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A B S T R A C T   

This paper demonstrates the learning process of typing by tracing the development of eye and finger movement 
strategies over time. We conducted a controlled experiment in which users typed with Qwerty and randomized 
keyboards on a smartphone, allowing us to induce and analyze users’ behavioral strategies with different 
amounts of accumulated typing experience. We demonstrate how strategies, such as speed-accuracy trade-offs 
and gaze deployment between different regions of the typing interface depend on the amount of experience. The 
results suggest that, in addition to motor learning, the development of performance in mobile typing is attrib-
utable to the adaptation of visual attention and eye-hand coordination, in particular, the development of better 
location memory for the keyboard layout shapes the strategies. The findings shed light on how visuomotor 
control strategies develop during learning to type.   

1. Introduction 

A long-standing objective of research in Human-Computer Interac-
tion (HCI) is to improve our understanding of how skill impacts 
behavior, and how users learn new skills. In this paper, our focus is on 
the learning of typing, which is a complicated visuomotor task widely 
influencing the quality and efficiency of interactive behavior. One of the 
things that make this an interesting problem is the prevalence of the 
standard Qwerty layout, which persists today, even though multiple 
optimized soft keyboard layouts have been proposed. The major prob-
lem encountered by users of new layouts – even when these are opti-
mized for usability – is the initial productivity decrement and the 
learning cost against existing motor patterns of typing (Gopher & Raij, 
1988). Even switching two key locations on a Qwerty keyboard can lead 
to an increase in the key-searching time of an experienced typist; 
changes more drastic than this result in hours of re-learning, during 
which performance suffers (Jokinen et al., 2017). 

When learning to type, users gradually transfer from a “hunt-and- 
peck” style to a more skilled one, by accumulating experience with 
repeated practice. As pointed out by (Sono & Hasegawa, 2019), learning 
and skill improvement in typing is concerned with three aspects: 

remembering key placement, proper fingering, and touch typing. De-
velopments of the latter two aspects are closely related to the first one. 
Memorization of keyboard layouts helps to minimize the time needed for 
visual search (Jokinen et al., 2017), while at the same time, increases the 
certainty of finger touch operations on the flat screen of software key-
boards. Via practice, users can further build internal mappings between 
the keyboard layout and finger movement control (Crump & Logan, 
2010a). In this learning process, strategies for allocating attention and 
controlling finger movement are adapted to the improvement of the 
general typing performance. Understanding how users develop their 
skills with new keyboard layouts, and how the visuomotor control cor-
relates with typing performance can help researchers and designers 
discover more effective ways of improving the interfaces of text input 
applications. 

In this study, we focused on typing with software keyboards on 
touchscreen devices, and captured the details of eye and finger move-
ments throughout the typing process with experimental control over the 
participants’ level of skill. By dynamically randomizing the layout of a 
software keyboard, we artificially manipulated the participants’ 
knowledge of the keyboard they were using, thus impacting their typing 
skills and performance. Firstly, skilled performance was analyzed with 
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experimental data on a conventional keyboard with a Qwerty layout. 
Secondly, we assigned each participant a statically randomized (SR) 
keyboard, in which the keys were randomly shuffled before being 
assigned and kept unchanged during typing. We were able to observe the 
learning process and adaptations made throughout the trials of sentence 
typing, during which the participants started to become more familiar 
with the new layout. Finally, we applied a dynamically randomized (DR) 
keyboard, on which key locations were re-shuffled after each keypress. 
In this way, we were able to keep the participants’ knowledge of the 
layout at a complete novice level throughout the trials of typing. In 
general, we not only compared the user behavior with different levels of 
typing skills but also observed the learning process of a new keyboard 
layout, from the perspective of eye and finger movement control. 

The theoretical framework we used to understand the changes that 
are associated with the transition from novice to skilled typists is that of 
adaptation to available resources (Howes et al., 2009). We assume that 
as users become familiar with a UI, they develop certain resources and 
skills, such as robust memory of the layout and ways to access key 
functionalities. At the same time, their behavior adapts to account for 
these internal changes. For instance, in touchscreen typing, a novice 
begins without knowing the location of the keys, resulting in long in-
tervals between typed keys due to time spent visually searching the 
keyboard (Jokinen et al., 2017, 2020). Our results emphasize that typing 
– and learning to type – should be understood as a complex adaptive 
process, where both the personal resources available within the indi-
vidual user (e.g., motor movement, vision, memory) and the general 
strategy for how these resources are applied adapt to each typing 
environment. 

Previous studies regarding typing have mainly focused on motor 
performance, that is, the movement of the fingers over the keyboard. 
However, as demonstrated in our results, familiarity with a layout im-
pacts not only pointing movements but also other essential components 
of typing, such as proofreading and error correction. Novices have to 
spend time visually searching between keypresses, resulting in an 
emphasis on accuracy over speed. As they grow confident in accuracy, 
fewer gaze shifts between the keyboard (searching for the target key) 
and the text entry area (checking the typed text for errors) are needed. 
Becoming more familiar and confident with the keyboard layout by 
typing on it results in tolerating more errors due to the lower relative 
cost of having to find and retype characters. This also results in more 
gaze shifts for proofreading. Finally, as users become increasingly 
familiar with the keyboard layout, they type progressively faster, 
resulting in the introduction of more typing errors. However, these be-
haviors at a higher level of skill are not detrimental to performance, as 
they permit faster movement and minimize time spent between key-
strokes. The making of errors has become an acceptable strategic 
tradeoff, allowing faster typing, because the cost of errors is not as large 
as when the layout is not known. Furthermore, as the eyes are not 
constantly needed to guide the movement of the fingers, a larger fraction 
of the total typing time can be spent on monitoring the typed text. 

The contribution of our work is to present and explain the learning 
process in the early stages of the development of typing skills with new 
keyboard layouts. Based on the tracking and analysis of eye and finger 
movements, we describe a detailed dataset that sheds light on the small 
but impactful changes in visuomotor control strategies that are associ-
ated with learning. We explain how users adapt their strategy of speed- 
accuracy trade-off and proofreading behavior based on the development 
of their skills such as key-searching and finger movement. These findings 
provide a reference for designers aiming to improve UIs with layout 
reform considering different levels of typing skill, as well as for re-
searchers developing mental models for behavioral strategy predictions. 
We hereby release all data from the experiments reported herein making 
them freely available for further research. 

2. Related work 

Typing on touchscreens has been studied for decades from the 
perspective of performance outcomes, such as speed and error rate. 
Although such metrics can provide quick and easy-to-understand results 
for purposes like technique validation, comparison, and evaluation, they 
are silent on more detailed yet essential typing-related behaviors, such 
as finger movement and shifts in visual attention. Recently, researchers 
have started to analyze and even model these more detailed behaviors, 
such as touchpoints (Azenkot & Zhai, 2012, pp. 251–260; Bi et al., 
2013), eye movement (Jokinen, 2017; Jokinen et al., 2017; Sarcar et al., 
2018), and finger movement (Feit et al., 2016; Jiang et al., 2020). Here 
we introduce the related work on understanding typing-related behav-
iors on mobile touchscreen devices. 

