plotted along side
the experimental �blockade times in Fig. 3(c). The dephas-
ing and relaxation processes both explain the nonlinear
relationship between �blockade and �EZ . In contrast, only
relaxation processes matter in GaAs dots [39]. This is
because the singlet states are now coupled not only by
the tunnel coupling, but also through the charge-oscillation
decay mechanism.

V. ANALYTICAL METHOD

The quantitative agreement between the model and the
experimental results confirms that our interpretation is now
complete. We now steer away from numerical simula-
tions and treat the problem analytically. The analytical
method gives insight into why the decay rate depends so
strongly on the Zeeman energy difference. We can now try
to leverage this understanding to design readout schemes

that maximize the fidelity of either parity or singlet-triplet
readout, depending on the application intended.

The Schrieffer-Wolff (SW) perturbation theory [25] is
chosen to study the rate at which the |T0(1, 1)〉 blockade
is lifted, the derivation is found in the appendix. From this,
two analytical equations are found to describe �blockade as a
function of the system parameters. When �EZ is small the
rate becomes, for dephasing effects

�blockade ≈ 2�E2
Z

Tcharge
2

t2 + ε2

t2ε2 , (1)

and for relaxation effects,

�blockade ≈ 2�E2
Z

Tcharge
1

t2 + ε2

t4
. (2)

It should be noted that Tcharge
2 is dependent on ε when ε

is comparable or smaller than t. In experiments Tcharge
2 is

not controllable, but by adjusting the magnetic field of the
system �EZ can be changed. This can be limited, how-
ever, since spin-orbit effects might impact other aspects
of the qubit control. In that case, one would focus on the
electrically controllable t and ε.

Comparison between the numerical simulation results
for �blockade and the analytical expression, Eq. (1), is shown
in Fig. 4. In the regime where �EZ � J the SW analysis
fails due to the assumption of small splitting between the
singlet and triplet subspaces needed for the approximation,
as mentioned above. Failure of the approximation is also
seen at �EZ 
 J where the nonunitary nature of the sys-
tem starts to become dominant. This means that the SW
method should be adjusted to incorporate the nonunitary
evolution [40].

VI. DISCUSSION

At first sight, the parity-readout scheme may seem to
be unable to provide the same level of information as the
individual measurements of each spin qubit. This concern
is already present with traditional singlet-triplet blockade
readout—the outcome of the readout is a single bit of infor-
mation (either the electron tunneled through or it did not),
while the input is two qubits.

Measurements on single qubits based on tunneling to
a large reservoir [41], however, may be impractical for
a dense two-dimensional array of qubits in a large-scale
quantum computer. This means that the latched readout
scheme that we use as a tool to freeze the spin dynam-
ics in our work cannot be used in a scalable architecture.
This highlights the significance of parity or singlet-triplet
readout, meaning the physics of singlet-triplet blockade
and the onset of parity readout need to be well understood
and controllably reproduced. Some of the previous litera-
ture was dedicated to recovering the most useful protocols
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FIG. 4. Validity limits of the analytical perturbative expres-
sion. Comparing �blockade obtained by the analytical expression
in Eq. (A13) to the numerical calculations for different values of
�EZ/J , where the inset shows this on a larger range. The analyti-
cal approximation is shown to be valid for ratios�EZ/J between
10−2 and 2. The upper limit is inherent to the perturbative nature
of the analysis, while the lower limit relates to the regime where
the nonunitary evolution can no longer be treated by the con-
ventional SW method and must be incorporated explicitly in the
analysis.

for quantum computing using exclusively singlet-triplet
readout [42]. We describe next two examples that can be
adapted for the case of a parity readout; namely, the two-
qubit state tomography and the syndrome measurements in
a quantum-error correction protocol.

A. Two-qubit state tomography with parity readout

State tomography relies on preparing a large ensem-
ble (usually a time ensemble) of nominally identical qubit
states and measuring them in different basis sets. In prac-
tice, direct measurements in different basis sets is impracti-
cal, so the measurement axis is kept fixed and the qubits are
manipulated to map the different elements of their density
matrices into probabilities of measuring certain outcomes
in the fixed basis.

In this sense, universal control of these qubits is always
necessary for performing quantum state tomography. The
fact that a parity measurement only provides one bit of
information as an output is not a significant limitation—it
only means that a larger ensemble needs to be measured in
order to obtain all the information in the density matrices.
The practical steps to do so using singlet-triplet readout
were discussed in Ref. [42].

The projection operator associated with an odd out-
come of the parity readout is�odd

ZZ = (Î ⊗ Î − σ̂Z ⊗ σ̂Z)/2,
where Î is the 2 × 2 identity matrix and the σ̂i denote

the Pauli matrices. In order to completely reconstruct a
two-qubit density operator, the state tomography requires
15 different measurement projections. Given the quantum
gates that we have for our qubits, the natural choice for the
projections are �MN = (Î ⊗ Î − ˆσM ⊗ σ̂N )/2, where �MN
are linearly independent projection matrices with indices
M , N ∈ {I , X , Y, Z}. The cases when neither M or N are
the identity can be trivially obtained by single-qubit rota-
tions, projecting the X or Y components of the spin into
the the Z quantization axis before measuring the parity. In
the cases where we want to measure a single qubit, which
means that either M or N are the identity Î , it is necessary
to perform a controlled NOT (CNOT) operation between the
two qubits before the parity readout.

