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The Lamb shift, an energy shift arising from the presence of the electromagnetic vacuum, has been observed
in various quantum systems and established as part of the energy shift independent of the environmental
photon number. However, typical studies are based on simplistic bosonic models which may be challenged
in practical quantum devices. We demonstrate a hybrid bosonic-fermionic environment for a linear resonator
mode and observe that the photon number in the environment can dramatically increase both the dissipation
and the effective Lamb shift of the mode. Our observations are quantitatively described by a first-principles
model, which we develop here also to guide device design for future quantum-technological applications. The
device demonstrated here can be utilized as a fully rf-operated quantum-circuit refrigerator to quickly reset
superconducting qubits.
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I. INTRODUCTION

Quantum theory, put forward a century ago has not only
revealed the deepest secrets of nature such as those of the ele-
mentary particles but also given rise to a multitude of practical
applications ranging from medical imaging [1,2] to the emerg-
ing quantum computers [3–7] and quantum cryptography
[8,9]. One of the most important challenges in contemporary
quantum physics is the understanding and control of the ef-
fects of environments on the studied quantum systems.

In 1947, Willis Lamb and Robert Retherford conducted
their celebrated experiments to observe an anomalous small
shift in the energy spectrum of hydrogen [10]. This frequency
shift, later referred to as the Lamb shift, was considered to
arise from the sole presence of the electromagnetic vacuum,
not from excitations of the field [11]. It paved the way for the
golden ages of physics where modern quantum electrodynam-
ics and particle physics were developed along with discoveries
such as a theory of superconductivity [12], the Casimir effect
[13], and applications of quantum tunneling [14]. Yet, the
Lamb shift still ties the contemporary quantum physicists and
engineers with the importance of the quantum environment:
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quantum systems are not isolated—even if energy relaxation
can be mitigated by filtering at the system frequency, the
Lamb shift arising from the full spectrum of the environmental
modes persists.

In fact, the Lamb shift has not only been studied in nat-
ural quantum systems such as atoms [10,11,15–18], but has
also fascinated physicists working on engineered quantum
systems. The Lamb shift in superconducting qubits was first
observed as a result of a single bosonic mode [19,20] and
later arising from a few well-defined modes [21]. Also the
Lamb shift owing to lattice vibrations, or phonons, has been
observed in ultracold quantum gases [18]. Recently, the stud-
ies of the Lamb shift in microwave circuits were taken a step
closer to Lamb’s original experiments, namely, to broadband
environments [22]. This was achieved with a quantum-circuit
refrigerator [23] (QCR) which was used as a tunable environ-
ment consisting of a continuum of modes.

The Lamb shift originates from the coupling between the
environmental modes and the studied system, even though the
modes are not excited [10,11,24]. In contrast, the shift that
stems from the occupation of the modes is generally referred
to as the ac Stark shift [24]. If a transition frequency of the
studied system depends nonlinearly on a coupled external
field, fluctuations in the field give rise to a different average
frequency compared with the uncoupled system. Thus the
higher the occupation in the environmental modes, the more
the field it induces effectively fluctuates, and the more ac Stark
shift is observed. Importantly, the ac Stark shift is absent in a
linear system linearly coupled to its environment [24]. Thus
such a linear system is ideal for studying the Lamb shift which
persists.
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FIG. 1. Studied system and measurement scheme. (a) Illustration of the interaction between the primary bosonic mode at angular frequency
ωp and its engineered environment (dashed box) consisting of a quantum-circuit refrigerator (QCR) and a supporting mode at ωs. (b) Schematics
of a coplanar waveguide resonator (green) coupled to the normal-metal island of the QCR on the left and to the measurement setup on the
right. The dash-dotted lines show the voltage amplitudes of the primary and supporting modes. A vector network analyzer (VNA) measures
the reflection coefficient S11 (see Appendix B). The energy diagram of the QCR illustrates photon-assisted electron tunneling at a normal-
metal–insulator–superconductor (NIS) junction. The electron occupation in the normal-metal (brown shading) follows the Fermi distribution,
whereas the superconductor states are essentially filled (blue shading) up to the Bardeen–Cooper–Schrieffer energy gap of 2�. States at high
energies ε are vacant. Photon-assisted tunneling events can absorb photons from (blue arrows) or emit to (red arrow) the primary mode, of
energy h̄ωp, or from the supporting mode, of energy h̄ωs. Elastic events (black arrow) do not directly induce dissipation on the resonator.
Energetically forbidden processes at the example dc bias voltage, denoted by V , are crossed out.

Typically, as observed in the case of linear bosonic envi-
ronments [10,11,15–18,22,25], the Lamb shift depends on the
coupling strength between the system and the environment
and on the density of the environmental states, but not on the
photon number or the temperature of the environment. In this
paper, however, we implement a hybrid [26–28] environment
with bosonic and fermionic constituents. Namely, we couple
our studied system, which is a mode of a superconducting
resonator, to the environment consisting of a QCR and another
mode of the resonator (Figs. 1 and 2). The system mode is
referred to as the primary mode and the environmental mode
as the supporting mode. We measure the resonance frequency

FIG. 2. Lumped-element circuit model of the studied system.
The primary and the supporting mode are each modeled by an LC
resonator (dark and bright red) with capacitances Cp and Cs, and
inductances Lp and Ls, respectively. The resonators are coupled to the
normal-metal island of the QCR (brown color) through capacitances
Cc,p = Cc,s. Tunnelling occurs between the normal metal and the
superconducting electrode (grey color). This junction is associated
with the capacitance Cj and biased with V , allowing voltage control
over the photon-assisted electron tunneling. The effects of the other
parallel NIS junction (dashed lines) are included in the capacitance
Cm of the normal-metal island to the ground and in the value of the
junction resistance used in the model. In the experimental sample, we
have a single physical resonator, which implies that in this lumped-
element model we have to use equal output capacitances Cg,p = Cg,s

and characteristic impedances Ztr,p = Ztr,s to correctly model the
external coupling of the considered resonator modes. The classical
node fluxes at the island and at the resonators are denoted by �N,�p,

and �s, and their conjugate charges by QN, Qp, and Qs, respectively.

of the primary mode at different QCR bias voltages and av-
erage photon numbers of the supporting mode (Fig. 3). We
observe that the frequency strongly depends on not only the
bias voltage [22] but also on the photon number (Fig. 4). This
observation of a photon-number-dependent frequency shift
apparently contradicts the typical nonhybrid case highlighting
the observed novel physics owing to the hybrid nature of the
environment: an increase in the photon number in the bosonic
part of the environment effectively manifests in the primary
mode as an increased environmental coupling strength medi-
ated by the fermionic part, and consequently as an increased
effective Lamb shift. Finally, we quantitatively explain using
first-principles quantum theory (see Appendices D and F) the
origin of a novel oscillatory behavior of the effective Lamb
shift as a function of the bias voltage.

II. RESULTS

A. Radio-frequency quantum-circuit refrigerator

Our physical system is described in Figs. 1 and 2 (see
also Fig. 7 in Appendix A) with parameters listed in Table I.
The sample consists of a superconducting coplanar waveg-
uide (CPW) resonator capacitively coupled to a QCR, i.e., to
a normal-metal island that forms tunnel junctions with two
superconducting leads. In general, a QCR provides tunable
dissipation for the electromagnetic excitations of the coupled
quantum circuit which is in our case the CPW resonator with
two considered modes. The dissipation is controlled with a
bias voltage applied through the two leads equipped with
on-chip low-pass RC filters in order to keep the dc line en-
vironment well controlled. The fabrication of the sample is
discussed in Appendix A.