2.1. Typing performance on mobile devices 

Although it has been 30 years since the first smartphone was 
invented (Lewis, 1996), typing speed on mobile touchscreen devices is 
generally slower than on a physical keyboard [35, 23 39]. While the 
average expert typing speed on a physical keyboard can reach 81 words 
per minute (WPM) (Varcholik et al., 2012), typing speed on the smart-
phone is still below 50 WPM (Azenkot & Zhai, 2012, pp. 251–260). 
Studies have explored the factors which influence typing speed, 
including the number of fingers used (one finger or two fingers) 
(Azenkot & Zhai, 2012, pp. 251–260; Buschek et al., 2018; Jiang et al., 
2020; Nicolau & Jorge, 2012), the size of the device (Yi et al., 2017) and 
the virtual keys (Kim et al., 2013), and the conditions of typing tasks 
(copy typing or memorized typing) (Varcholik et al., 2012). Several 
conditions that are related to higher typing speed were found, including 
two-finger typing (Azenkot & Zhai, 2012, pp. 251–260; Buschek et al., 
2018; Jiang et al., 2020; Nicolau & Jorge, 2012), moderate key size (Kim 
et al., 2013), and memorized typing (Varcholik et al., 2012). Even 
though limitations and challenges exist for typing on touchscreen mo-
bile devices, some fast typists can still reach speeds of over 80 WPM 
(Palin et al., 2019). This finding raises the question: could there be a 
learning regime – perhaps using intelligent tutoring – that could 
improve most users’ typing performance considerably? In order to 
answer this question, it is important to improve our understanding of 
how learning occurs with touchscreen keyboards. 

Errors happen more frequently during typing on touchscreen devices 
(between 7% and 10.8% (Azenkot & Zhai, 2012, pp. 251–260)) 
compared with typing on a physical keyboard (between 0.47% and 
0.76% (Feit et al., 2016)). It is hard for users to ensure correct keystrokes 
without tactile feedback on the flat featureless screen. For a more 
detailed analysis of error correction, two situations were taken into 
account as metrics: 1) immediate error correction, meaning that users 
correct errors soon after they occur, with only one backspace and a 
correct keystroke; and 2) delayed error correction, indicating that the 
user realizes and corrects the error some moments after it happened. In 
the latter case, users have to press the backspace key multiple times and 
then input the correct letters. Typing on a mobile device with two 
thumbs results in more delayed error correction in typing each sentence 
(0.93) than with one index finger (0.41) (Jiang et al., 2020). One direct 
reason for errors in typing is the failure of the finger to land inside the 
bounding box of the keys. 

Studies found that the touchpoints for keys are generally distributed 
below the center of the keys (Azenkot & Zhai, 2012, pp. 251–260; Henze 
et al., 2012), indicating that users prefer less occlusion of the buttons 
during key-pressing. In order to help users confirm the touchpoint lo-
cations, measures like showing the touchpoint with dots were designed 
and proved to be effective in reducing the error rate (Henze et al., 2012). 
However, showing touchpoints slowed the typing speed by up to 5.2% 
(Henze et al., 2012), due to more attention being paid to the dots instead 
of to the typing task itself. 
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2.2. Learning in typing 

The position of Qwerty as the standard layout has been debated for 
decades, from the application of typewriters to the use of keyboards in a 
variety of scenarios such as mobile devices and virtual reality. Re-
searchers have proposed new keyboard layouts with different key ar-
rangements (Bi & Zhai, 2016; Dunlop & Levine, 2012; Jokinen et al., 
2017), key shapes (Gunawardana et al., 2010; Hunter et al., 2000), and 
letter grouping (Dunlop et al., 2012; Sarcar et al., 2018). These designs 
(sometimes via optimization) have brought new possibilities for 
improving usability and user experience of typing, but one of the main 
problems for their more widespread adaptation is the time it takes to 
learn new layouts. For instance, a study using a stylus to type made the 
user a “novice” by randomizing the soft keyboard after each tap on the 
key; the typing speed on the randomized keyboard (around 5 WPM) was 
significantly slower than on a Qwerty keyboard (around 20 WPM) 
(MacKenzie & Zhang, 2001). 

From the perspective of skill acquisition, three main phases were 
proposed by (Fitts & Posner, 1967) to explain how task performance 
becomes automatic through practice (Keith & Ericsson, 2007). First, in 
the initial cognitive phase, individuals learn the underlying structure of 
the activity and develop strategies for the task. Then, in the associative 
phase, the elements that are necessary for successful task execution 
become integrated into sequences of actions. Finally, in the autonomous 
phase, task performance becomes more automatic, and at the same time, 
less attentional resources are required for doing the task. 

In the case of typing, novice typists usually start with a “hunt-and- 
peck” typing style, while building the memory of the keyboard layout. 
With the development of memory, typists entered the second associative 
phase and type faster. As the experiences accumulate, movements 
become more automatic. Typists could finally master the keyboard with 
a “touch-typing” method. 

Generally, it takes 90 hours for a user to transform from a novice 
typist to being a relatively skilled typist on the physical keyboard 
(typewriter) (Chapman, 1919). Apart from complete novices, users who 
are not familiar with the underlying structure of the particular activity 
or who lack fully developed strategies for the task can also learn (Fitts & 
Posner, 1967; Keith & Ericsson, 2007). As typing skill is largely affected 
by learning and practicing – especially deliberate practice (Keith & 
Ericsson, 2007) – understanding how users acquire and improve typing 
skills is vital to the development of typing techniques and interfaces. As 
typing skill has been mastered pervasively among touchscreen users, in 
order to capture the learning process we pushed the users back to a 
novice state by randomizing the keyboard layout. In this way, the 
existing embedded memory of the keyboard layout is no longer able to 
serve the user well. Other research methods with the same purpose 
include scrambling the order of letters in words (Crump & Logan, 2010b; 
Yamaguchi & Logan, 2016) and adding noise masks to the stimuli of the 
target materials (Yamaguchi & Logan, 2016). 