The estimated density matrix ρ̂ can then be recon-
structed using

pMN = Tr[�MN ρ̂], (3)

where pMN are the measurement outcomes (probabilities).

B. Quantum error detection

A universal quantum computer with error correction
will require a large number of physical qubits and highly
accurate measurements of these qubits in order to identify
possible errors in the computation. Silicon spin qubits in
CMOS devices are small enough that they may be scaled
up using the mass-production techniques inherited from
the transistor industry, but a scalable strategy for reading
out each of the physical single-spin qubits is challenging.
Instead, two spins in a double quantum dot can be used as
an ancilla system to detect errors in a logical qubit.

This idea has been studied in the context of singlet-
triplet readout, showing that the surface code implemen-
tation can be recovered in a reasonably direct way [18].
Demonstrating the extension of this analysis to the case of
parity readout is trivial. Instead, here we focus on the time
scale of the measurements.

The readout time must be much faster than the time it
takes for an error to occur. A conservative bound for this
time would be the spin coherence time in an echo experi-
ment, which is typically of the order of tens or hundreds of
μs. In that case, for a measurement setup similar to ours,
one would be able to achieve high-fidelity singlet-triplet
readout. But, as shown by Eq. (1), a larger Zeeman splitting
difference could result in a measurement that is transi-
tioning between the singlet-triplet regime and the parity
regime. In this case, the fidelity of the readout would be
compromised. A perhaps counter-intuitive conclusion of
our analysis is that by reducing the tunnel rate one might be
able to speed up the |T0〉 blockade lifting so that the readout
time falls comfortably within the parity-readout range and
the fidelity is improved. In order to understand the neces-
sary range of tunnel-rate control necessary to compensate
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for typical differences in the Zeeman energy, one can com-
pare the systems in Refs. [43] and [44], which differ in�EZ
by 2 orders of magnitude. In the former,�EZ = 0.41 MHz
[43] so that the tunnel rate should be below 0.14 GHz to be
in the parity-readout regime, while for the latter the Zee-
man energy difference �EZ = 17 MHz sets the transition
to be at a tunnel rate of 17 GHz. These values are estimated
assuming all other parameters to be the same as in the
present work [the chosen wait time, 1/�blockade, is 100 μs,
which is typical for direct current single-electron transistor
(DC SET) current measurements] and we adopt Eq. (1).
The tunnel-coupling values calculated here correspond to
the maximum tunnel coupling the system should have to
remain in the parity-readout regime. This means that if
both systems studied here had a tunnel coupling of 0.14
GHz, they would both exhibit parity readout. The ability
to control tunnel coupling by orders of magnitude has been
demonstrated using exchange-gate electrodes in quantum-
dot systems in a variety of material systems [16,36,45,46].
It is then possible to lower the tunnel rate of all dot pairs
in a large system to guarantee that all readout regimes
are in parity mode. Potentially the opposite could also be
true, depending on how achievable a large enough tunnel
coupling is, given the effectiveness of the exchange-gate
electrodes and the interdot distances.

C. Summary

The device studied here allows us to combine traditional
Pauli blockade and latched spin readout to investigate the
physical origins of the parity readout. We describe this
process in terms of a model that includes both the effects
of Zeeman energy difference, as well as the nonunitary
charge evolution under the environment-induced noise. We
investigate the model numerically and also analytically,
using first-order perturbation theory, to establish an ana-
lytical formula connecting the |T0〉 blockade rate with the
detuning at the readout point ε, the interdot tunnel rate t,
the difference in Zeeman splittings �EZ , and either the
charge-dephasing time Tcharge

2 or the charge relaxation time
Tcharge

1 . According to our conclusions, high-precision two-
qubit state tomography is viable with this readout scheme.
We also show the pathway for engineering the blockade
rate for high-fidelity syndrome estimation in a quantum
error-correction code, revealing that control over the tun-
nel rate and detuning at the readout point can compensate
the Zeeman energy difference.
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APPENDIX: METHODS

1. Numerical model

The model Hamiltonian includes the tunnel coupling t
between the singlet states and the mixing of the |T0(1, 1)〉
and |S(0, 2)〉 through the |S(1, 1)〉 state, and the coupling
between the |S(1, 1)〉 and |T0(1, 1)〉 states because of the
difference of Zeeman energies between the dots. In the
basis {|S(0, 2)〉, |S(1, 1)〉, |T0(1, 1)〉} our Hamiltonian is

