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ABSTRACT The support structures of a rotating machine affect its overall dynamic behavior. The stiffness
of the support structures often differs at the actual sites compared to the test rigs, which leads to uncertain
dynamics. In this research, a novel method is developed to identify the support stiffness for an in-situmachine
using a simulation-data-driven, deep learning algorithm. In this transfer learning approach, a deep learning
algorithm is trained with a simulation model and then tested with measured vibration of a rotor-bearing-
support system. To validate the algorithm for multiple cases, an experimental test rig with variable horizontal
support stiffness is used. The results from the deep learning algorithm are compared with Linear regression
(LR), Artificial Neural Network (ANN), and Support vector regression (SVR) for benchmarking. Themodels
are trained with filtered frequency domain response, and challenges due to measurement uncertainty are
analyzed. With the proposed pre-processing steps of the frequency domain response and outlier elimination,
the deep learning-based virtual sensor can predict the support stiffness with reasonable accuracy, where the
limiting factor is the data quality and lack of excitation at critical speed frequencies.

INDEX TERMS Deep learning, machine learning, parameter estimation, physics-based simulation, support
stiffness, transfer learning.

I. INTRODUCTION
The mounting of medium or large size rotating machines
is a crucial step when preparing machines for operation.
Machines have their own individual dynamic behavior related
to their dimensions, manufacturing errors, support stiffness
etc. The support stiffness has a large impact on the behavior
of a machine after its delivery. Therefore, when estimating
the dynamic behavior of a machine, a complete rotating
system must be considered including, e.g., rotor, bearings
and support structure. At worst, a poorly prepared mounting
setup can lead to excessive vibration at the operating range,
e.g., during on-site commissioning, causing the rejection of
a machine or a rotor. Typically, a machine is put through
acceptance tests by manufacturers, and then shipped to the
customers. The final mounting position of the machine is
connected to other structures and is part of a larger complex
system. This creates design challenges from the mounting
perspective, as typically the manufacturers have very stiff test

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandra Bertoldo.

beds. However, at the customer site the mounting structure
can be relatively flexible, i.e., all machines are not located on
desired or sufficiently stiff support. The change in support
stiffness affects the critical speeds of the system and can
thus lead to resonances occurring at operation speed range,
which would normally not be the case when mounted on the
stiff bed.

There are several traditional techniques for identifying
support parameters. These include purely experimental meth-
ods such as the Experimental Modal Analysis (EMA), or a
combination of measurements with numerical models and
optimization using least squares, or extended Kalman filter
to compare bearing forces or shaft displacement to para-
metrically identify the support properties [1]. Some stud-
ies have also investigated pedestal clearance as a support
parameter using a dynamic rotor-bearing-pedestal model [2]
and a stochastic model in Bayesian framework [3]. In recent
years, intelligent diagnostics [4] including Machine Learn-
ing (ML) and Deep Learning (DL) models [5], have been
introduced to analyze mechanical system states from vibra-
tion signals. These models have the advantage of automatic
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state recognition and are often used for prognosis, diagnosis,
virtual sensing, and parameter identification [6].

ML based methods for prognostic health monitoring aim
to predict the development of the machine health state in the
future, e.g., identifying of the remaining useful life (RUL)
of bearings using Artificial Neural Network (ANN) [7] and
support vector machine (SVM) [8]. For condition monitoring
and bearing fault diagnosis, methods such as linear regression
(LR) [9], ANN [10], [11], and SVM [12] are used in rotating
machines.

Similarly, DL based methods have used feature extraction
from frequency domain response to predict bearing degra-
dation and RUL [13]. DL methods, such as convolutional
neural network (CNN), have also been used for condition
monitoring and bearing fault diagnosis, using either artificial
vibration fault signal [14] or with real-time raw signals from
motors [15]–[17]. For automatically extracting features from
vibration data and classifying bearing faults, CNN is com-
bined with methods such as SVM [18] or Long-Short-Term
Memory (LSTM) structure [19], often utilizing frequency-
domain signals [20]. Time-frequency domain analysis com-
bined with vibration imaging and feature extraction with
CNN, are also used for gearbox and rotor fault diagnosis [21].
LSTM based algorithms are also used in regression problems
or as virtual sensing applications for identifying specific
parameters such as turbine engine vibration [22] or rotation
speed of a fixed shaft gearbox [23].