2.3. Eye and finger behavior on touchscreens 

Operations on touchscreens are largely guided by vision, as the flat 
screen is not capable of providing enough tactile feedback for touch 
operations without visual guidance. While typing on touchscreen de-
vices, attention is allocated for purposes like key searching, finger 
guiding, and proofreading. Frequent attention shifts among screen areas 
posed a negative effect on the typing speed. In a typing study on a split 
keyboard on the tablet, subjects were asked to use peripheral vision to 
guide their finger movements instead of a direct eyes-on manner. They 
found that using peripheral vision reduced attention switch and led to a 
28% faster typing speed (27 WPM) over the typical eyes-on typing mode 
(Lu et al., 2019). As for typing on a smartphone, the keys are normally 
smaller than the fingertips, due to the limitation of screen size. In such a 
condition, touch was guided by the eyes more than half of the time (60% 
for two-finger typing, 70% for one-finger typing) in order to operate 

accurately (Jiang et al., 2020). However, as proofreading was also 
needed during typing, users had to frequently shift their attention be-
tween the text input area and the keyboard. Such attention shifts led to 
breaks in the current task and switching to another task consumed 
cognitive resources and time. Two-thumb typing reduced the frequency 
of attention shift, compared with one-finger typing. However, the cost is 
that more errors (especially with delayed error correction) happened 
during typing. Such findings indicated the importance of understanding 
eye and finger movement in the discussion of the speed-accuracy 
trade-off during typing. 

From the perspective of speed-accuracy strategies, previous studies 
also demonstrated that users respond to costly typing errors with risk 
aversion by reducing their typing speed to minimize typing errors 
(Banovic et al., 2017). In general, to understand typing behaviors, the 
effects of attention shift, speed, and accuracy should be thoroughly 
discussed. In this study, we explored such details in the learning process 
of a given keyboard layout and compared experienced with novice 
typing behaviors induced by keyboard randomization. Specifically, we 
seek to uncover the dynamic balance between attention shift, speed, and 
accuracy with detailed data for eye and finger movement. Findings will 
provide a reference not only for keyboard designers but also for users of 
soft keyboards on mobile devices. 

3. Method 

We aim to understand the typing strategies and their adaption during 
the learning process by collecting and analyzing typing data with 
Qwerty and randomized keyboards. In a previous study (Jiang et al., 
2020), a Qwerty keyboard (without intelligent typing aids) was used to 
establish a dataset of one-finger and two-finger typing. In this study, we 
collected typing data by designing an experiment with transcription 
tasks on randomized keyboards under the same setup and with the same 
participants. We set up two task blocks under keyboard randomization 
and asked the participants to type with the index finger of their domi-
nant hand (Fig. 1a), so the comparison with (Jiang et al., 2020) was 
mainly focused on one-finger typing. Our interest is in the eye and finger 
movements, especially how these movement strategies adapt after a new 
randomized keyboard layout is introduced, and how this compares with 
the same strategies on the standard Qwerty keyboard. In order to ensure 
that the participants focused on typing itself without other distractions, 
we excluded intelligent typing aids from the keyboard. The interface 
used in the experiment is shown in Fig. 1c. The green boxes visible 
therein were used for data collection purposes; we manually checked the 
gaze data collected after the experiment and confirmed that the boxes 
did not attract much attention during eye movements. We collected 
typing behavior by tracking eye movement, finger movement, alongside 
a log of keypress events on the touchscreen. All data were synchronized 
in time, and all positions were transformed into a unified coordinate 
system of the touchscreen device. 

3.1. Participants 

Of the 33 participants recruited, the data of three were excluded due 
to gaze-data loss (device error), resulting in a dataset with N = 30 (18 
females; age range 18–45, M = 25.5, SD = 5.9). The sample size was 
decided following (Caine, 2016) and (Alroobaea & Mayhew, 2014, pp. 
48–56). All of the 30 subjects were native Finnish speakers, having a 
normal or corrected-to-normal vision. Among them, three reported 
being left-handed. Out of the 30 subjects, 28 reported using touchscreen 
devices (mobile phones or tablets) several times a day. The average 
typing speed of the participants ranged from 19.1 to 33.3 WPM on a 
touchscreen Qwerty keyboard with one index finger. At the end of the 
experiment, each participant was compensated with two movie tickets 
(total worth about €20) for their time. 
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3.2. Experiment design 

The published study (Jiang et al., 2020) consisted of two conditions, 
namely: one-finger typing on a Qwerty keyboard and two-finger typing 
on a Qwerty keyboard. In our experiment, we asked the same partici-
pants to type with the index fingers of their dominant hand under two 
conditions, which are statically randomized (SR) keyboard and 
dynamically randomized (DR) keyboard. Here, the Qwerty keyboard 
refers to the Finnish Qwerty keyboard which contains all letter keys of 
the English Qwerty keyboard, with a few extra letters on the right side 
for Finnish language use. An SR keyboard was generated by shuffling all 
the letter keys of a Qwerty keyboard. The SR keyboard assigned to each 
participant was kept unchanged during typing (see Fig. 1c). Similar to 
SR, the DR keyboard re-shuffled itself after each touch of the keys during 
typing. 

We planned to ask the participants to type 20 sentences under both 
SR and DR conditions, however, as typing on a dynamically randomized 
keyboard was time-consuming and tiring, we lightened the burden by 
reducing the number of sentences in the DR condition from 20 to 15. In 
general, each participant typed 75 sentences in random order. Specif-
ically, they typed 20 sentences each with one and two fingers on the 
Qwerty keyboard in a counterbalanced order, then they typed 20 sen-
tences on the SR keyboard, and 15 sentences on the DR keyboard. Our 
statistical methods for data analysis were not negatively impacted by 
this, as they do not assume equal group sizes. 

The data of the one-finger and two-finger Qwerty keyboard was 
published in (Jiang et al., 2020). Here we analyze and discuss the results 
in the condition of one-finger typing on Qwerty, SR, and DR keyboards. 

3.3. Material 

A Samsung Galaxy S6 smartphone (1440 × 2560, 577 ppi) with a 
screen size of 5.1 inches was used for the typing task. To capture detailed 
touch behavior during typing and support the application of the ran-
domized keyboard, a typing application on the smartphone was devel-
oped. The height of the keys was 10.06 mm. The sentences used were 
selected from the Enron Mobile Email Database (Vertanen & Kris-
tensson, 2011) and then translated to Finnish by a native speaker. The 
average sentence length was 20 characters (SD = 4). All the sentences 
were relatively simple and easy to remember. No special characters, 
numbers, or punctuation were included in the sentences. All typing was 
done in lowercase. 

3.4. Procedure 

First, the purpose of the study was explained to the participants, 

namely to analyze the movement of the eyes and fingers during smart-
phone typing. They were then asked to sit in a chair at a height- 
adjustable table to fill in the background questionnaire. The smart-
phone used in the experiment was then given to the participant, who 
was asked to hold it in the non-dominant hand, resting elbows on the 
table. The table was adjusted to a comfortable height. 

Before the experiment, participants spent 5 min practicing with the 
phone and its keyboard. They were then given the eye-tracking glasses 
and a marker for motion tracking was placed on the index fingernail of 
the dominant hand. After inputting the necessary information such as 
participant ID and keyboard layout, the interface for calibration and 
synchronization was shown to them (see Fig. 1b). Participants were 
asked to do a 3-point calibration for the eye-tracking glasses and to press 
four buttons marked with the numbers 1 to 4 in ascending order for 
synchronization purposes. 