As depicted in Fig. 1(b), the interaction between the
fundamental mode of the resonator (resonance frequency
ωp/2π = 8.8241 GHz ± 0.18 MHz, linewidth 1.9 MHz)
and its engineered environment is mediated by photon-
assisted electron-tunnelling events through the normal-metal–
insulator–superconductor (NIS) junctions in the QCR. Instead
of a single NIS junction, we employ a pair of junctions to
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FIG. 3. Onset of multiphoton processes. (a) Relaxation rate of the primary mode from the state |1〉 to |0〉 through processes involving
�s = 0, 1, 2, 3 supporting-mode photons as a function of the bias voltage for small (solid lines, ms = 3) and large (dashed lines, ms = 1000)
initial supporting-mode occupation ms. Top axis shows the energy needed from the supporting-mode photons to activate the QCR for the
primary mode. (b) Reflection magnitude as a function of the bias voltage and probe frequency from negligible supporting-mode drive strength
(top left) to strong drive (bottom right) with the drive power levels at the sample input and the estimated supporting-mode steady-state average
photon number n̄s(V = 0) indicated. The reflection magnitude is normalized such that its maximum value is one in each panel. The background
has been corrected as described in Appendix C. The arrows indicate the bias points, V = (� − h̄ωp − �s h̄ωs )/e, where relaxation processes
involving �s = 0 (blue), 1 (red), and 2 (orange) supporting-mode photons become active.

double the tunneling rate as well as to supply a return path to
the bias current from the normal-metal island. The tunneling
processes are activated if the electrons are supplied with suffi-
cient additional energy to compensate for the superconductor
energy gap of 2� around the Fermi level. The energy can be
provided continuously with the tunable bias voltage, yielding
eV , and in a quantized manner by np absorbed photons from
the fundamental mode, yielding nph̄ωp. With the inclusion of
the rf-driven second mode (ωs/2π = 17.651 GHz, linewidth
11 MHz), slightly shifted from 2 × ωp due to the coupling
capacitance, the bias voltage is no longer strictly necessary to
activate tunneling events even for vanishing nph̄ωp. Instead,

the tunneling electrons may acquire the necessary energy, in
excess of nph̄ωp, from the photons of the second bosonic
mode. Hence, we refer to the fundamental mode as the pri-
mary mode (subscripts p) and to the second mode as the
supporting mode (subscripts s).

An electron-tunnelling event at the junctions induces a
charge shift of �Q = αp/se on the resonator modes. The
strength of the effect is dependent on the circuit parameters
(see Fig. 2) and determined by the constant 0 < αp/s < 1,
which is related to the capacitances of the resonator modes,
Cp/s, and of the couplings to the QCR, Cc,p/s (see Appendix
D). The charge shift couples the different eigenstates of the

FIG. 4. Coupling strength and the effective Lamb shift. Measured (dots) and modelled (solid lines) coupling strength γT,p (a) and effective
Lamb shift ωL (b) as functions of the bias voltage at the indicated supporting-mode drive powers Ps in dBm. The estimated supporting-mode
steady-state average photon number n̄s(V = 0) is also shown. Top axis shows the energy needed from the supporting-mode photons to activate
the QCR for the primary mode. In (a), the external coupling strength γtr,p is indicated with the dashed line and the excess coupling strength
γ0,p with the dash-dotted line. The shading denotes the 1σ confidence intervals of the extracted parameters as discussed in Appendix C.
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two modes and may induce transitions between them, result-
ing in photon-assisted electron tunneling with annihilation
or creation of photons in the two modes, as illustrated in
Fig. 1(b).

For the sake of simplicity, we assume that the two NIS
junctions are identical, the corresponding electrodes are at

equal temperatures, and the charging energy of the normal-
metal island EN is small compared to the other relevant energy
scales. After tracing out the supporting mode, the electromag-
netic environment of the primary mode is characterized by
its effective coupling strength to the hybrid environment (see
Appendix D)

γT,p(V, n̄s ) = 2πα2
p

Zp

RT

∑
k,l

Pk (n̄s)
∣∣M (s)

kl

∣∣2 ∑
�p,τ=±1

�pF (τeV + �ph̄ωp + �sh̄ωs − EN), (1)

where Zp is the characteristic impedance of the primary mode,
RT is the tunneling resistance, Pk is the occupation probability
of the kth supporting-mode eigenstate, n̄s = ∑

k kPk is the
mean supporting-mode photon number, M (s)

kl is the transition
matrix element from the kth to the lth supporting-mode eigen-
state, �s = k − l is the number of supporting-mode photons
absorbed by the electron-tunnelling event, F is the normalized
forward tunneling rate (see Appendix D), and τ takes into
account both direction of the electron tunneling through the
NIS junction. We excite the supporting mode with a classical

drive, yielding Pk (n̄s) = e−n̄s n̄k
s

k! .

B. Multiphoton-assisted electron tunnelling

The argument of the normalized forward tunneling rate F
in equation (1) is the energy obtained in the tunneling process
by the electrons from the resonator modes and from the volt-
age source. The remaining energy for tunneling is provided by
thermal excitations, described by the Fermi functions in the
superconducting electrodes and the normal-metal island (see
Appendix D). Figure 3(a) shows three characteristic regions
[29] for F (δE ): (i) For δE � �, the electron tunneling and
the resulting coupling strength γT,p are suppressed by the gap
in the density of states of the superconductor. (ii) Once δE
is raised sufficiently near the gap edge, the photon-assisted
electron tunneling is thermally activated, and the coupling
strength increases exponentially, (iii) before saturating near
the gap edge.

TABLE I. Key device and model parameters. See Appendix C
for details of the experimental determination of the parameters.

Parameter Symbol Value Unit

Resonator frequency ωp/2π 8.8241 GHz
Supporting mode frequency ωs/2π 17.651 GHz
Resonator characteristic impedance Zp 42.8 


External coupling strength γtr,p/2π 2.1 MHz
Excess coupling strength γ0,p/2π 1.6 MHz
Coupling capacitance Cc,p 780 fF
Output capacitance Cg,p 6.4 fF
Island capacitance C� 4 fF
Primary-mode capacitance ratio αp 0.7817
Supporting-mode capacitance ratio αs 0.7413
Superconductor gap parameter � 208 μeV
Dynes parameter γD 4 × 10−4

Electron temperature TN 90 mK

The driven supporting mode promotes multiphoton-
assisted electron-tunnelling events, as illustrated in Fig. 1(b)
and quantified in Fig. 3(a). Namely, the participating support-
ing photons can compensate for a low energy contribution
eV of the bias voltage by �sh̄ωs, thus shifting the onset of
the exponential increase of F to a lower bias voltage. How-
ever, the corresponding relaxation rates are suppressed by a
typically small scaling factor ρ|�s|

s arising from the transition
matrix elements |M (s)

kl |2 ∝ ρ|�s|
s (see Appendix D). On the

other hand, the matrix elements depend on the occupation
as |M (s)

kl |2 ∝ k|�s| for k � 1/ρs, which allows to sequentially
activate the multiphoton processes by increasing the occupa-
tion of the supporting mode until the rates saturate at ρsk ≈ 1,
beyond which the matrix elements diminish as k−1/2. Thus the
dissipation of the primary mode can be controlled by the drive
strength of the supporting mode.