The distinguishing factor between ML and DL models is
how the features are extracted from the vibration signals. ML
algorithms often rely on features extracted from the vibra-
tion signals with signal processing techniques, and manually
extracted features might be too sparse or biased towards a
system. DL has a couple of advantages overML. First, the DL
algorithms learn automatically, to extract the relevant features
from the data. Moreover, the feature extraction and system
state recognition of the DL algorithm are optimized simul-
taneously. Second, DL algorithms can learn more complex
non-linear relations between the input space and the diagnosis
space.

In literature, it is common practice to use sensor data
from a rotating machine to train a machine learning model
which can be used for online condition monitoring [24]. In
general, such experimental data driven applications require
extensive historical data, in-service data with forceful, accel-
erated failures in a physical system for training the model to
predict a fault [25]. Such experimental data driven, machine
learning or deep learning methods have been used for detect-
ing bearing related faults through various statistical features
[24], [26], [27], [27], [28]. Cerrada et al. [29] comprehen-
sively compared signal-based techniques with machine learn-
ing techniques for detecting bearing faults along with their
severity.

However, as Sobie et al. [25] observed, such intelli-
gent models trained with experimental data tend to become
case dependent. Furthermore, the training procedure has

limitations in the form of availability of in-service data and
lack of generalization. Therefore, instead of using experimen-
tal data set for training, a simulationmodel or digital twin [30]
is arguably an inexpensive tool to take various failure mode
scenarios into account, or to analyze the dynamic behavior
of a machine due to large scale parametric changes. Numer-
ous researchers have used a combination of simulation and
limited measured data in ‘model-based’ fault identification,
estimation, and diagnostics of rotating machines [1]. How-
ever, there are limited studies which have used simulated data
to teach machine learning algorithms for applications such as
fault classification in a bearing [14], [25], internal combustion
engine [31], [32], and electrical drives [33].

In conclusion, even though the existing literature demon-
strates the successful use of DL in condition monitoring and
diagnosis, most of these studies are based on classification
problems, where the goal is to predict a categorical value,
especially for bearing related faults. The existing models
rarely focus on regression or parameter identification with
a few exceptions such as [23] and [22]. There is a need for
developing intelligent models to automatically identify sup-
port parameters and evaluate how the on-site support affects
the behavior of a rotating machine. Another key unexplored
area is the development of DL models trained by simulated
data only.

The novelty of the study is to develop a DL model which
is capable of identifying the support parameters based on
the physics-based simulation model. In the study, a large
rotor is studied with different support stiffnesses and the
displacement at the middle of the rotor is captured at steady-
state condition from the actual machine. In the simulations,
the same dataset is generated. For the design of the CNN,
the simulation dataset was used, and its performance was
evaluated. The verification of the model was then conducted
by comparing the labeled measured data (speed and stiffness)
and it was then compared to the CNN model prediction.
Speed was selected as a secondary parameter for verification,
as it is typically easily available from other sources and it
can be used to validate the CNN. A series of pre-processing
steps are developed to prepare the simulation-based training
data as well as the test data. The model is first tested with
simulated response and then with measured response from an
experimental setup and the results are benchmarked against
models based on LR, ANN, and support vector regression
(SVR). The model goodness was calculated with the mean
average percentage error (MAPE), where the difference of
the actual support stiffness and predicted was compared.
The transfer learning concept, where valuable information
is created with one model and then used to identify the
state of another system, is the main idea in the manuscript
[4]. The simulation-based data enables one to overcome the
lack of labeled data from the measurements in order to train
diagnosis models. The concept can be extended to different
parameters of a rotor bearing support system to analyze their
sensitivity to the dynamic response of the machine.
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FIGURE 1. Pre-processing steps of training data (simulated) and testing
data (measured).

II. TRANSFER LEARNING FROM SIMULATION TO REAL
MACHINE DATA VIA NEURAL NETWORK
Deep learning is a subdivision of artificial intelligence (AI)
and machine learning (ML), in which a distinctive feature
is the use of ANNs, the operating principle whereby data
processing operations are characterized by the extraction of
high-level features from the raw data while applying data-
driven decision making based on the raw data. The fact
thereof determines the use of DL in fields such as object
detection, speech recognition, natural language processing,
etc. CNN is a DL algorithm, which is widely used in image
and video processing. However, recent studies considered
the use of this algorithm for one-dimensional sequential data
gained by vibrational systems. This chapter describes the pre-
processing steps and highlights the main theoretical aspects
of CNN.