During the experiment, the participants transcribed sentences. Each 
sentence was referred to as one trial. At the start of each trial, a sentence 
was presented aurally using a speech synthesizer. The participants were 
told to always repeat the sentence aloud to confirm that it was heard 
correctly and to make it more memorable. This meant that the partici-
pants did not need to move their eyes to read the target sentence, and 
typing a message from working memory instead of copying it from some 
other source is more like real-life typing, where messages are composed 
internally during typing. Each participant held the smartphone in the 
non-dominant hand and typed the sentences with the index finger of 
their dominant hand. They were asked to strive for both speed and ac-
curacy and to correct errors using the backspace key. No cursor move-
ment or other typing aid was provided during the experiment. Three- 
minute rests were provided after each condition. Re-calibrations were 
done before each of the following conditions. 

3.5. Apparatus and data processing 

During the experiment, three types of data were collected: eye 
movement, finger motion, and key-pressing log. We used the SMI eye- 
tracking glasses (60 Hz at 30 FPS) to track eye movements. Two 
infrared cameras tracked eye movements and a forward field camera 
recorded the screen of the smartphone which was in their hands. 
Corrective lenses with a strength between −4 and +4 could be attached. 
In the three-point calibration, participants were asked to focus on the 
blue rectangles on a calibration screen (Fig. 1b), one at a time. During 
typing, green rectangles in the interface (Fig. 1c) were captured by the 
forward field camera on the eye tracker; the information was used in 
data processing to transform the eye-tracking coordinates into device 
screen coordinates. 

For finger movement, we used an OptiTrack Prime 13 motion- 

Fig. 1. The (a) experiment setup, (b) calibration screen, (c) typing interface, and (d) an example of a randomized keyboard. In the condition of a statically ran-
domized (SR) keyboard, a keyboard like (d) with the randomization of all the letter keys was presented to the participant while typing the trial sentences; in the 
condition of the dynamically randomized (DR) keyboard, new randomization was formed after each keypress. Note: Adapted with permission from (Jiang et al., 
2020) CC BY-NC. 
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capture system that provides 3D precision of up to 0.2 mm at close 
proximity. To track the relative locations between the finger and the 
smartphone screen, we not only attached a marker on the index finger 
used for typing, but we also attached four markers on the smartphone 
with a marker board (Fig. 1a). The motion tracking system was cali-
brated at the start of each condition. For the purpose of synchronization, 
we asked each participant to click on the four numbered buttons in 
ascending order. We captured the clicking behavior in the motion 
tracking system, the touch event on the smartphone, and the pre-defined 
flash at the moment of clicking on the smartphone screen with the eye- 
tracking glasses. 

Following previous work, trials with an uncorrected (typing) error 
rate higher than 25% were removed regardless of the condition (Banovic 
et al., 2017; Dhakal et al., 2018; Palin et al., 2019). Some gaze and finger 
data were lost due to occlusion or other technical problems. For analysis, 
we filtered the data on the eyes, finger, or the interaction between the 
eyes and finger, based on the following rule: if the corresponding data 
were captured for less than 90% of the keystrokes of a trial, the data of 
that trial were dropped. The loss due to this rule was not correlated with 
sentence length (Table 1). 

We then converted the coordinates from the raw data of eye and 
finger movements into the common coordinate system on the smart-
phone screen: the upper-left corner of the screen is the origin (0,0,0), 
with x-axis values increasing ward the right of the device and y values 
from top to bottom. The distance from the screen facing upward is the 
positive z value. The unit in the data refers to one pixel of the smart-
phone screen. For the presentation of the results, we transformed the 
unit of length into centimeters. 

4. Results 

To better understand the learning process of typing, we compared 
the typing behavior by analyzing the data under different levels of 
typing skills. Behavior under the Qwerty condition indicates an expert 
typing state as the users reported that they were familiar with typing on 
the Qwerty keyboard. The novice typing behavior was captured using a 
dynamically randomized (DR) keyboard, as the users can never learn by 
remembering the keyboard layout. The learning process was captured 
by using a statically randomized (SR) keyboard. Although users were 
unfamiliar with the layout of an SR keyboard, they can gradually 
accumulate experience and learn to type with it during the experiment. 
Here we first report the observed behaviors from the perspective of 
typing, eye movement, finger movement, and the interaction between 
eyes and finger. We summarize the difference between novice and 
skilled typing behavior, together with the behavioral adaptation and the 
learning process of typing. We present metrics for evaluating typing 
performance in Table 2. To test the effect of learning throughout the 
trials (Fig. 2), we ran a linear mixed model analysis in R (version 3.5.3) 
using the lme4 package (Bates et al., 2015). Significance was calculated 
using the lmerTest package (Kuznetsova et al., 2017), which applies 

Satterthwaite’s method to estimate the degree of freedom and generate 
p-values for mixed models. Post-hoc comparisons were done with 
lsmeans using Tukey correction. Based on the statistical analysis above, 
we summarized the change of the behaviors under each of the conditions 
through time. Results provide a reference for further explanation on the 
learning and development of skills in typing. 

4.1. Typing performance 

We first report on the distribution of typing speed measured in words 
per minute (WPM), which was calculated as the number of standard 
words (every five characters in the final input text) divided by the time 
spent on typing. average, typing on the Qwerty keyboard (28.59 WPM) 
was faster than on the randomized keyboards (Table 2). This effect of 
layout on WPM is statistically significant, F(2, 58) = 740.4, p < .001, 
with the participant as a random intercept and data being aggregated 
within the participant by the condition. Typing speed on a Qwerty 
keyboard was three times faster than on a dynamically randomized (DR) 
keyboard (6.99 WPM), t(58) = 37.5, p < 001, d = 2.3. Other pairwise 
comparisons were also statistically significant: Qwerty and statically 
randomized (SR) t(58) = 26.2, p < .001, d = 1.6; and SR and DR, t(58) =
11.4, p < .001, d = 0.7. 

We then investigated how learning within a condition impacts WPM. 
We first scaled trials within conditions due to the DR condition having 
fewer trials, and without aggregating (in order to retain trial-by-trial 
information) predicted WPM by condition, trial, and their interaction 

Table 1 
Details of data filtering and the effect on sentence length for the analysis of gaze, 
finger, and the combination of gaze and finger. Numbers in parentheses refer to 
the standard deviations.   

Before filtering After filtering Percentage of 
dropped 

Num. 
of trials 

Sentence 
Length 

Num. of 
Dropped 
trials 

Sentence 
Length 

Gaze 
data 

1648 20.39 
(2.18) 

364 20.46 
(2.16) 

22.09% 

Finger 
data 

16 20.42 
(2.17) 

0.97% 

Gaze & 
finger 
data 

373 20.43 
(2.17) 

22.63%  

Table 2 
Overview of the results for the Qwerty, statically randomized (SR), and 
dynamically randomized keyboard (DR) conditions. Numbers in parentheses 
refer to the standard deviations.   

