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Miika Koskinen2,3 Harri Lähdesmäki1
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Abstract

Longitudinal datasets measured repeatedly
over time from individual subjects, arise in
many biomedical, psychological, social, and
other studies. A common approach to anal-
yse high-dimensional data that contains miss-
ing values is to learn a low-dimensional rep-
resentation using variational autoencoders
(VAEs). However, standard VAEs assume
that the learnt representations are i.i.d., and
fail to capture the correlations between the
data samples. We propose the Longitudinal
VAE (L-VAE), that uses a multi-output ad-
ditive Gaussian process (GP) prior to extend
the VAE’s capability to learn structured low-
dimensional representations imposed by aux-
iliary covariate information, and derive a new
KL divergence upper bound for such GPs.
Our approach can simultaneously accommo-
date both time-varying shared and random
effects, produce structured low-dimensional
representations, disentangle effects of indi-
vidual covariates or their interactions, and
achieve highly accurate predictive perfor-
mance. We compare our model against pre-
vious methods on synthetic as well as clinical
datasets, and demonstrate the state-of-the-
art performance in data imputation, recon-
struction, and long-term prediction tasks.

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

1 Introduction

Longitudinal datasets naturally arise in a wide variety
of fields and applications, such as biomedicine, soci-
ology, psychology, and many others. Such datasets
include, for example, healthcare records, social media
behaviour, consumer behaviour, etc., all collected re-
peatedly over time for each individual. Most longitudi-
nal datasets contain both dependent and independent
variables. For example, in biomedical data, dependent
variables can comprise of lab tests and other measure-
ments of the patient, whereas independent variables
contain auxiliary descriptors of the patient, such as
age, sex, time to disease event, etc. Analysing lon-
gitudinal datasets collected in such studies is chal-
lenging as they often involve time-varying covariates,
high-dimensional correlated measurements, and miss-
ing values.

While non-linear, high-dimensional generative mod-
els are capable of learning complex data distributions,
the statistical inference for such models is generally
highly non-trivial. Auto-Encoding Variational Bayes
(AEVB) (Kingma and Welling, 2014) is a powerful
deep learning technique for efficient inference of latent
variable models. The variational autoencoder (VAE)
(Kingma and Welling, 2014; Rezende et al., 2014), the
most popular exemplification of AEVB, learns a low-
dimensional latent code of the dataset using two com-
plementary deep neural networks (DNNs) to encode
the high-dimensional data and decode the latent dis-
tribution, respectively. However, VAEs usually ignore
the possible correlations (e.g. temporal correlations)
between the learnt latent embeddings.

Related work Numerous extensions to achieve cor-
relations in the latent space, model temporal data, and
enhance the expressiveness of posterior distributions
have been proposed for VAEs. Kulkarni et al. (2015)
had proposed to group samples with specific proper-
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ties in mini-batches to induce structure on the latent
space. The conditional VAE (CVAE) introduced in
(Sohn et al., 2015) incorporated the auxiliary covari-
ate information directly in the inference and gener-
ative networks. However, CVAE fails to model the
subject-specific temporal structure and does not ex-
plicitly constrain the latent space to achieve a low
dimensional representation that evolves smoothly in
time. Casale et al. (2018) proposed the GPPVAE to
incorporate view and object information in a Gaus-
sian process (GP) prior, to model the VAE’s latent
space structure. GPPVAE can account for temporal
covariances between samples, but its ability to model
subject-specific temporal structure is limited by the
restrictive nature of the view-object GP product ker-
nel. This compromises the applicability of GPPVAE
in longitudinal study designs. Moreover, GPPVAE’s
pseudo-minibatch stochastic gradient descent (SGD)
training scheme lacks the ability to scale to large data,
as each training step requires a pass over the full data
(epoch). Fortuin et al. (2020) built upon the idea of
using a latent GP in VAEs, and proposed the GP-
VAE that assumes an independent GP prior on each
subject’s time-series. Though GP-VAE is especially
designed for time-series data, it can neither capture
shared temporal structure across all data points nor
make use of available auxiliary covariate information
other than time.

Limitations of the expressiveness of posterior approx-
imations in VAEs has been addressed by using nor-
malising flows (NF) (Rezende and Mohamed, 2015)
implemented with RealNVPs (Dinh et al., 2017),
continuous-time NFs (Chen et al., 2018), inverse au-
toregressive flows (Kingma et al., 2016), and impor-
tance sampling (Müller et al., 2019). Methods have
also been proposed to handle the disentanglement
of dimensions in the latent space (Ainsworth et al.,
2018a,b; Higgins et al., 2017) and improve latent rep-
resentations (Alemi et al., 2018; Zhao et al., 2019). All
these methods, however, assume independence across
samples.