A. PRE-PROCESSING OF VIBRATION DATA
In general, DL models require a lot of data to make sure
they are properly trained without overfitting or underfitting
the training data. While a large training dataset is desirable,
without appropriate pre-processing steps, the neural network
will still not produce accurate prediction, i.e., the DL is blind
to the source of data.

The datasets used for identifying the support stiffnesses
are in the form of vibration signals. Since the developed
method aims to use simulated response signal for the purpose
of training, depending on the accuracy of the model, it can
vastly differ from the measured response which could lead
to an inaccurate estimation of system parameters. Therefore,
figure 1 shows a few preliminary steps for creating uniformity
in the system to make the comparison meaningful without
over-fitting the data. For the simulated data used for training
themodel, the steps include data filtering and resizing. For the
measured data which represent the test data, data filtering and
re-sampling to match the simulated sampling rate are the pre-
liminary steps. The strength and quality of the signals might

differ in measurement and simulation and thus, scaling of the
signals can be employed in cases where the dynamics related
parameters, e.g., frequency domain response is observed. For
training and testing the model using time domain response,
both datasets can be prepared from this point to create data
pairs. For feeding frequency domain response in the model,
the signal conversion using Fast Fourier Transform (FFT) is
required. A secondary filter to focus only on the frequency
range of interest can be used to further focus and optimize
the feed data.

B. CONVOLUTIONAL NEURAL NETWORK (CNN) MODEL
Convolutional Neural Networks (CNNs) belong to the class
of neural networks primarily used for image data. They have
demonstrated good performance in problems related to com-
puter vision, while at the same time demonstrating excellent
performance in tasks related to image classification, as well
as being a part of hybrid models used for object localization,
image captioning etc. [34].

This is made possible due to the operating principle based
on the direct processing of raw data, instead of manually
engineered features derived from the raw data. Typically, the
CNN-based model is aimed at automatically extracting the
features from the raw data that is useful, and closely related to
the problem being solved. This is known as feature learning,
and the CNNs can extract these useful features regardless of
the way they appear in the data.

The fact that convolutional neural networks can extract
features from raw input data makes them suitable for time-
series data processing [14]. Sequential data can be treated as
a 1D image from which a CNN model can treat and highlight
the patterns within. This feature has had amajor impact on the
use of CNNs for time-series classification tasks such as fault
diagnosis in the rotor bearing systems [19], or in classification
of human activities based on raw accelerator sensor data [35].

CNNs are multi-stage neural networks that first extract fea-
tures from raw data using the filters and then classifying them
according to a certain parameter. The filter stage consists of
several convolutional and pooling layers. At the next stage,
fully connected layers are used for making the predictions
based on the obtained features.

1) CONVOLUTIONAL LAYER
The convolutional layer, the local region of input signal with
filter kernels, using activation function, produces the output
features. For each filter the same kernel is applied, this is
known as weight sharing and is used for local feature extrac-
tion from the input. The forward propagation to layer l + 1
from layer l can be formulated as follows:

yl+1i (k) = W l
i · S

l(k)+ bli (1)

whereW l refers to the weights of the i-th filter kernel in layer
l, bli is bias, S

l(k) is the k-th local region in layer l, yl+1i (k) is
the input of k-th neuron in frame i of layer l+1, and · denotes
convolution, respectively.
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In the next step, the Rectified Linear Unit (ReLU) is used
as the activation function of the layer to speed up the conver-
gence of the model. It follows the next equation:

f (x) = max{0, yli(k)} (2)

2) POOLING LAYER
After the convolutional layer, the pooling layer is typically
applied. It is used to reduce the number of parameters by
appending semantically similar features and downsampling
its number in the model. Max-pooling layer is used to pre-
serve the sharpness of the features and informative parts of
the frequency spectrum. The layer finds the local max in the
input features and helps to reduce the size of the vector, but
at the same time the general behavior is kept intact. It can be
expressed as

C l+1
i (k) = max

(k−1)m+1≤t≤km
{ali(t)} (3)

where ali(t) is the value of the t-th neuron in the i-th frame
of the layer 1, m represents the width of pooling region and
C l+1
i (k) is the result of the operation, respectively.