Qwerty SR DR 

IKI (s) 0.38 (0.07) 0.92 (0.28) 1.79 (0.42) 
WPM 28.59 (7.67) 13.55 (4.31) 6.99 (1.52) 
KSPC 1.26 (0.37) 1.13 (0.30) 1.07 (0.15) 
Corrected error rate (%) 9.44 (11.63) 4.63 (9.31) 2.77 (5.82) 
Uncorrected error rate (%) 0.49 (1.65) 0.55 (1.97) 0.45 (1.57) 
Immediate error correction 0.57 (0.50) 0.32 (0.47) 0.29 (0.46) 
Delayed error correction 0.47 (0.96) 0.15 (0.53) 0.11 (0.41) 

Gaze shift 3.91 (1.48) 2.56 (1.33) 4.53 (1.33) 
Gaze keyboard ratio 0.70 (0.14) 0.86 (0.11) 0.85 (0.10) 
Proofreading time (s) 0.45 (0.14) 0.38 (0.09) 0.38 (0.11) 
Gaze path per character (cm) 4.58 (1.33) 8.06 (2.94) 14.50 (4.67) 
Keys before proofreading 5.97 (3.06) 7.22 (4.07) 4.93 (3.63) 

Finger speed (cm/s) 10.44 (1.57) 8.22 (1.50) 6.77 (1.25) 
Finger efficiency 0.44 (0.07) 0.28 (0.07) 0.20 (0.04) 

Eye-hand distance (cm) 3.33 (1.22) 2.53 (0.89) 2.99 (0.89)  

Fig. 2. Changes in average typing speed through trials under the conditions of 
Qwerty, Statically Randomized (SR), and Dynamically Randomized 
(DR) keyboards. 
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effect, as well as using the participant as a random intercept. The impact 
of the trial on WPM was statistically significant, F(1, 1603) = 20.8, p <
.001, and the interaction effect between trial and condition was signif-
icant as well, F(2, 1603) = 3.6, p = .03. Firstly, this means that within a 
condition, the participants got faster at typing as they progressed under 
that condition. Secondly, there are differences between conditions in 
how large an impact a trial has on WPM. In a post-hoc inspection of this 
effect, we found significant effects of the trial on WPM for Qwerty (β =
0.11, t(564) = 2.37, p < .05) and SR (β = 0.15, t(565) = 6.95, p < .001), 
but not for DR. This means that learning as visible in faster WPM 
happened on the keyboards with fixed layouts, compared with the 
layout that was dynamically changing during typing (Fig. 2). 

As for error correction behavior, we adopted three measurements 
from (Soukoreff & MacKenzie, 2003): keystroke per character (KSPC, 
calculated as the length of input stream divided by the length of the 
transcribed text), corrected error rate, and uncorrected error rate. To 
calculate the error rate, four types of keystrokes were defined: 

• Incorrect Not Fixed (INF): The minimum string distance (MSD) be-
tween the target sentence and the transcribed text. Specifically, it 
refers to the minimum number of primitives (insertions, deletions, or 
substitutions) to transform one string into the other.  

• Correct (C): The correct characters in the transcribed text.  
• Fixes (F): The editing functions, in this case, refers to backspace 

pressings.  
• Incorrect Fixed (IF): Keystrokes in the input stream, but not in the 

transcribed text, that are not editing keys. Based on the definitions, 
corrected error rate and uncorrected error rate were calculated as 
follows: 

Corrected error rate =
IF

C + INF + IF
× 100% (1)  

Uncorrected error rate =
INF

C + INF + IF
× 100% (2) 

The total error rate, calculated as the sum of the corrected and un-
corrected error rates, was the highest on the Qwerty keyboard (9.93%), 
and the lowest on the DR keyboard (3.22%). The effect of the condition 
was statistically significant, F(2, 58) = 47.5, p < .001, with all pairwise 
post-hoc comparisons significant as well. The same trend was also found 
in the corrected error rate, but the uncorrected error rate showed the 
highest value on the SR keyboard (Table 2), and here the effect of the 
condition was not statistically significant. 

Apart from the perspective of corrected and uncorrected errors, we 
also measured the number of immediate and delayed error corrections 
(Jiang et al., 2020) for each trial, i.e., for each sentence typed. Imme-
diate error correction refers to the errors immediately corrected with 
one backspace-pressing, when it appears in the text input area. Delayed 
error correction refers to the situation in which the subject realizes the 
error a few keystrokes after it happens. Normally, delayed error 
correction involves the deletion of multiple letters and the input of the 
correct ones. Immediate error correction reflected that the subjects tend 
to be sensitive about the content of the input. The average number of 
immediate and delayed error corrections could be seen in Table 2. 
However, this metric is sensitive to the number of errors actually made, 
so we controlled for the total error rate. After this correction, we found 
that the SR keyboard clearly had a smaller immediate error correction 
than the other conditions, with the effect of the condition being statis-
tically significant, F(2, 69) = 9.7, p < .001. In the post-hoc pairwise 
comparisons, differences between SR and DR d = 0.45, t (67) = 3.5, p <
.001 and between SR and Qwerty d = 0.42, t (67) = 3.7, p < .001 were 
found to be significant. The difference between DR and Qwerty was not 
statistically significant. This reflected that, while typing on a dynami-
cally changing keyboard, the subjects were more sensitive to the con-
tents they were typing, causing them to correct errors in a timely 
manner. To spot an error in the typed text, subjects could either recall 

the key they clicked and compare it with the target sentence or conduct 
brief proofreading. Next, we looked at gaze behaviors to find out which 
approach was preferred. 

4.2. Eye movement 

We measured gaze shift as the number of eye movements from the 
keyboard to the text input area during each trial of sentence typing (see 
Table 2 and Fig. 3, Gaze Shift). We found that gaze shift was most 
frequent on the dynamically randomized (DR) keyboard, followed by 
Qwerty and statically randomized (SR) keyboards. The effect of the 
condition on gaze shift was significant, F(2, 57) = 8.6, p < .001. In post- 
hoc comparisons, the differences between DR and SR d = 0.9, t(57) =
4.1, p < .001, and between Qwerty and SR d = 0.6, t(57) = 2.6, p = .03 
were significant; the difference between Qwerty and DR was not sig-
nificant. As error correction requires both proofreading and finger 
guiding, more error correction would increase the possibility of more 
gaze shifts. Controlling for the error rate, we found (F(2, 68) = 15.6, p <
.001) that subjects performed the most gaze shifts with the DR keyboard, 
compared with the SR keyboard (d = 1.1, t(60) = 5.4, p < .001) and the 
Qwerty keyboard (d = 0.9, t(80) = 3.8, p < .001). The difference be-
tween SR and Qwerty was not statistically significant. To emphasize this 
finding, we repeat that, while looking at grand means, Qwerty and DR 
had similar amounts of gaze shifting, but when controlling for the actual 
number of errors made, the DR condition very clearly had the largest 
amount of gaze shifting. 