From the deep neural networks perspective, recurrent
architectures (RNN) have been found to be particu-
larly well-suited for temporal data analysis (Pearlmut-
ter, 1989; Giles et al., 1994), including multi-outcome
modelling problems. For example, Chung et al. (2015)
proposed the variational RNN (VRNN) which extends
the VAE into a recurrent framework for modelling
highly structured sequential data. The VRNN models
the temporal dependencies between the latent random
variables across time steps. However, Chung et al.
(2015) do not propose a way to handle and impute
missing values. Also, VRNNs neither makes use of
auxiliary covariates nor takes into account differing
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Figure 1: L-VAE overview.

time steps. BRITS (Cao et al., 2018) makes use of bi-
directional LSTM-type RNNs (Schuster and Paliwal,
1997), and can efficiently impute missing values while
accounting for the irregularities in the sampling times.
However, BRITS is not a generative model which can
limit the applicability of the trained model. More-
over, it is not straightforward to incorporate auxiliary
information. Generative adversarial networks (GANs)
can also be used for time-series data imputation and
modelling (Goodfellow et al., 2016; Guo et al., 2019;
Luo et al., 2018). GRUI-GAN (Luo et al., 2018) is
an RNN-based method that makes use of adversar-
ial training. This recurrent model suffers from similar
pitfalls as BRITS with the added complexity of adver-
sarial training. Table 1 contrasts the features of our
proposed model to the key related methods.

Contributions In this paper, we propose a novel
deep generative model that extends the capabilities of
a VAE with a multi-output additive GP prior over the
latent encodings domain, that models the correlation
structure between the samples w.r.t. auxiliary infor-
mation. Our L-VAE model is conceptualised in Fig. 1.
Our model probabilistically encodes the longitudinal
measurements with missing values (missing completely
at random) onto a low-dimensional latent space with
no missing values. The structured, low-dimensional la-
tent dynamics are modelled using a multi-output addi-
tive GP that utilises the auxiliary covariates, followed
by decoding back to the data domain. Such a GP
prior introduces computational challenges for which
we derive a novel divergence bound that leverages the
commonly used inducing point formalism (Quiñonero-
Candela and Rasmussen, 2005; Titsias, 2009) for effi-
cient model inference. Our contributions can be sum-
marised as follows:

• We introduce a VAE for longitudinal data with
auxiliary covariate information, that can model
the structured latent space dynamics with a
multi-output additive GP prior.

• We derive an efficient mini-batch based GP infer-
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Table 1: Comparison of related methods.

Models
Shared temporal

structure
Individual

temporal structure
Other covariates Minibatching

Temporal
irregularities

Generative Reference

VAE 7 7 7 3 7 3 Kingma and Welling (2014)
CVAE 3 7 3 3 7 3 Sohn et al. (2015)
GPPVAE 3 Limited Limited Pseudo 7 3 Casale et al. (2018)
GP-VAE 7 3 7 3 7 3 Fortuin et al. (2020)
VRNN 3 7 7 3 7 3 Chung et al. (2015)
BRITS 3 7 7 3 3 7 Cao et al. (2018)
GRUI-GAN 3 7 7 3 3 3 Luo et al. (2018)
L-VAE 3 3 3 3 3 3 Our work

ence scheme by exploiting the natural structural
properties of the additive GP covariance functions
(CF) used for longitudinal modelling.

• We compare L-VAE’s performance against com-
peting methods on several datasets and report
the state-of-the-art performance in imputation,
reconstruction, and long-term prediction.

The source code is available at https://github.com/
SidRama/Longitudinal-VAE .

2 Methods

Problem setting Let D be the dimensionality of
the observed data, P be the number of unique in-
stances (e.g. unique patients, unique handwritten digit
styles), np be the number of longitudinal samples

from instance p, and N =
∑P
p=1 np be the total

number of samples (e.g. the total number of mea-
surements for all patients, total number of images).
Longitudinal samples for instance p are denoted as
Yp = [yp1, . . . ,y

p
np ]T , where each sample ypt ∈ Y. In

this work, we assume Y = RD. We represent the
auxiliary covariate information for the instance p as
Xp = [xp1, . . . ,x

p
np ]T , where covariates for each sam-

ple xpt ∈ X = X1 × . . . × XQ, Xq is the domain
of the qth covariate, and Q is the number of covari-
ates. For example in Electronic Health Record (EHR)
data, covariate information can include patient in-
formation such as age, sex, weight, time since re-
mission, etc. Collectively, instance-specific samples
and covariates form the full longitudinal data matrix
Y = [Y T1 , . . . , Y

T
P ]T = [y1, . . . ,yN ]T and covariate

matrix X = [XT
1 , . . . , X

T
P ]T = [x1, . . . ,xN ]T , respec-

tively. We denote the low-dimensional latent space
as Z = RL and a latent embedding for all N sam-
ples as Z = [z1, . . . ,zN ]T ∈ RN×L. We also index
Z across L dimensions as Z = [z̄1, . . . , z̄L], where
z̄l = [z1l, . . . , zNl]

T is a vector that contains the lth

dimension of the latent embedding for all N samples.