C. DEEP LEARNING MODEL AND TRANSFER LEARNING
MODEL
Typically, a CNN model consists of one or more convolu-
tional layers followed by pooling layers that take the largest or
average element from the rectified feature map. There can be
a certain number of such pairs, depending on the requirements
and input data. Then comes the flatten layer, which flattens
the output of convolutional layers and feeds it into a fully
connected layer, where the extracted features are analyzed
and then the predictions are done based on them. Based on
the loss and the optimizer, the model parameters are updated
on and on until the desired results are achieved.

The number of parameters and output shape for each layer
can be calculated using the next formulae:

Output Shape = Hi − Hf ,Li − Lf + 1,Nf (4)

No. of Parameters = Nf · (Lf · Hf · Di + 1) (5)

where, Hi stands for input height, Hf filter height, Li input
length, Lf filter length, Di input depth, and Nf filter number.
In the study, the simulation data refers to displacements or

vibration response obtained from a physics-based simulation
model, which is verified by modal analysis of the actual
machine. The verified model is used to analyze the different
support configurations and used to train the CNN, therefore
enabling transfer learning of the simulated output data to real
world experimental data.

III. CASE STUDY, EXPERIMENTAL SETUP AND
SIMULATION MODEL
To evaluate the performance of the CNN model over a
range of values for support parameters, it had to be tested
in a system where it was possible to continuously vary the
support stiffness. This way, the dynamic behavior could be

FIGURE 2. Experimental test rotor (a) Measurement setup (b) Mechanism
for adjusting the support stiffness in horizontal direction.

altered continuously, creating multiple different test runs for
the CNN model using otherwise the same rotating system.
Furthermore, although support parameters can be continu-
ously altered in a straightforward manner in simulation mod-
els, a real experimental setup with adjustable support stiffness
is required to incorporate experimental uncertainty in the test
dataset and observe the prediction of the CNN model.

For this purpose, the guiding roll of a paper machine,
which has an additional mechanism for varying the horizontal
support stiffness, is considered as a test case. The rotor used
here consists of a 4 m long tube section and 0.5 m end shafts
on either side. The overall rotor weight is 720 kg. The rotor
is supported by two SKF 23124 CCK/W33 spherical roller
bearings. The experimental setup, measurement procedure,
the simulation model and its parameters are briefly described
in the following sections.More details about the experimental
setup can be found in previous research [36] while the details
related to the simulation model are available in [37].

A. EXPERIMENTAL SETUP
The test setup has a possibility to vary the horizontal stiffness,
and thus the measured dataset is similar to the data generated
in the simulation. The adjustable stiffness in the test setup
is implemented by using a similar structure as in balancing
machines, where a rotor is supported by plate springs. Sub-
sequently, the stiffness for the support is provided through
an external beam. Changing the position of the beam support
changes the stiffness of the beam end, which in turn alters
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TABLE 1. Averaged stiffnesses in different horizontal stiffness adjuster (HSA) positions in the experimental setup [36]. Same stiffness values are used in
the simulation model for data generation as well.

FIGURE 3. A sketch of the Paper machine’s steel tube roll with FE discretization. All dimensions are in
meters.

the stiffness of the horizontal support. The structure is built
at both ends of the rotor. Figure 2(a) shows the outlook of the
system and Figure 2(b) shows the mechanism for generating
adjustable stiffness [36].

B. MEASURED DATASET
The measured data consists of 532 samples. All the samples
are collected with the sampling rate of 1024 per revolution,
and hence sampling rate was dependant on the rotating speed.
100 rounds of data were recorded per every speed/file. The
varied parameters are the same as in the simulation dataset:
speed and stiffness. The speed is varied between 4 Hz and
18 Hz with increments of 0.5 Hz, resulting in 27 subsets of
files. The measurements were conducted at steady state con-
dition. The stiffness was varied in ranges between 2.04 and
18.32 MN/m. Table 1 shows the final stiffness values of the
devices, which are calculated as averages from 10 different
measuring points. Finally, the stiffness values in drive end
(DE) and non-drive end (NDE) were averaged and used for
the purpose of this study. Further details about the measure-
ment procedure are available in an earlier experimental study
by Viitala et al. [36], and the measured data is available
at [38].