C. Reflection measurement

To experimentally demonstrate the above-discussed phe-
nomena, we probe the fundamental mode of the resonator in
a standard microwave reflection measurement as illustrated in
Fig. 1(b). Ideally, the voltage reflection coefficient of a weak
probe signal at the angular frequency ωp,probe is given by (see
Appendix C)

� = γtr,p − γT,p − γ0,p + 2i(ωp,probe − ωp)

γtr,p + γT,p + γ0,p − 2i(ωp,probe − ωp)
, (2)

where γtr,p is the coupling strength between the resonator and
the transmission line, and γ0,p is the damping rate owing to
any excess sources, yielding the internal quality factor of the
primary mode as 1/γ0,p.

Figure 3(b) shows results of reflection measurements at dif-
ferent probe frequencies, bias voltages, and supporting-mode
drive strengths. For an increasing bias voltage or drive power,
we observe broadening of the resonance dip in frequency,
indicating the activation of the QCR. Here, the broadening
of the full width of the dip at half maximum corresponds to
stronger total coupling strength γtot,p = γtr,p + γT,p + γ0,p of
the system to its environments. Remarkably, the resonance
frequency of the primary mode, located near the minimum
reflection amplitude, exhibits clearly nonmonotonic behavior
which is repeated in the vicinity of each bias voltage cor-
responding to an onset of a different multiphoton tunneling
process. Interestingly, this shift seems to be increased at high
rf powers where it may persists even in the absence of voltage
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bias, but Fig. 3(b) does not provide clear enough evidence for
these conclusions.

Thus for a detailed analysis, we extract ωp, γT,p, γtr,p, and
γ0,p by fitting the reflection coefficient to data corresponding
to Fig. 3(b) (see Appendix C and Fig. 8 therein). For the cor-
responding theoretical model, including equation (1), we map
the rf drive power to the average supporting-mode occupation
n̄s as described in Appendix E and Fig. 9 therein. In addition to
the transmission line and excess losses, we take into account
for both modes the loss of rf photons owing to the different
types of photon-assisted electron-tunnelling events.

D. On-demand dissipation

Figure 4(a) shows the measured environmental coupling
strength γT,p as a function of the bias voltage at different drive
powers for the supporting mode. As discussed above, with
the addition of the rf excitation, the photon-assisted electron-
tunnelling events can absorb photons from the supporting
mode in addition to the primary-mode photons. As a result
of these additional energy quanta, the coupling strength γT,p

exhibits in Fig. 4(a) an exponential rise at a reduced bias
voltage. We observe that with a sufficiently strong rf drive,
the bias voltage is not even necessary for turning on the QCR-
induced dissipation, i.e., the device is purely rf-controllable.
This is beneficial in practical applications since undesired
low-frequency noise can be significantly reduced by omission
of dc connections to the sample. Since the rf control has a
similar energy-providing effect to that of the bias voltage, it
does not essentially change the maximum achievable coupling
strength. Consequently, the coupling strength γT,p is tunable
by three orders of magnitude, roughly from 2π × 10 kHz to
2π × 10 MHz.

Although for γT,p � γtr,p, γ0,p the measured reflection co-
efficient is only weakly dependent on the quantity of interest,
the results are in substantial agreement with our theoretical
model of the rf QCR as demonstrated in Fig. 4(a). However,
note that the supporting-mode attenuation has been used as
a fitting parameter as well as a single electron temperature
TN that is independent of the bias voltage or drive power (see
Appendices B and C). We expect a more comprehensive study
of the electron temperature to explain in the future most of the
differences between the model and the measurements, such
as the interesting behavior observed at high powers where
the oscillations of the experimentally observed damping are
are much more pronounced than those of the model. This
difference cannot be explained by typical experimental noise
which tends to smoothen such oscillations.

E. Photon-number-dependent effective Lamb shift

Figure 4(b) shows the observed shift in the primary-mode
frequency ωL = ωp − ω0

p as a function of the bias voltage and
of the rf drive strength, where ω0

p is the frequency for the QCR
turned off. We observe that the shift strongly depends on the rf
drive strength, and thus on the supporting-mode photon num-
ber. Since the linear resonator mode exhibits no ac Stark shift
by the environment, we conclude that the observed shift is an
effective Lamb shift that depends on the photon number in the
engineered hybrid environment through the photon number

dependence of the coupling strength of Eq. (1). The fermionic
part of the hybrid environment, i.e., electron tunneling, is re-
quired to mediate the interaction between the bosonic system
and the bosonic part of the environment.

The effective Lamb shift in Fig. 4(b) exhibits an oscilla-
tion for each multiphoton-assisted electron tunneling process,
changing between −10 to 22 MHz with the bias voltage.
Importantly, under pure rf control the observed effective Lamb
shift lies between −0.6 MHz to 0 MHz. Thus, in the case of
a purely rf-controlled QCR, fluctuations in the control param-
eters of the QCR may lead to less spurious dephasing of the
coupled quantum system than for a dc-controlled QCR. Fur-
thermore, the rf-controlled effective Lamb shift appears as a
nonlinear interaction between the two resonator modes which
is a key constituent for using otherwise linear resonators as
qubits.

Next, we validate our claim that the observed frequency
shift is in fact the effective Lamb shift by comparing our
experimental observations with a first-principles theoretical
model which we derive in Appendix F. For the dynamic
effective Lamb shift, which is the full environment-induced
frequency shift with the static, zero-frequency component
subtracted, we obtain

ωL = −PV
∫ ∞

0

dω

2π

[
γT,p(ω)

ω − ω0
p

+ γT,p(ω)

ω + ω0
p

− 2
γT,p(ω)

ω

]
, (3)

where PV is the Cauchy principal value integration and the
coupling strength γT,p(ω) is given by Eq. (1) such that V
and n̄s are considered independent of ω = ωp. In addition,
the fundamental frequency of a harmonic oscillator undergoes
a classical damping shift of ∼γ 2

T,p/(8ωp), although in our
system this is only of the order of 10 kHz. Furthermore,
we observe a static shift of −μγT,p/π with a proportionality
constant μ = 0.64 at the two lowest supporting-mode drive
strengths. We attribute this shift to an effective elongation
of the resonator mode [22], arising from the exponentially
increased tunneling rate which leads to a decreased effec-
tive junction impedance, and hence increased current flow
through the junction. We do not claim the existence of a static
shift at the higher drive strengths owing to the experimen-
tal uncertainties. The model describes well the experimental
observations, as shown in Fig. 4(b), except for the large mea-
sured effective Lamb shift at the highest rf drive strengths
and bias voltages. This discrepancy is consistent with the
differences between the measured and the modeled coupling
strengths visible in Fig. 4(a). These differences are partly
explained by multiphoton events involving only the support-
ing mode, a phenomenon which is possible to include in our
model, however not considered here.

In the reminder of this section, let us discuss possible
alternative explanations for the observed frequency shift. For-
tunately, we find that such alternatives are not in line with the
experimental data, thus supporting the validity of the above-
given interpretation.