Auto-encoding variational Bayes Consider the
joint generative model pω(y, z) = pψ(y|z)pθ(z) pa-

rameterised by ω = {ψ, θ}, and assume we are in-
terested to infer the latent variable z given y. The
posterior distribution pω(z|y) = pψ(y|z)pθ(z)/pω(y)
is generally intractable due to the marginalisation over
the latent space pω(y) =

∫
pψ(y|z)pθ(z)dz. Auto-

Encoding Variational Bayes (AEVB) (Kingma and
Welling, 2014) is a powerful deep learning technique for
latent variable models that factorise across samples as
pω(Y,Z) = pψ(Y |Z)pθ(Z) =

∏N
n=1 pψ(yn|zn)pθ(zn).

AEVB introduces an inference model (also called prob-
abilistic encoder) qφ(z|y), parameterised by φ, that
seeks to approximate the true posterior. The most
well-known AEVB model is the variational autoen-
coder (VAE), where the inference model as well as
the probabilistic decoder pψ(y|z) are parameterised
by DNNs. Instead of optimising sample-specific varia-
tional parameters, as in standard variational inference
(VI), AEVB uses amortised VI that exploits the in-
ference model qφ(z|y) to obtain approximate distribu-
tions for each zn as a function of the corresponding
sample yn. Then, the approximate inference prob-
lem is fitted by maximising the evidence lower bound
(ELBO) of the marginal log-likelihood w.r.t. φ:

log pω(Y ) ≥ L(φ, ψ, θ;Y )

, Eqφ [log pψ(Y |Z)]−DKL(qφ(Z|Y )||pθ(Z))→ max
φ
,

whereDKL denotes the KL divergence. In practice, the
approximate inference is typically conducted simulta-
neously alongside learning the generative model’s pa-
rameters via solving the joint optimisation problem
L(φ, ψ, θ;Y ) −→ maxφ,ψ,θ.

2.1 Longitudinal variational autoencoder

The standard VAE model assumes that the joint dis-
tribution factorises across samples. Therefore, it can
neither capture the potentially non-trivial structure of
the data across the samples nor exploit that structure
while making predictions. GP-VAE (Fortuin et al.,
2020) and GPPVAE (Casale et al., 2018) address this
issue for multivariate time-series data by assuming a
GP prior on Z, whose CF depends on time or is fac-
torised into feature and view components, respectively.

https://github.com/SidRama/Longitudinal-VAE
https://github.com/SidRama/Longitudinal-VAE
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However, neither of these approaches coherently ac-
commodates population-level structure by accounting
for the potentially available additional covariates (such
as patient sex or genotype) with instance-specific vari-
ability. In contrast, our method naturally incorporates
both using an additive multi-output GP prior.

Building upon the work of Casale et al. (2018) and For-
tuin et al. (2020), we propose to enhance the ability
of VAEs to learn meaningful low-dimensional repre-
sentations of Y , with a non-i.i.d. model for the low-
dimensional latent space. This would enable our pro-
posed method to effectively capture the structure of
the data across the observed samples w.r.t. the auxil-
iary information X. Specifically, our generative model,
parameterised by ω = {ψ, θ}, is formulated as

pω(Y |X) =

∫
Z

pψ(Y |Z,X)pθ(Z|X)dZ

=

∫
Z

N∏
n=1

pψ(yn|zn)pθ(Z|X)dZ, (1)

where the probabilistic decoder for normally dis-
tributed data,

pψ(yn|zn) = N
(
yn|gψ(zn),diag(σ2

y1, . . . , σ
2
yD)
)

(2)

is parameterised by a neural network ψ (variance pa-
rameters σ2

yd are included in ψ) and pθ(Z|X) is defined
by a multi-output GP prior that regulates the joint
structure of Z with auxiliary variables X.

2.1.1 Multi-output additive GP prior

Consider a multi-output function f : X → Z = RL
where L > 1, denoted as f(x) = [f1(x), . . . , fL(x)]T .
Following Álvarez et al. (2012), we denote that f fol-
lows a multi-output Gaussian process prior as f(x) ∼
GP (µ(x),K(x,x′|θ)), where µ(x) ∈ RL is the mean
(which we assume as 0) and K(x,x′|θ) is a matrix-
valued positive definite cross-covariance function
(CCF) whose entries define the covariances between
the output dimensions for any x,x′. For any finite col-
lection of inputs X = [xT1 , . . . ,x

T
N ]T , the correspond-

ing function values f(X) = [f(x1)T , . . . ,f(xN )T ]T ∈
RNL×1 have a joint multivariate Gaussian distribu-
tion p(f(X)) = N (0,KXX(θ)), where the covari-
ance matrix KXX(θ) is a block-partitioned matrix
of size NL × NL with L × L blocks, so that block
[KXX(θ)]i,j = K(xi,xj |θ).