C. SIMULATION MODEL
The main objective of the simulation model is to generate the
required amount of data for training the CNNmodel in a com-
putationally efficient manner, while representing the actual
rotor bearing system accurately. To that end, a high-fidelity,

rotor-bearing-support model of the test rotor is used. The
model, which has been experimentally validated before [37],
[39], uses 3D beam elements based on the Timoshenko beam
theory for obtaining computationally fast and yet accurate
dynamic response. Figure 3 shows the FE discretized sketch
of the rotor along with its dimensions. The asymmetry of the
tube section of the rotor is included by varying the thickness
of the cylindrical section based on ultrasonic measurement
similar to [37]. The thickness variation is implemented in the
model by defining the thickness profiles of the cross sections
along the length of the tube structure, thus affecting the area
moment of inertia.

The spherical roller bearings are included in the modeling
procedure by using a nonlinear bearing model [40], which
considers the effect of clearance and bearing inner ring wavi-
ness. In the simulations, the nominal bearing clearance of
60 µm is used, and measured waviness profiles of measured
sections are shown in Table 1. Waviness components from
twice to six times per revolution were measured from the
bearing inner ring for the non-drive end and drive end of the
machine.

The supports are modelled using a concentrated parame-
ter approach as mass-spring-damper elements, individually
in horizontal and vertical directions. This simplification is
possible because in this test rotor, there is almost no cross-
coupling between supports [41], and it contributes to the
overall computational efficiency of the model. Damping for
support structures has 2% damping ratio for horizontal and
3% for the vertical direction. Modal damping ratios 1.5%

120656 VOLUME 9, 2021



D. Bobylev et al.: Simulation-Based Transfer Learning for Support Stiffness Identification

TABLE 2. The two datasets obtained from simulation model to be used as training data.

FIGURE 4. The deep learning model architecture. The layer configuration is shown as a@b x c, where a is
the depth of the layer (number of filters), b is the height (length of the signal), and c is the width.

(1st), 2% (2nd), 2.5% (3rd) and 3.0% (4th to 6th) where
the value in parenthesis corresponds to the flexible mode
number. In the transient analysis, model reduction is applied
and the number of retained modes is 16. Simulation runs are
conducted for 9 seconds with a sampling rate of 2000 Hz
(time-step of 0.0005s). The resulting responses are captured
at the bearing locations and the centre of the rotor. The
computational time is approximately 300 seconds per single
simulation of 9 seconds. However, the computation time is
dependent on the system parameters, such as parameters of
nonlinear bearing model.

D. SIMULATION DATASET
The dataset contains the frequency-domain displacement at
the centre of the rotor (Node 13) in the horizontal direction
collected with the sampling frequency 2000 Hz, as shown in
Table 2. Rotation speed and stiffness are the varied parame-
ters. The simulation data in time domain format is available
as part of a larger dataset in [42].

In this study the response of node 13 (center of roll)
in the horizontal direction was used. For this purpose, the
datasets have been preprocessed accordingly. Moreover, the
dataset was also converted to frequency domain because it
includes the relevant dynamic information and can be investi-
gated thoroughly to identify the faulty parameter estimations
root causes. In addition, it allows the use of more compact
datasets. The proposed model was tested with the measured
dataset which was also converted to frequency domain. The
measured dataset is first resampled to match the simulated
dataset sampling frequency of 2000Hz. After the FFT conver-

sion, only signal amplitudes of up to 25 Hz were used, as the
critical speed varies from 9 Hz to 21 Hz, which determined
the shape of the input equal to 410, which corresponded to
the parameters used for Fast Fourier Transform (FFT).

Both measured and simulated data are pre-processed using
the steps shown previously in figure 1. For simulated data
the steps included data filtering and resizing. The measured
data was also filtered and re-sampled using time synchronous
averaging (TSA) from 1024 samples per revolution to 2000
Hz tomatch the simulationmodel with a higher sampling rate.
After scaling and FFT conversion, a low pass filter of 0-25 Hz
was used based on the machine’s operational speed range to
create optimized and focus pairs of datasets in the frequency
domain.