The frequency shift arising from the transformation of
linearly coupled harmonic oscillators into the corresponding
normal modes is equal for the quantum and classical mod-
els. Occasionally, this type of a contribution, referred to as
normal-mode splitting, is not considered to be a part of the
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FIG. 5. Self-Kerr. (a) Experimentally measured reflection mag-
nitude (not normalized) as a function of the probe frequency and the
probe power. The data are taken at Ps = −92.4 dBm and V = 0.095
mV. At the resonance, Pp = −116 dBm corresponds to an average
primary-mode photon occupation n̄p of the order of 1. (b) Resonance
frequency extracted from the reflection coefficient (dots) as a func-
tion of the occupation n̄p. The dashed line indicates the theoretically
predicted Lamb-shifted resonance frequency. The slope of the linear
fit (red) with an intercept ωint/2π = 8.82230 GHz (1σ uncertainty
0.025 MHz) yields estimated self-Kerr coefficient −0.1 kHz (1σ un-
certainty 0.25 kHz). The intercept of the linear fit bears an additional
systematic uncertainty of approximately 0.2 MHz, which however
does not affect the slope.

Lamb shift [30]. In our discussion above, we did not explicitly
differentiate between these. However, since we measure the
effective Lamb shift with respect to the zero-bias zero-drive-
power case, our result is free from any normal-mode splitting
that may occur owing to the presence of the modes of the
resonator. Furthermore, the measured effective Lamb shift is
mediated by electron tunneling with no direct coupling of the
primary mode to additional physical bosonic modes. Thus
we do not consider the classical normal-mode splitting to
significantly contribute to our observations.

To study possible contributions of the typical ac Stark
shift on our results, we have made an attempt to measure
in a standard microwave reflection experiment the strength
of the self-Kerr effect in the primary mode as a function of
probe frequency and power as shown in Fig. 5. We find no
self-Kerr effect within the experimental uncertainty of well
below 0.1 MHz for hundred photons in the primary mode.
In Fig. 4(b) in contrast, hundred photons in the supporting
mode lead to a megahertz-level shift at the considered bias
point. Since both modes are coupled in a similar fashion to
the NIS junction, the strengths of any self-Kerr and cross-Kerr
effects promoted by the junction are expected to be roughly
equal. Consequently, our experimental data does not support
the cross-Kerr effect as an origin of the observed frequency
shifts. In addition, any ac Stark shift arising from the cross-
Kerr terms is monotonic as a function of photon number, ∝ n̄s,
whereas the observed shift in Fig. 4(b) between 0.05–0.1 mV
is not. Thus we conclude that the ac Stark shift of the primary
mode, arising from the photon occupation of the secondary
mode, has likely a negligible contribution to the measured
frequency shifts. Furthermore, in this bias range, the effective
temperature of the QCR environment is the largest, see Fig. 6,
whereas the measured frequency shifts are on the smallest
end. Thus the observed shift is not measurably dependent
on the effective population of the QCR environment either,
and hence we may also rule out the possibility that the ob-

FIG. 6. Characteristics of the effective electromagnetic environ-
ment formed by the QCR. Temperature (blue line, left axis) and the
corresponding thermal occupation (orange line, right axis) of the
QCR environment as functions of the bias voltage at the supporting-
mode drive power Ps = −118.4 dBm. Top axis shows the energy
needed from the supporting-mode photons to activate the QCR for
the primary mode.

served effective Lamb shift could be modelled as an ac Stark
shift arising from the effective electromagnetic environment
induced by the QCR.

Furthermore, since the resistance of the NIS junction is
nonlinear, it may give rise to a classical-like frequency shift
which changes as a function of the bias voltage and drive
power of the supporting mode. This consideration includes
the case of frequency mixing between the two modes, the fre-
quencies of which differ roughly by a factor of two. However,
since the differential conductance of an NIS junction has less
than three minima and maxima for positive bias voltages and
we observe three local maxima and minima of the frequency
shift in Fig. 4(b) such an explanation for the phenomenon
responsible of our results is ruled out.

Interestingly, our findings are qualitatively supported by
a rather general theoretical approach to the Lamb shift
from hybrid environments with initial results derived in Ap-
pendix G. We aim to develop this theory further in the
future.

III. DISCUSSION

In conclusion, we demonstrated and quantitatively mod-
elled dc and rf control of the coupling strength between a
resonator mode and its electromagnetic environment formed
by photon-assisted electron tunneling in NIS junctions. We
found the dissipation to be tunable by three orders of mag-
nitude using only rf driving. Peculiarly, we observed a
photon-number-dependent effective Lamb shift of the lin-
ear resonator mode which oscillates as a function of the
bias voltage owing to the staggered onset of the multi-
photon absorption processes. Each process strengthens the
coupling of the bosonic mode to the environment, result-
ing in the oscillation in the coupling strength and effective
Lamb shift. Importantly, using tunable rf power at vanish-
ing bias voltage the dissipation strength can be controlled
with almost vanishing effective Lamb shift. Our device con-
cept provides opportunities for rf-controlled rapid on-demand
initialization of quantum circuits, such as qubits [31,32].

033126-6



PHOTON-NUMBER-DEPENDENT EFFECTIVE LAMB SHIFT PHYSICAL REVIEW RESEARCH 3, 033126 (2021)

FIG. 7. Sample images. (a) Scanning electron micrograph of the superconductor–insulator–normal-metal tunnel junctions of a quantum-
circuit refrigerator. The scale bar denotes 5 μm. (b) Optical image of a device similar to the one used in this study. The tunnel junctions (red
box) are connected to the coplanar-waveguide resonator (winding line), which is excited through the transmission line (broadening line). The
dc junction bias is applied through RC filters between the bonding pads and the junctions. The test structures shown at the top middle of the
image are not relevant for the operation of the device. The width of the field of view is 7.5 mm.

We envision the rf QCR to become an important com-
ponent in the emerging field of quantum computing and
technology.

ACKNOWLEDGMENTS

This research was financially supported by the European
Research Council under Grant No. 681311 (QUESS) and
Marie Skłodowska-Curie Grant No. 795159; by the Academy
of Finland under its Centres of Excellence Program Grants
No. 312300, No. 336810 No. 312059 No. 265675, No.
305237, No. 305306, No. 308161, No. 314302, No. 316551,
No. 316619, and No. 318937; and by the Alfred Kordelin
Foundation, the Emil Aaltonen Foundation, the Vilho, Yrjö,
and Kalle Väisälä Foundation, the Jane and Aatos Erkko Foun-
dation, and the Technology Industries of Finland Centennial
Foundation. We thank the provision of facilities and technical
support by Aalto University at OtaNano–Micronova Nanofab-
rication Centre.

APPENDIX A: SAMPLE FABRICATION

We fabricate the sample, see Fig. 7, on a high-purity
500-μm-thick silicon wafer passivated with a thermally-
grown silicon oxide layer of 300-nm thickness. The coplanar
waveguide resonator is patterned with photolithography and
reactive ion etching in a 200-nm-thick sputtered niobium
layer. A 50-nm-thick dielectric layer of Al2O3 is atomic-layer
deposited at 200 ◦C on the entire wafer to operate as the
insulator in the parallel plate capacitors. The NIS junctions
are defined with electron-beam lithography and two-angle
evaporation as follows: First, a 20-nm-thick superconducting
Al layer is evaporated, followed by in-situ oxidation to form
the tunnel barriers. Second, a 20-nm-thick normal-metal Cu
layer is evaporated. Further fabrication details are discussed
in Ref. [33].