In this work we consider multi-output GPs that fac-
torise across the output dimensions, which is equiva-
lent to diagonal CCF

K(x,x′|θ) = diag (k1(x,x′|θ1), . . . , kL(x,x′|θL)) ,

where kl(x,x
′|θl) = cov(fl(x), fl(x

′)) is the CF for
the lth latent dimension. From the perspective of the

generative model in eq. (1), such a choice is completely
nonrestrictive compared to commonly used linear-type
CCFs (e.g. linear model of coregionalisation), since
the output of the multivariate GP is multiplied with
the weights of the first layer in the neural network
ψ. Moreover, diagonal CCFs enable us to completely
characterise the multi-output GP prior for multivari-
ate latent embedding Z in terms of univariate GP pri-
ors for its univariate column-components z̄l, and to
derive an efficient inference algorithm elucidated in
Sec. 2.2.

Further, we will assume an additive structure for each
CF, where each component depends on only a single
covariate or a pair of covariates. Such CFs naturally
provide a way to handle heterogeneous inputs, inter-
pretability, and disentanglement for different covari-
ates. Specifically, for the lth dimension we assume that

fl(x) = f
(1)
l (x(1)) + . . .+ f

(R)
l (x(R)),

f
(r)
l (x(r)) ∼ GP

(
0, k

(r)
l (x(r),x(r)′|θ(r)l )

)
,

where R refers to the number of additive ker-
nels/components, each f

(r)
l (x(r)) is a separate GP

with specific parameters θ
(r)
l , and x(r) ∈ X (r) ⊆

X . The covariance function of the additive GP
is a sum of its components’ covariances fl(x) ∼
GP

(
0,
∑R
r=1 k

(r)
l (x(r),x(r)′|θ(r)l )

)
(Rasmussen and

Williams, 2006).

Assuming the lth dimension of latent embedding z̄l is
perturbed by i.i.d. zero-mean Gaussian noise σ2

zl, the
multi-output GP marginalised likelihood follows:

p(Z|X, θ) =

L∏
l=1

p(z̄l|X, θl, σ2
zl)

=

L∏
l=1

N

(
z̄l|0,

R∑
r=1

K
(l,r)
XX (θ

(r)
l ) + σ2

zlIN

)
,

where θ incorporates all θ
(r)
l and σzl parameters,

and K
(l,r)
XX (θ

(r)
l ) is a N × N covariance matrix for

k
(r)
l (x(r),x(r)′|θ(r)l ).

Similar to Cheng et al. (2019), we use the following ele-
mentary covariance functions to construct the additive
GP components within our framework: a) the effects
of continuous covariates are modelled with the squared
exponential CF; b) categorical covariates are modelled
either alone with the categorical CF or together with
the time (or other continuous) covariate using an in-
teraction CF, which is the product of the categorical
and squared exponential CFs; and c) the product of
the squared exponential CF and the binary CF is used
to model covariates that are defined for a subset of
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samples (an example of such a covariate in a biomed-
ical context is the time to the disease onset, which is
defined only for those individuals who get a disease).
All CFs for different latent dimensions and additive
components have separate parameters θ

(r)
l (LR in to-

tal). Moreover, each additive component has an out-
put variance parameter, which is a scale factor that is
learnt alongside the other parameters. We constrain
the scale parameters to positive values and fix the like-
lihood noise σ2

zl to 1, for better identifiability. Restrict-
ing to this family of CFs enabled us to devise accurate
approximate computational strategies to overcome the
typically cubic scaling of GPs as described in Sec. 2.2.
A detailed description of the elementary CFs used is
included in Suppl. Sec. 1. To handle missingness in the

covariates, we set each CF k
(r)
l (x(r),x(r)′|θ(r)l )

.
= 0 for

those sample pairs x and x′ that contain at least one
missing value for their respective covariate(s) in X (r).
This ensures that the contribution of the missing val-
ues to the target variable is 0.

2.1.2 Auto-Encoding Variational Bayes for
L-VAE

We approximate the true posterior of Z with the prod-
uct of multivariate Gaussian distributions across sam-
ples, each of which has a diagonal covariance matrix:

qφ(Z|Y ) =

N∏
n=1

N
(
zn|µφ(yn),diag(σ2

φ(yn))
)

=

N∏
n=1

L∏
l=1

N
(
znl|µφ,l(yn), σ2

φ,l(yn))
)
. (3)

Here, the probabilistic encoder is represented by neural
network functions parameterised by φ, µφ : RD → RL

and σ2
φ : RD → RL+, that determine the means and

variances of the approximating variational distribu-
tion. Following the AEVB approach of Kingma and
Welling (2014), we form the ELBO for the L-VAE:

log pω(Y |X) ≥ L(φ, ψ, θ;Y,X) (4)

, Eqφ(Z|Y ) [log pψ(Y |Z)]−DKL(qφ(Z|Y )||pθ(Z|X)).