E. CNN MODEL ARCHITECTURE
In this study, 1D CNN model is developed and used as a tool
for feature extraction from the raw frequency domain vibra-
tion data obtained frommeasured and simulated datasets. Fig-
ure 4 shows the model architecture proposed in this research.
The model consists of four paired convolutional layers, each
pair is followed by a MaxPooling layer to decrease the num-
ber of parameters by four times. There are 32 filters in the
first two convolutional layers and 64 in the second pair. The
kernel size is 6 and 4, respectively. To proceed light features,
the layers with the low numbers of filters are used, at the
same time higher numbers result in the extraction of more
complex features. The convolutional layers are followed by
two simple fully connected layers. These layers are aimed at
making the predictions based on the obtained features from
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the convolutional layers. The number of neurons in these
layers is 512 and 128, respectively. The output layer has one
neuron, because this type of problem belongs to regression
and it predicts only one parameter as the output.

‘ReLU’ was used as an activation function and ‘Adam’ was
chosen as an optimizer. The batch size was kept as default,
which is equal to 32. By increasing the number of epochs, it
is possible to increase the performance of the model, at the
same time it is time consuming and overfitting is possible, so
this value should be chosen wisely.

The proposed model was implemented and tested using
the measured and simulated datasets. Frequency domain
responses were used as the input for the proposed model,
stiffness was the output variable. The model was trained for
100 epochs,Mean Squared Error (MSE)was used to calculate
the loss in CNN model. This loss is calculated as

MSE =
n∑
i=1

|yi − y
p
i |
2

n
(6)

where, yi is actual value, y
p
i is a predicted value, and n is the

number of predictions.

IV. RESULTS
A. OPERATIONAL SPEED MAP
This section aims to evaluate the fidelity of the simula-
tion model by comparing the simulated and the measured
responses for a range of horizontal stiffness values. The
responses are obtained over an operational speed range of
4-18 Hz when the horizontal stiffness is varied from 2.04
to 18.32 MN/m. Figure 5(a) and 5(b) show the horizontal
and vertical responses from the simulated model whereas
Figure 5(c) and 5(d) show the measured horizontal and ver-
tical responses, respectively. The measured maximum speed
was limited to avoid excessive vibration in the system. The
plots capture the maximum amplitude with the speed and
stiffness values from the dataset.

Firstly, due to the anisotropic support stiffness, the test
rotor has different resonance frequencies in the horizontal and
vertical directions. Since the test rotor operates in the low
frequency range, for this particular test case, the subcritical
vibrations are of key interest. The subcritical frequencies
occur at the fractions of the natural frequency such as 1/2,
1/3, 1/4,. . . , times the natural frequency. Therefore, the 2nd

subcritical harmonic response occurs at half the natural fre-
quency, the 3rd harmonic resonance occur at 1/3rd the natural
frequency and so on. Therefore, in Figure 5, the first number
denotes the natural frequency followed by the subcritical
component as the second number. For example, 1-2, 1-3
represent the 2nd and 3rd subcritical harmonics of the 1st nat-
ural frequency in individual direction. Figure 5 shows there
are subharmonic excitation frommultiple natural frequencies
(1st , 2nd and 3rd modes) in the horizontal direction in the
operational speed range, whereas in the vertical direction only
subcritical harmonics of the 1st natural frequency are visible.
The plots also show how the changes in horizontal support

alters the horizontal subharmonic frequency peaks while the
vertical response peaks remain unaffected both in simulation
and measurement.

B. SIM TO SIM: TRAINING AND TESTING THE MODEL
WITH SIMULATED DATA
For the initial testing purposes, the model was trained and
tested using only simulation dataset. Raw vibrational signal
was converted from time-domain to frequency-domain using
FFT. Secondly, the frequency range was limited to 25 Hz, this
was done due to the fact that this range contains all the nec-
essary peaks, moreover, it allowed to keep the input length of
the signal optimal for the proposed DL algorithm. The CNN
performance is compared to three baseline models. First is an
LR optimized with the ordinary least square method. Second
is an ANN model with two layers. The first layer has 256
nodes and second and final has one node. ReLu was used as
the activation function between the layers, and mean squared
error (MSE) was used to compute the error. Adam was used
to optimize the network. Third baseline model is SVR, which
is based on LIBSVM implementation of ε-SVR [43]. Radial
basis function kernel and parameters C=1.0 and epsilon 0.1
were used. Figure 6 depicts the predicted speed (a)-(d) with
LR, ANN, SVR and CNN, and Figure 7 (a) to (d) stiffnesses,
respectively. The blackline corresponds to the actual value
and blue dots as predicted values from the dataset.