APPENDIX B: MEASUREMENTS

We cool the sample down to a base temperature of 10 mK
in a commercial dilution refrigerator. The sample is attached
to a gold-plated copper sample holder with a printed circuit
board, to which the sample is bonded with aluminum wires.

We measure the reflection coefficient of the sample with a
vector network analyzer (VNA) at frequencies close to that
of the primary mode of the CPW resonator. We drive the
supporting mode with a microwave signal generator through
the same port as we use for the VNA, as illustrated in Fig. 1(b).
The VNA tone is attenuated to the single-photon regime be-
fore it is introduced to the sample. The rf drive power for
the supporting mode is controlled by three orders of magni-
tude. The rf tone attenuation of the primary mode, −103 dB,
is obtained by separately measuring the room temperature
components and using the manufacturer specifications for
the cryogenic components. For the supporting mode, the fre-
quency range is outside that specified for some cryogenic
components, and consequently we use −105 dB obtained
as a fitting parameter. The superconductor–insulator–normal-
metal–insulator–superconductor (SINIS) junction is biased
with a ground-isolated room temperature voltage source.

APPENDIX C: DATA ANALYSIS

We subtract the background in the measured VNA fre-
quency traces as described in Ref. [34] and illustrated in
Fig. 8. We discuss the method here because of the additional
tuning parameter, the supporting mode excitation. Namely, we
divide the raw measured reflection coefficient �(V, Ps ) by the
off-state reflection trace �(0, P0) and fit a double Lorentzian
of the form r = �(V,Ps )

�(0,P0 ) , where each reflection coefficient � is
given by

� = 2γtr,p − r0[γtr,p + γT,p + γ0,p − 2i(ωp,probe − ωp)]

γtr,p + γT,p + γ0,p − 2i(ωp,probe − ωp)
,

(C1)
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FIG. 8. Reflection data analysis. Reflection magnitude |�| as a
function of the probe frequency ωp,probe at two different bias voltages
and supporting mode powers: V = 0.08 mV, Ps = −90.8 dBm (red)
and V0 = 0 mV, P0 = −118.4 dBm (yellow). Fits to several frac-
tions of two reflection magnitudes such as r = |�(V, Ps )/�(V0, P0)|
(blue) are used to extract an averaged off-state reflection magnitude
�′(V0, P0 ). Example of background subtracted reflection magnitude
(green) is obtained as |�′(V, Ps )| = |r�′(V0, P0)|.

where r0 is a complex-valued Fano factor [35] such that
|r0| = 1. This procedure is carried out for each voltage V and
rf drive strength Ps, yielding a background-subtracted off-state
reflection trace �′(0, P0) which is determined by equation
(C1) with the off-state fit parameters averaged over those
obtained from the fits for different V and Ps. We retrieve the
background-corrected traces as �′(V, Ps) = r�′(0, P0) and fit
equation (C1) to the obtain the results for the primary-mode
frequency ωp, the coupling strength γT,p, the external coupling
strength γtr,p, and the excess coupling strength γ0,p used in this
manuscript.

Ideally, in the absence of the Fano correction (r0 = 1),
the reflection coefficient vanishes at the critical points where
the impedance of the transmission line and of the resonator
are matched at ωp,probe = ωp and γtr,p = γT,p + γ0,p. For these
points, the full width of the dip, 2γtr,p, yields accurately
the coupling strength to the transmission line. However, a
nonvanishing Fano correction may shift the dip and make
it shallower, although in our measurements the correction is
small. Note that the critical points can also be identified from
the phase of reflection coefficient as it exhibits a full 2π phase
winding about the critical points. The damping rate owing to
excess losses γ0,p is extracted at zero voltage and minimum
supporting-mode power where the QCR is effectively decou-
pled from the rest of the circuit, i.e., γT,p is negligible. Note
that the measurements for γT,p � γtr,p, γ0,p are challenging
since the measured quantity is essentially a result of a sub-
traction of several other large quantities, thus amplifying the
relative uncertainty of the result. Consequently, our results
may be unreliable at such a regime, which is also reflected
as relatively large experimental uncertainty bounds obtained
as described below.

We obtain the 1σ confidence intervals of each extracted
parameter of equation (C1) individually. In this method [22],
we vary the parameter while the other parameters correspond
to the optimal least-squares fit and calculate the resulting
resonance point given by equation (C1). The 1σ confidence
interval of the parameter is determined by the condition that
the distance of the calculated resonance point from that of the

least-squares fit in the complex plane is smaller or equal to the
root-mean-square fit error of the reflection coefficient.

The quasiparticle temperature of the superconducting leads
and the electron temperature of the normal-metal island are
higher than the base temperature of the refrigerator, for ex-
ample, owing to heat leakage through the radiation shields
and to heating from the input signals. Note that such low
heating power does not affect the temperature of the macro-
scopic dilution refrigerator as much as the temperature of the
small normal-metal island which is only weakly thermally
coupled to the dilution refrigerator. The temperature affects
the Fermi distributions and determines the slope of the ex-
ponential growth in the coupling strength as a function of
the bias voltage for the onset of each multiphoton process,
but not the coupling strength, to which each photon-assisted
electron tunneling process saturates to. Although in general
the temperature is also affected by the amount and type of
quasiparticle tunneling processes, we observed that our data is
fairly well described by a single bias and power-independent
quasiparticle temperature. This is likely because the tempera-
ture has a noticeable broadening effect only on steep slopes,
which occur only at low input powers and at short voltage
ranges. Thus, although the temperature is in principle input
power and voltage dependent in the measurement range [33],
we use for simplicity a single value of the quasiparticle tem-
perature TN in Table I for all measurement points, obtained by
the best fit of the theoretical model to the curve in Fig. 4 with
the lowest supporting-mode power. Fitting the temperature
individually for each measurement point would result in an ar-
tificially good match between the theory and data. Expanding
on this procedure, the device may be used as a thermometer.
In this case, the device parameters may be fitted at the slope
of γT,p as a function of voltage at the lowest supporting-mode
drive strength. Then, the rest of the data may be fitted with
TN as the sole free parameter. Further details of parameter
extraction can be found in Ref. [22].

APPENDIX D: PHOTON-ASSISTED
ELECTRON TUNNELLING

Following the approach of Ref. [29] for a single mode, we
derive the coupling strength between the environment and the
resonator based on the lumped-element circuit model given in
Fig. 2 for the two modes.

We begin by assuming that the two modes are far off
resonance with each other, and thus the effect of their ca-
pacitive interaction is negligible to the lowest order. Our
quantum-mechanical circuit is thus described by the Hamil-
tonian [36,37]

Ĥ = (Q̂p + αpQ̂N)2

2C′
p

+ (Q̂s + αsQ̂N)2

2C′
s

+ Q̂2
N

2C′
N

+ �̂2
p

2Lp
+ �̂2

s

2Ls
, (D1)

where Q̂p, Q̂s, and Q̂N are the conjugate charge operators of
the primary and secondary resonator modes and the normal-
metal island, respectively, �̂p and �̂s are the respective node
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flux operators, and the capacitance ratios and the renormalized capacitances are given by

αp = Cc,p(Cc,s + Cs)

Cc,s(Cc,p + C� ) + Cs(Cc,p + Cc,s + C� )
, (D2)

C′
p = Cp + αp

(
C� + CsCc,s

Cc,s + Cs

)
, (D3)

C′
N = Cc,s(Cp + Cc,p)Cs + (Cp + Cc,p)(Cs + Cc,s)C� + Cc,p(Cs + Cc,s )Cp

−Cc,s(Cp + Cc,p)αs + (Cp + Cc,p)(Cs + Cc,s ) − Cc,p(Cs + Cc,s)αp
, (D4)

where C� = Cm + Cj is the total capacitance of the normal-
metal island and αs and C′

s are obtained by swapping the
subscripts s and p in the above equations.