From equations (1-2) and (3) which describe
the factorised decoder and variational approxima-
tion respectively, the first term of the ELBO in
eq. (4), called reconstruction loss, consists of ad-
ditive terms across the samples and observations
which can be written as Eqφ(Z|Y ) [log pψ(Y |Z)] =∑N
n=1

∑D
d=1 Eqφ(zn|yn) [log pψ(ynd|zn)]. If Y contains

missing values, this summation is done only over the
non-missing elements.

Given that our multi-output additive GP prior fac-
torises across the latent dimensions pθ(Z|X) =

∏L
l=1 p(z̄l|X, θl, σ2

zl), we can exploit the additive na-
ture of the KL divergence for pairs of independent dis-
tributions:

DKL(qφ(Z|Y,X)||pθ(Z|X))

=

L∑
l=1

DKL(qφ(z̄l|Y,X)||pθ(z̄l|X)). (5)

Hence, we can completely avoid explicitly dealing with
the numerics of multi-output GPs.

We have experimented with, e.g., a structured vari-
ational distribution (a tri-diagonal precision matrix
per longitudinal instance) motivated by Bamler and
Mandt (2017). However, we did not observe any im-
provement in the resulting performance. We leave the
exploration of other approximating variational distri-
butions for future work.

2.2 Efficient KL divergence computation

Optimising the variational objective in eq. (4) involves
the computation of the KL divergence in eq. (5), which
decomposes into L KL divergences,

D
(l)
KL = DKL(qφ(z̄l|Y,X)||pθ(z̄l|X))

= DKL(N (µ̄l,Wl)||N (0,Σl)),
(6)

where µ̄l = [µφ,l(y1), . . . , µφ,l(yN )]T , Wl =

diag(σ2
φ,l(y1), . . . , σ2

φ,l(yN )), and Σl =
∑R
r=1K

(l,r)
XX +

σ2
zlIN . Each of the KL divergences is available in

closed form, but its exact computation requires O(N3)
flops, which makes it impractical when N exceeds a
few thousands. Instead, we introduce a novel strategy
to approximately compute this KL divergence at a sig-
nificantly reduced computational cost. Without a loss
of generality, we drop the index l for the remainder of
this section.

A closely related problem has been studied by Titsias
(2009) who proposed the well-known free-form varia-
tional lower bound for a GP marginal log-likelihood
logN (z̄|0,Σ), assuming a set of M inducing locations
S = [s1, . . . , sM ] in X and inducing function values
u = [f(s1), . . . , f(sM )]T = [u1, . . . , uM ]T . In fact, any
lower bound for the prior GP marginal log-likelihood
induces an upper bound of KL divergence (eq. (6)).
The free-form bound of Titsias is known to be tight
when M is sufficiently high and the covariance func-
tion is smooth enough.

However, longitudinal studies, by definition, always
contain a categorical covariate corresponding to ob-
served instances, which makes the covariance function
non-continuous. By separating the additive compo-
nent that corresponds to the interaction between in-
stances and time (or age) from the other additive com-
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ponents, the covariance matrix has the following gen-

eral form Σ = K
(A)
XX +Σ̂, where Σ̂ = diag(Σ̂1, . . . , Σ̂P ),

Σ̂p = K
(R)
XpXp

+ σ2
zInp and K

(A)
XX =

∑R−1
r=1 K

(r)
XX con-

tains all the other R − 1 components. It is now clear
that a reasonable inducing point set-up for the Titsias
free-form bound would mandate that M ≥ P , thus
rendering the bound either computationally inefficient
once P is large (due to high M) or insufficiently tight.
Since the interaction CF is essential for accurate lon-
gitudinal modelling, we devised a novel free-form di-
vergence upper bound for this class of GPs:

DKL ≤
1

2

(
tr(Σ̄−1W ) + µ̄T Σ̄−1µ̄−N + log |Σ̄|

− log |W |+
P∑
p=1

tr
(

Σ̂−1p K̃
(A)
XpXp

)) (7)

where Σ̄ = K
(A)
XSK

(A)−1

SS K
(A)
SX + Σ̂ and K̃

(A)
XpXp

=

K
(A)
XpXp

−K(A)
XpS

K
(A)−1

SS K
(A)
SXp

. The computational com-

plexity of such a bound is O(
∑P
p=1 n

3
p + NM2) flops,

which leads to an approximately similar computational
complexity as Titsias (2009) bound when np ' M �
N , but is significantly tighter:

Theorem 1. For any set of inducing points S, the
novel bound in eq. (7) is tighter than the one induced
by the free-form variational bound of Titsias (2009).