In order to quantify the attention focused on the keyboard for key- 
searching and finger guiding, we measured the ratio of time that gaze 
stays on the keyboard area during typing (see Table 2 and Fig. 3, Gaze 
Keyboard Ratio). We found that the gaze ratio on the keyboard was the 
highest for typing on the statically randomized (SR) keyboard, followed 
by dynamically randomized (DR) and Qwerty keyboards, F(2, 57) =

35.6, p < .001. In post-hoc comparisons, the difference between Qwerty 
and SR was d = 1.1, t(57) = 7.3, p < .001, and between Qwerty and DR it 
was similarly significant d = 1.1, t(56) = 7.3, p < .001. The difference 
between SR and DR was not statistically significant. Typing on an un-
familiar keyboard (i.e., statically randomized (SR) and dynamically 
randomized (DR) keyboards) increased attention on the keyboard area 
compared to the familiar Qwerty keyboard. 

Nevertheless, typing on a dynamically randomized keyboard without 
a fixed layout made subjects uncertain about their typed texts and they 
performed more proofreading. Proofreading time, measured in seconds, 
was the duration in which the gaze stayed in the text input area for each 
proofreading event (see Table 2 and Fig. 3, Proofreading Time). 
Generally, subjects spent more time for each proofreading while typing 
on the Qwerty keyboard, followed by similar duration between the SR 
and DR keyboards, F(2, 56) = 7.7, p < .001 (post hoc comparison be-
tween Qwerty and SR: d = 0.7, t(57) = 3.5, p = .003, and Qwerty and 
DR: d = 0.6, t(56) = 3.3, p = .006; comparison between SR and DR was 
not significant). 

4.3. Finger movement 

Detailed finger movement data were collected during the experi-
ment, which enabled us to measure the difference in finger behavior 
across conditions, together with the adaptations over time. We 
measured average finger movement speed (centimeters per second) for 
each trial (see Table 2 and Fig. 3, Finger Speed), and found that in 
accordance with the typing speed, the finger moved fastest on the 
Qwerty keyboard, followed by the statically randomized (SR) and 
dynamically randomized (DR) keyboards. The effect was statistically 
significant, F(2, 58) = 223.9, p < .001, with all pairwise comparisons 
significant as well: Qwerty vs SR d = 1.1, t(58) = 12.6, p < .001, Qwerty 
vs DR d = 1.9, t(58) = 21.0, p < .001, and SR vs DR d = 0.7, t(58) = 8.4, 
p < .001. 

As moving the finger across a distance takes time, the ideal strategy 
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was to go through direct movement paths between keys while typing. In 
order to see how efficiently the finger moved between keys, we looked at 
finger movement efficiency calculated as the inter-key distance divided 
by the finger movement path in the 3D space (see Table 2 and Fig. 3, 
Finger Efficiency). On average, subjects moved their fingers more effi-
ciently while using a keyboard with a Qwerty layout, followed by stat-
ically randomized (SR) and Qwerty keyboards. The effect was 
statistically significant, F(2, 58) = 488.2, p < .001, with all pairwise 
comparisons significant as well: Qwerty vs SR d = 1.5, t(58) = 20.5, p <
.001, Qwerty vs DR d = 2.2, t(58) = 30.7, p < .001, and SR vs DR d = 0.7, 
t(58) = 10.2, p < .001. 

4.4. Eye-hand distance 

Visual guidance for finger movements requires a relatively closer 
physical distance between the finger and the gaze point. To see the 
relationship between the finger and eye, we measured in centimeters the 
average distance between the gaze point and the projected finger co-
ordinate on the touchscreen throughout the typing process of each trial 
(see Table 2 and Fig. 3, Eye-hand Distance). The longest distance was 
found with the Qwerty keyboard, followed by dynamically randomized 
(DR) and statically randomized (SR) keyboards. This effect was statis-
tically significant, F(2, 57) = 14.4, p < .001 (post hoc comparison be-
tween Qwerty and SR: d = 1.0, t(57) = 5.4, p < .001, Qwerty and DR: d 
= 0.5, t(56) = 3.3, p = .03; and DR and SR d = 0.5, t(57) = 2.8, p < .02). 
Note that the eye-hand distance is also closely related to the proof-
reading behavior and the ratio of gaze on the keyboard, we looked at the 
average eye-hand distance controlling the gaze keyboard ratio. We 
found that, while considering the ratio of gaze on the keyboard, the 
average eye-hand distance is still the highest on the Qwerty keyboard 

(4.89 cm), compared with on SR (2.98 cm) and DR keyboards (3.54 cm). 
This means that, as the subjects became more familiar with the layout of 
the keyboard, the visual guidance of finger movements was less needed, 
or that it could be monitored from a longer distance during typing. 

4.5. Behavior adaptation under keyboard randomization 

Here we explain the process of typing behavior adaptation and 
learning throughout trials during the experiment. We grouped the data 
into five sentences per trial block and explained the learning process by 
looking at the metrics of inter-key interval (IKI), gaze keyboard ratio, 
finger efficiency, immediate error correction, gaze shift, gaze path per 
character, number of keys before proofreading, and total error rate 
(Fig. 4). The metrics were first Z-score standardized within conditions to 
facilitate comparisons regarding how they change between the trial 
blocks: in the charts, 0 refers to the average within-condition value, and 
one unit in the y axis is 1 SD of change. 

We explain behavioral differences by selectively interpreting the 
metrics in Fig. 4. First, looking at IKI, learning across all three conditions 
was visible with lower relative intervals, by trial. However, as expected, 
this effect was clearly largest for the condition of the statically ran-
domized (SR) keyboard and smallest for the dynamically randomized 
(DR) keyboard. We can assume that even with participants who were 
familiar with the Qwerty layout, there existed some learning of the 
unfamiliar device used in the experiment. With the SR keyboard, in 
addition to learning of the device, the learning of the layout itself is 
apparently noticeable. For the Qwerty keyboard, the overall improve-
ment in IKI was a bit more than 0.2 SD, while for the SR keyboard, it was 
more than 0.6 SD. 