The LR, ANN and SVR, which are typically used for
simpler problems were used as benchmark and justification
for the need of DL. Themean average error (MAPE) for speed
cases in LR is 14.4%, ANN 3%, SVR 7.6% and CNN 0.4%
and for stiffness cases LR is 46.4%, ANN 6.9%, SVR 21.6%
and CNN 0.9%.

For evaluation of CNN based model performance, the
model with 4 CNN, 2 MaxPooling and 2 Fully Connected
layers was built. The dataset with 8711 samples, where the
rotational speed is varied in the range of 4-18 Hz and sup-
port stiffness 2.04-18.32 MN/m, was randomly split into
train/test/validation batches. 70% (6098 samples) of the data
was used for training and 30% (2613 samples) for testing the
model. 20% (1220 samples) of the training data was used
for validation. The validation data included broad distribution
of the operating conditions. The CNN model validation was
conducted by monitoring the validation accuracy and training
accuracy. It was monitored that the validation error did not
grow, and therefore preventing the overfitting. Ten trials were
conducted. As a result, the average prediction error is 1.50%,
and the standard deviation is 0.49.

C. SIM TO REAL: TRAINING THE MODEL WITH
SIMULATED DATA AND TESTING WITH MEASURED DATA
Figure 8 demonstrates the predicted values against true values
of random trial for predicted speed (a)-(d) with LR, ANN,
SVR and CNN, and Figure 9 (a) to (d) stiffnesses, respec-
tively. The blackline corresponds to the actual value and blue
dots as predicted values from the dataset.
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FIGURE 5. The operation speed map for the test rotor showing how the sub-critical harmonic
frequencies for different bending modes are affected by the change in the horizontal stiffness.
(a) and (b) are the horizontal and vertical response from the simulated model whereas (c) and
(d) are the corresponding responses from the measured data, respectively.

FIGURE 6. Speed prediction with (a) LR (b) ANN (c) SVR and (d) CNN,
where the model is trained and tested with different segments of
simulated data.

The LR, ANN and SVR, which are typically used for
simpler problems, were used as benchmark and justification
for the need of DL. Themean average error (MAPE) for speed
cases in LR is 456%, ANN 71%, SVR 31%, and CNN 5%
and for stiffness cases LR is 752%, ANN 81%, SVR 44%,
and CNN 19%. In general, the proposed CNNmodel shows a

FIGURE 7. Stiffness prediction with (a) LR (b) ANN (c) SVR and (d) CNN,
where the model is trained and tested with different segments of
simulated data.

good performance, although the deviation slightly increases
with the increasing stiffness. This might be due to the coarse
datapoints at high stiffness, and that the measured dataset
does not include 1× response, due to resonance.

Ten trials were conducted. The proposed model pre-
dicts the stiffness based on the measured frequency-domain
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FIGURE 8. Speed prediction with (a) LR (b) ANN (c) SVR and (d) CNN,
where the model is trained with simulated data and tested with
measured data.

response with the average error of 18.64%, and standard
deviation of 1.62 when the output value is stiffness and 4-5%
when the output is speed. When speed is output, the predic-
tions in general are good. Outliers are caused by samples
where 1× component is not the highest component in the
response, the speed is identified by the peak with the highest
component, this logic is followed by the simulated data-set. In
addition, the lack of excitation at critical speeds in steady state
condition caused the outliers, as the critical speed information
was weakly included in the signal. By excluding outliers, the
predictions are closer to the real values.

FIGURE 9. Stiffness prediction with (a) LR (b) ANN (c) SVR and (d) CNN,
where the model is trained with simulated data and tested with
measured data.