We provide a detailed derivation of the new bound and
the Theorem 1 in Suppl. Sec. 2.

2.3 Mini-batch training

Although the novel KL divergence bound presented
in the previous section enables O(N) scaling of the
ELBO computation (see eq. (7)), it may still be pro-
hibitively expensive for large datasets. To address this
limitation, we devised a mini-batch training scheme
that allows for multiple learning steps per epoch us-
ing unbiased stochastic estimates of the ELBO and its
gradient. As elaborated above, the reconstruction loss
term of eq. (4) trivially enables unbiased estimates.
For the KL divergence part, we derived a principled
mini-batching-compatible variant of the upper bound
computation (eq. (7)) by building upon the SGD train-
ing of GPs with natural gradients presented in (Hens-
man et al., 2013). Specifically, the mini-batch compat-
ible upper bound takes the form (see Suppl. Sec. 3 for
an in-depth formulation and technical details)

D̂KL ≤
1

2

P

P̂

∑
p∈P

Υp −
N

2

+DKL(N (m, H)||N (0,K
(A)
SS )),

(8)

where the summation is over a subset of instances P ⊂
{1, . . . , P} with |P| = P̂ , Υp involves computing a

quantity for instance p (see eq. 16 in Suppl. Sec. 3),
and m and H are the global variational parameters
for u ∼ N (m, H).

Eq. (8) enables us to use the mini-batching technique
for a more precise approximate computation of the KL
divergence term of L-VAE and its gradients, by ap-
proximately distributing an equal number of instances
to each batch. Typically, the number of longitudi-
nal samples per instance is small or moderate so that
eq. (8) can be used to implement an efficient SGD al-
gorithm. However, if the number of longitudinal sam-
ples for one or more instances is too large for an ef-
ficient implementation, the mini-batch based bound
described above can be further extended beyond iter-
ating over instances by allocating inducing points for
each instance.

L-VAE is trained using the Adam optimiser (Kingma
and Ba, 2015) on a training set, with early-stopping
evaluated on a validation set. We evaluate imputation
on the training set and predictive performance on an
independent test set. See Suppl. Sec. 7 for more details.

2.4 Predictive distribution

Given the training samples Y , covariate information
X, and learnt parameters φ, ψ, θ, the predictive distri-
bution for the high-dimensional out-of-sample data y∗
given covariates x∗ follows

pω(y∗|x∗, Y,X) ≈
∫
z∗,Z

pψ(y∗|z∗)pθ(z∗|x∗, Z,X)

· qφ(Z|Y,X)dz∗dZ

=

∫
z∗

D∏
d=1

N
(
y∗d|gψ,d(z∗), σ2

yd

) L∏
l=1

N (z∗l|µ∗l, σ2
∗l)dz∗

where the means of the predictive low-dimensional

representation are µ∗l = K
(l)
x∗X

Σ−1l µ̄l and vari-

ances are σ2
∗l = kl(x∗,x∗) − K

(l)
x∗X

Σ−1l K
(l)
Xx∗

+

K
(l)
x∗X

Σ−1l WlΣ
−1
l K

(l)
Xx∗

+ σ2
zl. See Suppl. Sec. 4 for

more details.

Computation of the predictive distribution above does
not assume any low-rank approximation and thus
scales cubically with N . Unlike in the training phase,
the required cubic matrix operations have to be con-
ducted only once for any number of predictions, hence
for moderate-sized data it is feasible to handle exactly.
However, we can also write a scalable predictive distri-
bution for the sparse variational approximation model
that uses the inducing points. Detailed expressions are
shown in Suppl. Sec. 5.
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3 Experiments

We demonstrate the efficacy of our method in cap-
turing the underlying data distribution and learning
meaningful latent representations, quantifying perfor-
mance in missing value imputation, reconstructing
from the latent space, and by long-term predictions for
synthetic images and a real-world medical time series
dataset. We compare the performance of our method
with various state-of-the-art methods for the respec-
tive datasets. Moreover, we have used similar encoder
and decoder network architectures when performing
comparisons across methods (see Suppl. Sec. 8). Addi-
tional results showing the latent embeddings and more
comparisons can be found in Suppl. Sec. 9. In all our
experiments, the id covariate is used as an identifier of
an instance (e.g. patient or unique handwritten digit
style) that takes values in {1, . . . , P}, whereas other
covariates are specific for each dataset (e.g. image rota-
tion angle or time relative to disease onset diseaseAge).
For brevity, we denote the additive components with
different covariance functions (CFs) as follows: SE CF
f se(·), categorical CF f ca(·), binary CF fbi(·), and
their interaction CFs f ca×se(· × ·) and fbi×se(· × ·).