The tunneling events are considered as weak perturbations
inducing transitions between the eigenstates |mp/s〉 and |m′

p/s〉
of each resonator mode and are characterized by the transition
matrix elements∣∣M (p/s)

mm′
∣∣2 = e−ρp/sρ

|�|
p/s

(
m′!
m!

)sgn(�)∣∣L|�|
min(m,m′ )(ρp/s)

∣∣2
, (D5)

where ρp/s = πα2
p/s

ωp/sCp/sRK
, � = m − m′, RK = h

e2 is the von Klitz-

ing constant, and L|�|
min(m,m′ )(ρp/s) is the generalized Laguerre

polynomial [38].
We assume the two NIS junctions to be identical, the elec-

trodes to be at equal temperature TN, and the charging energy
EN = e2/(2C′

N) of the normal-metal island to be much smaller
than other relevant energy scales, i.e., EN � h̄ωp/s,�, kBTN,
where � is the Bardeen–Cooper–Schrieffer gap parameter.
Fermi’s golden rule describes the transition rates between the
resonator number states as

�(mp,ms ),(m′
p,m

′
s )(V ) =

∣∣∣M (p)
mpm′

p

∣∣∣2∣∣M (s)
msm′

s

∣∣2 2RK

RT

∑
τ=±1

× F (τeV + �ph̄ωp + �sh̄ωs − EN),

(D6)

where RT is the tunneling resistance. Here, we denote by
F (E ) the normalized forward tunneling rate at the bias

energy E

F (E ) = 1

h

∫
dε nS (ε)[1 − fS(ε)] fN(ε − E ), (D7)

where fS and fN are the Fermi distributions of the supercon-
ductor and of the normal metal, respectively. The function
nS is the normalized quasiparticle density of states in the
superconductor [39]

nS(ε) =
∣∣∣∣Re

{
ε + iγD�√

(ε + iγD�)2 − �2

}∣∣∣∣, (D8)

where γD is the Dynes parameter.
The interaction parameter of the primary resonator ρp is

typically small, and thus at low powers, transitions between
adjacent primary-mode states �(mp,ms ),(mp±1,m′

s ) are dominant,
see equation (D5). We obtain the coupling strengths of the
individual resonators by tracing out the other resonator as,
for example, for the primary mode �̃mm′ = ∑

k,l Pk�(m,k),(m′,l ),

where Pk = e−n̄s n̄k
s

k! is the likelihood that the supporting mode
Fock state |k〉 is occupied due to a classical drive and n̄s is the
mean supporting-mode photon number, and by noting the re-
lations between the transition rates and the coupling strength,
γT,p = �̃10 − �̃01, and the effective mode temperature, TT,p =
h̄ωp

kB
[ln ( �̃10

�̃01
)]−1. Consequently, the effective electromagnetic

environment of the primary mode is characterized by its cou-
pling strength

γT,p(V, n̄s) = 2πα2
p

Zp

RT

∑
k,l

Pk (n̄s)
∣∣M(s)

kl

∣∣2 ∑
�p,τ=±1

�pF (τeV + �ph̄ωp + �sh̄ωs − EN), (D9)

where �s = k − l and the effective mode temperature

TT,p(V, n̄s ) = h̄ωp

kB

[
ln

(∑
k,l Pk

∣∣M(s)
kl

∣∣2 ∑
τ=±1 F (τeV + h̄ωp + �sh̄ωs − EN)∑

k,l Pk

∣∣M(s)
kl

∣∣2 ∑
τ=±1 F (τeV − h̄ωp + �sh̄ωs − EN

)]−1

. (D10)

The average thermal occupation of the environment at the
temperature TT,p is given by NT,p = 1/{exp [h̄ωp/(kBTT,p)] −
1}.

In addition to the coupling strength, we have de-
rived equation (3) for the effective Lamb shift using
second-order perturbation theory for the eigenfrequencies
of the primary mode. This derivation is presented in
Appendix F.

APPENDIX E: MAPPING OF INPUT POWER
TO OCCUPATION

The driven supporting mode is modelled by the rf drive
Hamiltonian in the rotating frame

Ĥdrive = h̄(
sâ + 
∗
s â†), (E1)
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FIG. 9. Extraction of the supporting-mode occupation. The pri-
mary mode is driven at strength Pp, which due to the total coupling
strength γtot,p results in a steady-state occupation n̄p. This occupation
affects the coupling strength of the supporting mode to the QCR, γT,s,
which together with the external γtr,s and excess coupling γ0,s of the
mode is the total coupling strength γtot,s. The steady-state occupation
n̄s is obtained from γtot,s and the supporting mode drive strength Ps

using Eq. (E2).

where 
s is the complex-valued rf drive amplitude as the
resulting Rabi angular frequency and â and â† are the an-
nihilation and creation operators of the supporting mode.
The combined effect of the drive and dissipation results in a
steady-state occupation of

n̄s = |
s|2
γ 2

tot,s + �2
s

= 2ω2
s

π h̄
(
γ 2

tot,s + �2
s

)PsC
2
g,sZtr,sZs, (E2)

where �s is the detuning of the rf drive, Zs is the char-
acteristic impedance of the supporting mode and Ps is the
rf drive strength at the input capacitor of size Cg,s. Here,
γtot,s = γT,s + γ0,s + γtr,s is the total coupling strength of the
supporting mode and consists of the coupling of the mode to
the QCR γT,s, to external sources γtr,s, and to excess sources
γ0,s. We assume the damping rate due to excess sources γ0,s to
have a minor effect here since the external coupling is much
higher than it. The coupling strength of the supporting mode
to the transmission line is calculated as [29]

γtr,s = Zs

Ztr,s

ω3
s

ω2
s + ω2

RC,s

, (E3)

where ωRC,s = 1/(Ztr,sCg,s ) is the corresponding angular fre-
quency. The resonator frequency ωs/(2π ) originates from

ω′
s ≈ ωs − Zs

2Ztr,s

ω2
s ωRC,s

ω2
s + ω2

RC,s

, (E4)

where ω′
s/(2π ) is the renormalized resonator frequency which

is experimentally measured and employed as the rf drive fre-
quency. The coupling strength between the supporting mode
and the QCR, γT,s, is obtained from equation (D9) by ex-
changing the roles of the primary and supporting modes.
Furthermore, the steady-state occupation of the primary mode
n̄p is calculated with equation (E2) by substituting the mea-
sured values of γtot,p, the primary-mode drive strength Pp, and
the detuning of the primary-mode drive �p. The procedure is
illustrated in Fig. 9.

In the future, we intend to improve the model by iteration
of the above procedure and alternatively, by replacing it with
solving {

0 = −i�s(n̄p)ᾱs − γtot,s (n̄p )
2 ᾱs + i
s

0 = −i�p(n̄s)ᾱp − γtot,p(n̄s )
2 ᾱp + i
p,

(E5)

where ᾱs/p is the steady-state amplitude of the coherent state
in the supporting/primary mode obeying |ᾱs/p|2 = n̄s/p.