Gaze shift was not largely affected by practicing with the Qwerty and 

Fig. 3. Box plots for metrics on eye and finger behavior under the conditions of Qwerty, Statically Randomized (SR) and Dynamically Randomized (DR) keyboards.  
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SR keyboards (variation around 0.1 SD), while the number of gaze shifts 
per sentence visibly increased throughout the typing trials (0.3 SD). We 
assume that the reason for the trend was fatigue caused by constant key- 
searching while typing on a dynamically randomized (DR) keyboard. 
Subjects gradually lost the confidence that they could type correctly and, 
as a consequence, they conducted more gaze shifts to the text input area 
for proofreading. More efficient key searching could be seen in the 
decrease of the gaze path per character in the SR keyboard condition 
(around 0.4 SD), compared with an increase in the DR keyboard 
condition. 

As for finger movement, a clear increase in finger efficiency on the SR 
keyboard could be observed throughout the trials (more than 0.5 SD), 

compared with a variation around 0.2 SD for both the Qwerty and the 
DR keyboards. As the subjects gradually built their memory of the 
keyboard layout, their fingers moved more efficiently with better 
guidance. Next, we describe in chronological order how individuals 
adapted their behaviors throughout the development of their typing 
skills. 

4.6. Development of typing skills 

When given a new keyboard layout in the statically randomized (SR) 
keyboard condition, subjects could be regarded as novices as there was 
no memory of the keyboard layout to guide their typing operations. 

Fig. 4. Changes in typing metrics through time under the conditions of Qwerty, Statically Randomized (SR), and Dynamically Randomized (DR) keyboards. Error bar 
indicates the standare error of each trial block. 
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They had to visually search for keys before clicking, leading to relatively 
long inter-key intervals (Fig. 4, IKI - SR - Trial Block 1) and longer gaze 
path travel before each keystroke (Fig. 4, Gaze Path per Character - SR - 
Trial Block 1). Under such constraints, the cost of each keystroke was the 
highest in this condition. To minimize the time cost of error correction, 
subjects tended to be cautious while trying to make as few errors as 
possible. This resulted in a relatively low total error rate (Fig. 4, Total 
Error Rate - SR - Trial Block 1). Thus, they tended to be more confident 
about the text they typed and conducted fewer gaze shifts for proof-
reading (Fig. 4, Gaze Shift - SR - Trial Block 1), which led to fewer im-
mediate error corrections (Fig. 4, Immediate Error Correction - SR - Trial 
Block 1). 

As the subjects gradually became familiar with the new layout, they 
developed the memory of the key locations and used it for more efficient 
key-searching (Fig. 4, Gaze Path per Character - SR - Trial Block 2 and 3, 
decreasing gaze path per character) and more direct finger movements 
to the keys (Fig. 4, Finger Efficiency - SR - Trial Block 2 and 3, increased 
finger movement efficiency between keys). As a result, typing speed 
increased (Fig. 4, IKI - SR - Trial Block 2 and 3, decreasing IKI reflects 
higher typing speed). Here we observed the speed-accuracy trade-off in 
typing: error rate increased as a result of higher typing speeds (Fig. 4, 
Total Error Rate - SR - Trial Block 2). To keep the typed text correct, 
subjects proofread more frequently (Fig. 4, Gaze Shift - SR - Trial Block 
2), leading to more immediate error correction (Fig. 4, Immediate Error 
Correction - SR - Trial Block 2). 

Although there is no suggestion that the subjects were able to reach 
the expert level in just 20 trials of sentence typing, we could nevertheless 
see a clear difference in their strategies as the subjects gained experi-
ence. In the final phase, subjects reached the highest level of typing 
speed during the experiment (Fig. 4, IKI - SR - Trial Block 4, the lowest 
IKI reflects the highest typing speed). Typing error increased dramati-
cally in this phase with the highest total error rate (Fig. 4, Total Error 
Rate - SR - Trial Block 4). However, the benefit of fast typing speed not 
only compensated but also outweighed the costs of more errors and error 
corrections, leading to a generally faster overall typing speed with WPM 
(Fig. 2). 

5. Discussion 

To understand how skills were developed for typing on a touchscreen 
mobile keyboard, we pushed individuals back to a novice state of typing 
by randomizing the letter keys of a Qwerty keyboard. We captured the 
eye and finger movements of each of the participants and analyzed how 
their patterns covaried with experience with the layout. Here we discuss 
the findings from the perspective of learning, and the strategies for 
proofreading and key-searching that relates with the phenomenon of the 
speed-accuracy tradeoff. Finally, we provide implications for text input 
application design. 

5.1. Learning and behavior adaptation 

We found that even though participants were only assigned 20 sen-
tences for typing on the Qwerty and statically randomized (SR) key-
boards, they still showed significantly improved typing speed. With the 
Qwerty layout – with which everyone should be familiar – this 
improvement is probably due to the learning experience in the use of the 
specific device, or by adjusting to the experimental setup generally. Our 
results provide a new perspective for understanding behavioral adap-
tation due to learning experience, especially during the early stages of 
learning. This is in comparison with traditional theories of skill acqui-
sition (Fitts & Posner, 1967), which divide skill acquisition into three 
steps: an initial cognitive phase, an associative phase, and an autono-
mous phase. 

As novice users in the first step, individuals learn the underlying 
structure of the activity and develop strategies for the task. The method 
we applied here for pushing users back to the novice stage via keyboard 

randomization is in accordance with the first step, by replacing the 
underlying structure of the activity (i.e., the keyboard layout) with a 
new one. Then, as a general observation, the more experience people 
had typed on the keyboard with a fixed new layout, the faster they 
typed. This observation is consistent with previously published studies 
on keyboard learning (MacKenzie & Zhang, 1999) and (Keith & Erics-
son, 2007). 

We expected a marginal learning effect on the dynamically ran-
domized (DR) keyboard as there is no fixed layout for participants to 
learn, the result confirmed this. Subjects had to search for the keys on 
each of the new layouts, with no guidance from their memories and this 
slowed their typing speed. This indicated that keyboard input optimi-
zation methods should avoid constant changing of the layout, so that 
users can learn and improve their performance via familiarization 
through practice and consistent usage. Apart from randomizing the 
keyboard layout, study on the learning of typing also tried randomizing 
the text for input (i.e., comparing meaningful vs. nonsense materials); 
researchers found that even though interpreting the nonsense material 
took time, it was still possible to improve typing skills through practice 
(Keith & Ericsson, 2007). 

5.2. The balance between key searching and proofreading 

A study of performance improvement over a longer time scale 
showed that, apart from effort and practice, typing performance is also 
substantially affected by factors like strategies and subjective expecta-
tions: attending typing classes and setting up the subjective goal in 
everyday typing contributed to the prediction of typing speed (Keith & 
Ericsson, 2007). As there are no conventional rules or instructions like 
touch-typing methods for typing on a mobile touchscreen keyboard, 
users develop their own strategies in daily practice. Such development 
involves a dynamic balance between eye-finger movement patterns and 
the speed-accuracy tradeoff. 