3.1 Rotated MNIST digits

We demonstrate our method on a variant of the
MNIST dataset that comprises of 400 unique instances
of the digit ‘3’ as proposed in Casale et al. (2018).
Each instance in this training set is rotated through
16 evenly separated rotation angles in [0, 2π). That
is, we have two covariates: categorical id and contin-
uous angle. Moreover, the validation set comprises of
40 unique instances of the digit ‘3’ rotated through
16 evenly separated rotation angles like the training
set. As proposed in Casale et al. (2018), we created
the test set (out-of-sample predictions) by completely
removing one of the rotation angles for each instance
and further removed four randomly selected angles to
simulate incomplete data.

Hence, for each sequence, 5 images are not observed
(see Fig. 2(a)). Therefore, in this experiment the train-
ing set parameters are P = 400, N = 4400 (where each
np = 11), andQ = 2. The test set comprises of 400 test
images of one rotation angle each. Fig. 2(a) demon-
strates that our model was able to reconstruct arbi-
trary rotation angles, including the out-of-sample rota-
tion (Fig. 2(b)). Fig. 2(c) compares the mean squared
error (MSE) of the test set reconstructions from our
method (three different GP variants) and GPPVAE
and GP-VAE. The reconstruction loss decreases with
increasing latent space dimension L, but our method
consistently outperforms both the GPPVAE and GP-
VAE.

3.2 Health MNIST

We simulate a longitudinal dataset with missing values
using a modified version of the MNIST dataset. The
dataset imitates many properties that may be found
in actual medical data. In this experiment, we took
the digits ‘3’ as well as ‘6’ and assumed that the dif-
ferent digits would represent two biological sexes. To
simulate a shared age-related effect, all digit instances
where shifted towards the right corner over time. We
assume that half of the instances of ‘3’ and ‘6’ remain
healthy (diseasePresence = 0) and half get a disease
(diseasePresence = 1). For the diseased instances, we
performed a sequence of 20 rotations with the amount
of rotation depending on the time to disease diagnosis
(diseaseAge).

We also introduced an irrelevant binary covariate, lo-
cation which is set randomly for each unique instance.
To every data point, we applied a random rotational
jitter to mimic the addition of noise. We also randomly
selected 25% of each image’s pixels and set them as
missing (we use these pixels to assess the imputation
capability). Therefore, the simulated training dataset
comprises of P = 1000 unique instances with a total
of N = 20000 samples such that each np = 20. Each
sample has Q = 6 covariates, namely age, id, diseaseP-
resence, diseaseAge, sex, and location. The validation
set comprised of 200 instances which are not present
in the training. Additionally, the training dataset con-
tained 100 additional instances for which the images of
only the first 5 time points are given (as in the ‘Data’
row of Fig. 3(a)) — we use these to assess prediction
capability by computing the MSE as well as by visu-
alising the output of the decoder. As in Fortuin et al.
(2020), we try to draw an analogy to healthcare by
assuming that each frame of the time series represents
a collection of measurements pertaining to a patient’s
health state and that the temporal evolution repre-
sents the non-linear evolution of that patient’s health
state.

Fig. 3(a) indicates that our approach performs well in
reconstructing the temporal trajectory (or disease tra-
jectory as per our analogy) and is able to predict the
remaining trajectory, given the corresponding covari-
ates. The benefits of using our model can especially be
seen in the time period [−4, 9] as it effectively captures
the non-linear transformation about the disease event.
GP-VAE is also capable to effectively reconstruct in
the time period [−10,−6], but fails completely in fu-
ture predictions because it can only utilise the age co-
variate. Fig. 3(b) shows that our model also outper-
forms GP-VAE, GPPVAE, BRITS and GRUI-GAN in
imputing the missing values for observed time points.
Fig. 3(b) also highlights the robustness of our approach
as the irrelevant covariate, location, has a very mild
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Figure 2: The rotated MNIST experiments. (a) Reconstructions obtained from our model using f ca(id) +
f se(angle) + f ca×se(id× angle), and 16 latent dimensions. The blank boxes corresponds to the missing images.
Rotation angle 4 is completely withheld from all instances. (b) Predictions for 18 random draws of the out-of-
sample prediction state (i.e. unobserved angle in panel a ). The first row is the real data and the bottom row is
our model’s prediction. (c) MSE on test set. The error bars represent the minimum and maximum values after
10 repetitions. The training, test, and validation sets are re-sampled for each repetition.
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Figure 3: The Health MNIST experiments. (a) Reconstructions and predictions obtained from our model using
f ca(id) + f se(age) + f ca×se(id× age) + f ca×se(sex× age) + f ca×se(diseasePresence× diseaseAge), and 32 latent
dimensions. For the other methods, 64 latent dimensions were used when applicable. (b) MSE from imputing
the missing values for the observed time points. Three model variants are shown for L-VAE.

detrimental effect on the overall model performance.
Finally, Table 2 shows that L-VAE outperforms other
methods in performing future predictions. See Suppl.
Figs. 3 and 4 for latent space visualisations.