In addition to the driven occupation given by
Eq. (E2), the resonator mode has a thermal population
1/{exp[h̄ωs/(kBT )] − 1}. We neglect this as it is orders
of magnitude smaller than the driven occupation in the
temperature scales TN, TT,s of the experiment [29,33],
although a more complex sample capable of a precise
temperature measurement is needed to fully rule this effect
out.

APPENDIX F: DERIVATION OF THE EFFECTIVE LAMB
SHIFT ARISING FROM MULTIPHOTON-ASSISTED

ELECTRON TUNNELING EVENTS

Here, we derive the dynamic effective Lamb shift of the
primary mode, Eq. (3), which originates from the photon-
assisted electron tunneling at the two capacitively coupled
superconductor–insulator–normal-metal tunnel junctions. We
take into account also the tunneling events induced by an
rf drive on the supporting mode. See the main text for the
definitions of the special terms. The derivation begins by
following the approach of Refs. [22,29,40] but to the best of
our knowledge has not been presented before in the literature
in this case of two bosonic modes coupled to the QCR such
that one of the modes is traced out.

Let us denote by |η〉 = |QN, mp, ms, �, k〉 = |QN, mp, ms〉
⊗ |�, k〉 the eigenstate of the combined unperturbed sys-
tem composed of the electrical circuit degrees of freedom
|QN, mp, ms〉 and those of the quasiparticles in the normal
metal and superconductor of the QCR |�, k〉. Owing to the
perturbation introduced by the tunneling Hamiltonian ĤT, the
energy-level shift h̄δη of |η〉, where h̄ is the reduced Planck
constant, is given by the second-order time-independent per-
turbation theory as [22]

h̄δη = Eη − E0
η = −

∑
η′ �=η

|〈η′|ĤT|η〉|2
Eη′ − Eη

, (F1)

where the total energy is Eη = ENQ2
N + h̄ω0

pmp + h̄ωsms +
ε� + εk . Here, the integer QN is the eigenvalue of charge for
the normal-metal QCR island, ω0

p is the bare angular fre-
quency of the primary mode, ωs is the angular frequency of
the supporting mode, and mp/s denotes the number of pho-
tons in the primary or the supporting mode. Furthermore, the
charging energy of the QCR island is EN = e2/(2C′

N), where
C′

N is the renormalized capacitance of the island provided by
Eq. (D4). The quasiparticles of the normal-metal and super-
conducting electrodes have energies ε� and εk , respectively,
where � and k index these and the corresponding eigenstates
throughout this document implicitly including the spin degree
of freedom. The quasiparticle tunneling events between the
normal-metal and superconducting leads are described by the
tunneling Hamiltonian [40]

ĤT =
∑
�k

(
T�kd̂†

� ĉke−i e
h̄ φ̂N + T ∗

�kd̂�ĉ†
kei e

h̄ φ̂N
)
, (F2)

where T�k is a tunneling matrix element, the annihilation oper-
ators of the normal-metal and of the superconducting leads are
denoted by d̂� and ĉk , respectively, φ̂N is the node flux operator
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of the normal-metal island, and e is the elementary charge.
These events cause weak perturbations to the coupled electric
circuit shown in Fig. 2, described by the core Hamiltonian
which we represent using its eigenstate decomposition as

Ĥ =
∞∑

QN=−∞

∞∑
mp,ms=0

(
ENQ2

N + h̄ω0
pmp + h̄ωsms

)
× |QN, mp, ms〉 〈QN, mp, ms| , (F3)

where the eigenstates of the core Hamiltonian are ob-
tained from the eigenstates of the charge |QN〉 and
from the Fock states |mp〉 and |ms〉 of the primary
and supporting modes as |QN, mp, ms〉 = exp(−iαpQN

e
h �̂p −

iαsQN
e
h �̂s)|QN〉 ⊗ |mp〉 ⊗ |ms〉, where �̂p/s are the flux oper-

ators and αp/s the capacitance ratios of the resonator modes as
described by Eq. (D2).

We use the transition matrix elements M (p/s)
mm′ of the electric

circuit given in Eq. (D5) and expand equation (F1) assuming
that EN is the smallest relevant energy scale of the system
(EN � �, h̄ω0

p, h̄ωs and kBTN). After tracing out the charge
degree of freedom of the normal-metal and of the supercon-
ducting leads, we obtain an energy shift for the Fock state |mp〉
corresponding to the transition |ms〉 → |m′

s〉 in the supporting
mode as

h̄δ̃mp,ms,m′
s
= −

∑
m′

p

∑
�,�′

∑
k,k′

∣∣∣M (p)
mpm′

p

∣∣∣2∣∣M (s)
msm′

s

∣∣2

×
[ ∣∣〈�′k′∣∣�̂†

∣∣�k
〉∣∣2

EN + �ph̄ω0
p + �sh̄ωs + E�′k′ − E�k

+
∣∣〈�′k′|�̂|�k

〉∣∣2

EN + �ph̄ω0
p + �sh̄ωs + E�′k′ − E�k

]
, (F4)

where �̂ = ∑
�k T�kd̂†

� ĉk and its Hermitian conjugate is the
quasiparticle part of the tunneling Hamiltonian and �p/s =
m′

p/s − mp/s is the change in the mode occupations.
The interaction parameter of the primary mode is small

ρp ≈ 0.003, which allows us to expand |M (p)
mpm′

p
|2 up to the first

order in ρp. The corresponding dynamic effective Lamb shift
of the primary mode ωL,p,ms,m′

s
= δ̃mp+1,ms,m′

s
− δ̃mp,ms,m′

s
is thus

given by

ωL,p,ms,m′
s
= ρp

h̄

∑
�,�′

∑
k,k′

∑
�p=±1

∣∣M (s)
msm′

s

∣∣2

×
[∣∣〈�′k′∣∣�̂†

∣∣�k
〉∣∣2 + ∣∣〈�′k′|�̂|�k

〉∣∣2

EN + �sh̄ωs + E�′k′ − E�k

−
∣∣〈�′k′∣∣�̂†

∣∣�k
〉∣∣2 + ∣∣〈�′k′|�̂|�k

〉∣∣2

EN + �ph̄ω0
p + �sh̄ωs + E�′k′ − E�k

]
. (F5)

Here, we denote the first term owing to elastic transitions as
ωel

L,p,ms,m′
s

and the second term owing to the primary-mode-

assisted transitions as ω
ph
L,p,ms,m′

s
. Note that the elastic transition

term is simply ωel
L,p,ms,m′

s
= − limω0

p→0 ω
ph
L,p,ms,m′

s
(ω0

p ) and it
thus suffices to simplify the primary-mode-assisted part.