Ĥ =
⎛
⎝

−ε t 0
t 0 �EZ
0 �EZ 0

⎞
⎠ , (A1)

where ε is the detuning between the dots.
We study the impact of noise on the system by simulat-

ing the time evolution of the density matrix ρ̂ as a master
equation in the Lindbladian form [32,33]

dρ̂
dt

= −i[Ĥ , ρ̂] + ˆ̂L[â](ρ̂). (A2)

The Lindblad superoperator ˆ̂L[â](ρ̂) acts on ρ̂, describ-
ing the nonunitary evolution of the open quantum system
under an assumed Markovian noise. The operator â is a
jump operator chosen to model the impact of the environ-
ment on the quantum system—either a dephasing channel,
which is a consequence of charge noise, or a phonon-
mediated relaxation channel. The Lindblad superoperator
part of the master equation can be expanded as

ˆ̂L[â](ρ̂) = âρ̂â† − 1
2
(ââ†ρ̂ + ρ̂ââ†). (A3)

Using frequency units, Eq. (A3) can be used to
describe charge dephasing, âdephasing, and charge relaxation
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processes, ârelaxation, using

âdephasing =

⎛
⎜⎜⎝

1√
2T2

0 0

0 − 1√
2T2

0

0 0 − 1√
2T2

⎞
⎟⎟⎠ , (A4)

or

ârelaxation =
⎛
⎝

0 1√
T1

0
0 0 0
0 0 0

⎞
⎠ . (A5)

The operator âdephasing models the phase noise acting on
the charge states (1,1) and (0,2) charge states. The operator
ârelaxation models the depopulation of |S(1, 1)〉 relaxing into
the |S(0, 2)〉 state.

2. Analytical model

We adopt quasidegenerate perturbation theory [25] to
study the dynamics of the |T0〉 unblocking as a leak-
age into the singlet sector of the total three-dimensional
Hilbert space. For this approach to be valid, all off-diagonal
terms in the Hamiltonian must be small compared to the
splitting between the triplet and the singlet sectors. To
ensure this condition is satisfied even when t is compa-
rable to ε, a unitary transformation is used to bring the
Hamiltonian to a basis with symmetric and antisymmetric
singlet-state combinations. To achieve this partial diago-
nalization, the unitary transformation Û†Ĥ0Û is performed,
with a suitable choice of Û

Û =

⎛
⎜⎜⎜⎜⎝

t�antisym
S−T0

�EZ (ε+
√

4t2+ε2)

�
antisym
S−T0
�EZ

0

1√
2[1+ε(

√
4t2+ε2)−1]−1

�
sym
S−T0
�EZ

0

0 0 1

⎞
⎟⎟⎟⎟⎠

, (A6)

to give

Ĥ ′ =

⎛
⎜⎜⎝

−ε
2 +

√
ε2

4 + t2 0 �
antisym
S−T0

0 −ε
2 −

√
ε2

4 + t2 �
sym
S−T0

�
antisym
S−T0

�
sym
S−T0

0

⎞
⎟⎟⎠ ,

(A7)

where

�
antisym
S−T0

= �EZ
(
ε + √

4t2 + ε2
)

√
8t2 + 2ε

(
ε + √

4t2 + ε2
) , (A8)

and

�
sym
S−T0

= �EZ
(
ε − √

4t2 + ε2
)

√
8t2 + 2ε

(
ε − √

4t2 + ε2
) . (A9)

Splitting the Hamiltonian into the sum

Ĥ = Ĥ0 + Ĥ1 + Ĥ2, (A10)

one can now determine the unitary operator eŜ that approx-
imately diagonalizes the Hamiltonian to first order in the
small perturbations �antisym

S−T0
and�sym

S−T0
following the usual

SW algorithm.
We are more interested in the damping of the |T0〉

population introduced by the Lindblad superoperator. We
use the fact that the Lindbladian equation is invariant
under unitary transformations and obtain the transformed
quantum channel

â′ = e−ŜÛ†âÛeŜ. (A11)

This enables us to find the damping of |T0〉 as a function of
the system parameters by looking at the resulting dynam-
ical equation for ρT0 = 〈T0(1, 1)|ρ̂|T0(1, 1)〉. The general
form for this equation is

dρT0

dt
= −�blockadeρT0 + C, (A12)

where C stands for the terms that are not proportional to
−ρT0 , and therefore are not responsible for damping.

Substituting Eqs. (A11) and (A12), for the dephasing
jump operator (A4), into the master Eq. (A3) and looking
at the ρT0 elements only, the analytical expression is found,

�blockade ≈ 2t2

Tcharge
2 ε2

sin
(
�EZ

√
t2 + ε2

t2

)2

. (A13)

This expression is useful because it gives us insight into
how to control �blockade. Specifically, when �EZ is small,
Eq. (A13) becomes

�blockade ≈ 2�E2
Z

Tcharge
2

t2 + ε2

t2ε2 . (A14)

For the case of the relaxation process, �blockade is found
using the same SW method and, when �EZ is small, one
obtains

�blockade ≈ 2�E2
Z

Tcharge
1

t2 + ε2

t4
. (A15)
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