3.3 Healthcare data

We evaluated our model on health-care data from the
Physionet Challenge 2012 (Silva et al., 2012). The ob-
jective of this challenge was to predict the in-hospital
mortality of the patients that were monitored in the
Intensive Care Unit (ICU) over a period of 48 hours.
We made use of data from 3997 individuals (‘set a’)
for training and 1000 individuals (‘set c’) for valida-
tion. Additionally, we used 3993 individuals (‘set b’)
for testing. As in Cao et al. (2018), we focused on

Table 2: MSE from performing future predictions (i.e.,
from time [-5, 9]) on the Health MNIST dataset. The
values are the means and respective standard errors.

Model Latent dimension MSE
GPPVAE 64 0.057± 0.003
GP-VAE 64 0.059± 0.002
VRNN 64 0.049± 0.004
BRITS N/A 0.047± 0.004
GRUI-GAN 64 0.053± 0.007
L-VAE 8 0.038± 0.003
L-VAE 16 0.033± 0.0018
L-VAE 32 0.025 ± 0.0015

modelling the measurements of 35 different attributes
(such as glucose level, blood pressure, body temper-
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Figure 4: Test set AUROC scores for the patient
mortality prediction task for the Physionet Challenge
2012 dataset. The number of latent dimensions is 32.
Higher score is better. The error bars represent the
minimum and maximum values after 10 repetitions.

ature, etc.), approx. 80% of which are missing in the
data. We also made use of 7 patient-specific general
auxiliary covariates that were made available as a part
of the challenge, i.e. patient identifier (id), type of ICU
unit (ICUtype), height, weight, age, sex, in-hospital
death (mortality) as well as measurement hour (time),
some of which were also missing for some patients. We
constructed an additional covariate (time to mortality
or mortalityTime) based on the provided survival time
(see Suppl. Sec. 6 for data pre-processing). For model
training, data for all patients (P = 3997) is available
hourly (np = 48), so N = 191856. We trained our L-
VAE model using the training samples and used it to
build a Bayes classifier aimed at predicting the patient
mortality for test data. Since the test data lacks infor-
mation on mortality and mortalityTime covariates, for
each patient in the test set, characterised by a pair of
48 hour attributes time-series Y∗ and incomplete aux-
iliary information X∗, we approximated the marginal
log-likelihoods from eq. (4) of the two alternative hy-
potheses: Li = L(φ, ψ, θ;Y∗, X∗,mortality = i) for
i = {0, 1}. Then the predicted mortality probability
was computed as P1 = exp(L1)/(exp(L0) + exp(L1)).
We provide a detailed explanation of the Bayes classi-
fier and mortality probability P1 in Suppl. Sec. 6.

To demonstrate the efficacy of our method, we com-
pared the AUROC scores for predicting mortality of
the test data instances obtained using our method with
those obtained from GP-VAE, a standard VAE, HI-
VAE (Nazábal et al., 2020), BRITS and GRUI-GAN.
These methods either do not use any auxiliary infor-
mation (HI-VAE and VAE) or use only the time covari-

ate (GP-VAE, BRITS, and GRUI-GAN). The mortal-
ity classification procedure of these methods first im-
putes the missing values with the generative model,
and then exploits the imputed values as covariates to
train a logistic regression that is finally used for mor-
tality prediction (Fortuin et al., 2020). Fig. 4 shows
that our L-VAE approach achieves higher AUROC
scores. The performance with other additive GP co-
variance functions can be seen in Suppl. Fig. 5.

4 Discussion

In this paper, we introduced a novel deep generative
model, L-VAE, that incorporates auxiliary covariate
information to model the structured latent space dy-
namics for longitudinal datasets with missing values.
We also introduced a novel computationally efficient
inference strategy that exploits the structure of the
additive GP covariance functions resulting in a novel
lower bound. Moreover, the derived bound is theoreti-
cally guaranteed to be tighter than the free-form vari-
ational bound of Titsias (2009). We further developed
this bound to allow mini-batch SGD training for com-
putational efficiency. We demonstrated the efficacy of
our method on synthetic as well as real-world datasets
by showing that L-VAE achieves better out-of-sample
prediction performance and missing value imputation
than competing methods. Given the flexibility of our
model and the state-of-the-art results, we expect L-
VAE to become a useful tool for high-dimensional lon-
gitudinal data analysis.
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