We express the matrix elements of the quasiparticle transi-
tions |〈�′k′|�̂|�k〉| with the normalized forward quasiparticle
tunneling rate F given in Eq. (D7). Here, we assume that
the tunneling matrix elements are approximately constant in
the vicinity of the Fermi energies, the two SIN junctions are
identical, and the electrodes are at equal temperature. Conse-
quently, we obtain

ω
ph
L,p,ms,m′

s
= − ρp

π

RK

RT

∣∣M (s)
msm′

s

∣∣2 ∑
τ,�p=±1

PV
∫ ∞

−∞
dε

× F
(
ε + τeV + �ph̄ω0

p + �sh̄ωs − EN
)

ε

= − 2πα2
p

Zp

RT

∣∣M (s)
msm′

s

∣∣2 ∑
τ,�p=±1

[
PV

∫ ∞

0

dω

2π

× �pF (τeV + �ph̄ω + �sh̄ωs − EN )

ω − ω0
p

+ PV
∫ ∞

0

× dω

2π

�pF (τeV + �ph̄ω + �sh̄ωs − EN)

ω + ω0
p

]
,

(F6)

where PV denotes the Cauchy principal value integration, RK

is the von Klitzing constant, RT is the tunneling resistance, and
Zp is the characteristic impedance of the primary mode in its
lumped-element description. Furthermore, by tracing out the
supporting resonator mode with occupation probabilities Pms

and expressing equation (F6) in terms of the coupling strength
γT,p of the effective electromagnetic environment

γT,p(V, ωp) = 2πα2
p

Zp

RT

∑
ms,m′

s

Pms

∣∣M (s)
msm′

s

∣∣2 ∑
τ,�p=±1

�p

× F (τeV + �ph̄ωp + �sh̄ωs − EN), (F7)

we obtain the dynamic effective Lamb shift of the primary
mode

ωL,p
(
V, ω0

p

) = − PV
∫ ∞

0

dω

2π

[
γT,p(V, ω)

ω − ω0
p

+ γT,p(V, ω)

ω + ω0
p

−2
γT,p(V, ω)

ω

]
, (F8)

where the terms dependent on the primary mode frequency ω0
p

are contributions from the photon-assisted transitions and the
last term arises from elastic tunneling. Note that the effective
Lamb shift of the primary mode depends on the quantum state
of the supporting mode through the coupling strength γT,p and
the occupation probabilities Pms of the Fock states |ms〉.

APPENDIX G: THEORY OF THE LAMB SHIFT OF A
BOSONIC MODE COUPLED TO A FERMIONIC BATH

We study a primary bosonic mode coupled to a bath of non-
interacting fermions described by the following Hamiltonian:

Ĥ = h̄ω0
pb̂†b̂ +

∑
k

ξkâ†
k âk

+
∑
kk′

(
γkk′ b̂â†

k âk′ + γ ∗
kk′ b̂†â†

k′ âk
)
, (G1)
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FIG. 10. Diagrammatic form of the Dyson equation for the
bosonic Green’s function. Here, the thin dashed lines correspond
to the bare Green’s function of the bosonic mode, the thin solid
lines correspond to the bare Green’s functions of the fermionic bath,
and the thick dashed lines correspond to the Green’s function of the
bosonic mode with the interactions taken into account. The consid-
ered diagrams correspond to the Born approximation for the bosonic
Green’s function.

where ω0
p is the bare frequency of the primary mode, ξk

is the energy of k-th fermionic mode of the bath, and the
parameters γkk′ control coupling between the bosonic mode
and the fermionic bath. We do not consider excitations of the
bath arising from any coupling it to a driven supporting mode.
Instead we assume that the whole system has some equilib-
rium but nonzero temperature T and study the temperature
dependence of the primary-mode frequency. This assumption
allows us to use a finite-temperature diagrammatic technique
for this problem.

We begin by defining an imaginary-time bosonic Green’s
function D(τ, τ ′) as

D(τ, τ ′) = Tr
{
e−βĤTτ

[
b̂(τ )b̂†(τ ′)

]}
Tr e−βĤ

, (G2)

where β = (kBT )−1, Tτ is the imaginary-time-ordering oper-
ator and the operators b̂(τ ) and b̂†(τ ) are defined as

b̂(τ ) = e
Ĥτ
h̄ b̂e− Ĥτ

h̄ , (G3)

b̂†(τ ) = e
Ĥτ
h̄ b̂†e− Ĥτ

h̄ . (G4)

This Green’s function is defined in the interval −h̄/(kBT ) <

τ − τ ′ < h̄/(kBT ) and can be expanded into a Fourier series
as

D(τ, τ ′) = kBT

h̄

∞∑
n=−∞

D(ωb
n )e−i(τ−τ ′ )ωb

n , (G5)

where ωb
n = 2πnkBT/h̄ are bosonic Matsubara frequencies.

For the single bosonic mode uncoupled from the bath, the
Fourier expansion coefficients are equal to D(0)(ωb

n ) = (iωb
n −

ω0
p )−1. Thus, if we consider iωb

n as a complex variable, there
is a pole at the oscillator frequency iωb

n = ω0
p. This property

allows us to define the bath-shifted frequency of the mode as
the position of the pole of the Green’s function of the interact-
ing system. The Green’s function of the interacting system can
be expanded as a series of diagrams consisting of the Green’s
functions of the noninteracting (bare) bosonic and fermionic
modes. The main series of contributions which corresponds
to the Born approximation for the Green’s function is shown

in the Fig. 10. The Dyson equation corresponding to these
diagrams reads as follows:[

D
(
ωb

n

)]−1 = [
D(0)

(
ωb

n

)]−1 − �
(
ωb

n

)
, (G6)

�(ωb
n ) = kBT

h̄3

∑
kk′

+∞∑
m=−∞

|γkk′ |2
(iωf

m + iωb
n − ξk )(iωf

m − ξk′ )
,

(G7)
where ωf

m = π (2m + 1)kBT/h̄ are the fermionic Matsubara
frequencies. Vanishing right side of the Dyson equation (G6)
correspond to the pole of the Green’s function, and, thus, its
position yields the bath-shifted frequency.

To proceed, let us introduce simplifying assumptions on
the structure of the bath and the coupling parameters. We
assume that the energies of the fermionic modes of the bath
are uniformly distributed within the interval −μ to W − μ,
where μ is the chemical potential and W is the width of the
bath. Thus we can replace summation over k with an integral∑

k → νVbath
∫ W −μ

−μ
dξ , where ν is the density of states per

the unit volume and Vbath is the volume of the Fermi gas.
In addition, we assume that absorption and emission of a
boson couples all fermionic modes between each other and fix
|γkk′ |2 = �2/V 2

bath. Consequently, we have a single parameter
which controls the coupling strength. Under these assump-
tions the polarization operator �(ωb

n ) can be evaluated as

�(ωb
n ) =�2ν2

2h̄

W −μ∫
−μ

ln

[
(ε − W + μ)2 + (h̄ωb

n )2

(ε + μ)2 + (h̄ωb
n )2

]

× tanh
ε

2kBT
dε. (G8)

Finally, the equation for the frequency shift can be expressed
as

ωL,p(T )

= �2ν2

2h̄

W −μ∫
−μ

ln

{
(ε − W + μ)2 + [h̄(ωL,p + ω0

p ) + i0]2

(ε + μ)2 − [h̄(ωL,p + ω0
p ) + i0]2

}

× tanh
ε

2kBT
dε. (G9)

In the limit �ν � 1 and h̄ω0
p, kBT � μ, (W − μ), the ap-

proximate solution of this equation can be found as

ωL,p(T ) ≈ �2ν2

h̄

W −μ∫
−μ

ln

(
W − μ + ε

ε + μ

)
tanh

ε

kBT
dε

− iπ�2ν2ω0
p

≈ ωL,p(0) − π2�2ν2(kBT )2W

3h̄μ(W − μ)
− iπ�2ν2ω0

p.

(G10)

The real part of ωL,p defines the bath-induced frequency shift
of the bosonic mode whereas the imaginary part gives the
dissipation rate.
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