Although subjects were forced to return to a novice state in both 
conditions of statically randomized (SR) and dynamically randomized 
(DR) keyboards, their behaviors in those two conditions were different. 
Here we mainly focus on the discussion of the proofreading strategies. 
While typing on the SR keyboard, subjects were presented with a new 
keyboard layout that remained unchanged (static) throughout the sen-
tence typing trials. They were able to gradually learn the key locations 
during use. As the subjects build a memory of the keyboard layout, the 
average gaze path traveled before each keypress decreased with a 
correspondingly decreased length in the intervals between individual 
keypresses (Fig. 4, Gaze Path per Character, and IKI). 

To achieve a higher level of typing speed with a Qwerty keyboard, 
users usually conduct operations in an overlapping manner, i.e., they 
start searching for the next key even before the finger reaches the cur-
rent target key (Jiang et al., 2020). However, on a dynamically ran-
domized (DR) keyboard, all letter keys were randomized after each 
keystroke. This means that searching for the next key before the current 
keystroke was useless as all keys would be repositioned. In such a situ-
ation, users could either wait for the keystroke to be finished and then 
search for the next key, or they could utilize this moment of time to 
quickly proofread. Our observations showed that users were more likely 
to shift their attention to the text input area for proofreading during this 
brief time interval, which further increased the possibility of finding an 
error immediately after it occurs. This explained why the immediate 
error correction (controlling the total error rate) was the highest under 
the dynamically randomized (DR) keyboard condition. 

A study of expert mobile text entry showed that, the aversion to 
costly typing errors leads to intentional speed control (Banovic et al., 
2017). The study demonstrated that users respond to costly typing errors 
by reducing their typing speed to minimize typing errors. The conven-
tional understanding of a costly error is that a typing error requires a 
user to correct it, which takes time. In the case of the dynamically 
randomized (DR) keyboard, the cost was amplified as the difficulty and 
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time used for typing were much greater and longer while the layout was 
constantly changing. Thus, to minimize the potential cost, subjects 
conducted proofreading more frequently, which was evident in the 
increased number of gaze shifts (Fig. 4, Gaze Shift). When frequent 
proofreading demand came with key-searching moves for each keypress, 
the competition for attentional resources became much stiffer. 

5.3. Implications for design 

This study provided new and more detailed findings regarding the 
details of eye and finger movement in the process of learning to type. 
Although studies on the learning of new keyboard layouts have 
demonstrated changes in typing performance such as speed and error 
rate (Anderson et al., 2007, pp. 874–878; Keith & Ericsson, 2007; 
MacKenzie & Zhang, 1999), it was still not clear how attention and 
motor control play a role in this process. The implications of the findings 
of this study can be summarized in the following guidelines for text 
input user interface design:  

• Firstly, typing on a dynamically changing keyboard increases both 
the cognitive load and the competition of attentional resources, and 
hinders the learning and improvement of typing performance. We 
suggest that keyboard optimization should limit changes of layout 
during use. 

• Secondly, proofreading during typing is related to the typist’s con-
fidence in the correctness of their typed text. For typists who lack 
confidence, proofreading tends to be more frequent. The eye move-
ments required for proofreading interrupt key searching and finger 
guidance and create a cycle of performance deterioration. We sug-
gest that the typed text (i.e., proofreading area) be set close to the 
keyboard, to reduce the travel distance for the eyes.  

• Thirdly, searching for the next key takes most of the time and energy 
of typists who are unfamiliar with the keyboard layout. We, there-
fore, suggest lowering the effort required for key-searching behaviors 
at the beginning of use by, for example, highlighting the predictions 
of keys that are to be typed. 

5.4. Limitations and future work 

The critical manipulation of our study was done by shuffling the 
letters of the Finnish alphabet on a Qwerty keyboard. In order to 
generalize our results, future studies should look into different lan-
guages as well as keyboard designs, such as the split keyboards of tablets 
and the T9 keyboard for Chinese input. As the underlying logic for 
typing differs dramatically among those keyboards, there might be 
substantial differences in performance and strategies. Future work could 
cover the learning of those keyboards, and confirm if the same strategies 
are shared among different languages and scenarios. Furthermore, our 
participants were young adults with a lot of smartphone experience, 
meaning that their learning focused on the layout rather than, for 
instance, on how touchscreens in general work. Future studies could 
have more representative demographics, including older adults, people 
with accessibility requirements, and those who are not generally 
familiar with touchscreen devices. 

6. Conclusion 

Users of today’s technologies are constantly exposed to new or 
changed user interfaces (UIs). To facilitate ease of adoption and fluent 
adjustment to changes, it is important to understand how users obtain 
skills and change their behaviors during interaction with technologies. 
In this study, we manipulated the typists’ abilities between novice and 
skilled, observing the learning process as visible changes of eye and 
finger movements. Insights into adaption are at the core of our analysis 
of skill and skill development. We explain different levels of skill – or 
experience with touchscreen typing – in terms of how users adapt their 

mental resources, especially the memory of the UI. Via practice, this 
memory is updated and developed, permitting more efficient perfor-
mance via behavioral adaptation in order to better exploit the evolving 
resources. 

In some highlights of our results, increases in finger movement ef-
ficiency and decreases in the length of the path traveled by eye gaze are 
indicative of the aforementioned adaptation and an attempt to maximize 
gain. Designers can utilize this information to aid in an attempt to gauge 
their users’ skill levels, as well as optimize interactions for these levels. 
For instance, knowing that a user has spent some time with a UI leads to 
expecting improved finger movement efficiency, which can be accoun-
ted for in a more targeted design. Based on our description of changes in 
typing behavior due to the gathering of experience, a question arises: 
What makes really fast typing possible? Studies have shown that WPM 
values as high as 80 can be reached while typing on touchscreens (Palin 
et al., 2019). The changes in visuomotor patterns described herein may 
shed light on what makes these really fast typists perform so well. Hy-
pothetically extrapolating from our results, the development of peak 
performance is a combination of strict motor control and visual guid-
ance that adapts to it. As finger movements become more precise, less 
visual guidance is required for fast but relatively error-free pointing. 
This frees the vision for continuous checking of the typed message, 
permitting the immediate correction of errors – unlike with those who 
type fast on physical keyboards (Feit et al., 2016). Our results hint to-
wards this explanation by showing that, improved finger efficiency and 
speed, as well as increased proofreading time and less time spent with 
the gaze on the keyboard, exist in skilled typing. This finding can be used 
to design a training regime for achieving faster typing, as we pinpoint 
that some of the fastest and most impactful ways to train are related to 
finger efficiency and gaze deployment. 

The detailed analysis of the learning process reported here provides a 
basis of reference for HCI researchers and designers on how touch screen 
typists adapt their behavior and strategies, balancing between the need 
for efficient typing and correctness of the final input, according to the 
development of skills through experience. This work encourages the 
consideration of the user’s typing skill and experience during UI design 
and provides detailed information that can contribute to the develop-
ment of better models of UI adaptation and skill. 
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