V. DISCUSSION
Since the focus of the study was on the implementation of a
DL model that can determine the stiffness of the support, it is
clear that the model is very sensitive to input data and some
degree of difference between the two datasets makes it almost
impossible to identify the stiffness when the model is tested
on a different dataset. It can be caused by non-optimal param-
eters of the DL model, sampling frequency, sampling method
or input length. Furthermore, the neural network can only
detect issues that are included in the training data. Therefore,

FIGURE 10. 9 Hz case, where the measured response has mechanical harmonics of speed overlapping with
the resonance peaks.
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FIGURE 11. 7 Hz case, where the measured response at resonance frequencies are relatively low and not
clearly visible.

FIGURE 12. 18 Hz frequency domain response measured vs simulated.

a general solution would be to incorporate more complexities
that influence the real machine vibrations into the simula-
tion model to narrow the gap between the simulation and
the real machine. That way, the training data replicates the
real machine behavior more accurately which would lead
to more accurate parameter predictions. Alternative methods
such as graph theory [44], or multi-layer domain adaptation
method [45] could be promising. In addition, adaptive batch
normalization (AdaBN) [5] could be used to adjust the neural
network to slightly different dataset distributions or Monte
Carlo method could be used to generate large datasets fused

from rotor systems with slightly varying system dynamics
that could cover the real machine system dynamics.

In addition, the response in the frequency domain demon-
strates more clearly, the dynamic features of the signal and
simplifies the task associated with finding a suitable pattern
in the sample, on which the model should concentrate on for
stiffness estimation.

At the same time, the use of frequency domain response
also has its own nuances caused by data imperfection. There
are several outliers (see Figure 9 (d)) in the results, caused
by phenomena of the measured data. The outlier group 1 in
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Figure 9 (d) consists of samples with low stiffness. Some
of the predictions correspond to the cases where the critical
speed component coincides with the 1× component or some
of the 1× harmonics, which makes it difficult for the model to
identify the resonance component. This phenomenon can be
seen in the example in Figure 10 in which case, the speed was
set to 9Hz and stiffness was varied from 2.04-18.32MN/m. In
this case, the resonance component of lower stiffness samples
is close to 1× component or overlaps it, forcing the model to
predict the stiffness based on the next peak in the response.

A second problemwith predictions in the low stiffness, low
speed range is that the resonance peak is poorly excited or
almost invisible. In this case, the stiffness is determined by
the next peak of the larger amplitude. Figure 11 shows an
example where the speed is 7 Hz and the stiffness ranges from
2.04-18.32 MN/m. At lower stiffness, the resonance peak is
low compared to adjacent peaks. The adjacent peaks of larger
amplitude remain unchanged with variation in horizontal
stiffness; which suggests that, these vibrations are probably
transferred from the subharmonic resonance occurring in the
vertical direction. The model then identifies stiffness based
on some of the peaks along the green lines in Figure 11.

The outlier group 2 includes samples with higher stiff-
nesses. In this case, the resonance component is not visible
from the response, as a result, the model then predicts the
stiffness based on the 1× component. For clarity, Figure 12
shows an example of this situation, the speed is 18 Hz and the
stiffness is 18.32 MN/m. As it can be seen in the measured
case, the resonance peak is quite undetectable, while it can
be visibly seen in the simulated case that was used to train
the model. As a result, the model predicts the stiffness based
on a single peak (1× component) visible in the measured
response.

VI. CONCLUSION
In the study, the transfer learning from simulation to real
machine was developed. The proposed deep learning 1D
CNNmodel is able to extract the features from vibration data,
and it estimates the varied parameter as the output, forming an
end-to-end machine learning system. It was determined that
the model is sensitive to input data, which entails the need
for data pre-processing. The results from benchmarking algo-
rithms, LR, ANN and SVR show reasonable predictions in
sim-to-sim case, but the error percentage increased when the
models are tested with real measurements. The CNN model,
however, successfully predicts the output using frequency-
domain data as input for both sim-to-sim and sim-to-real case.
In sim-to-real, the average error for the stiffness is 19 % and
the standard deviation 1.62, which can be considered rea-
sonable values, as no additional excitations were used in the
measurements to excite the system dynamics. The complexity
of the model and the data sets justifies the requirement for the
deep learningmodel, and is probably the reasonwhy the CNN
model performs better than the benchmark models for the test
rotor system.

In future work, more attention should be paid to data
quality and pre-processing. The complexity of the simulation
model can be optimized while preserving the fault features
to increase training efficiency. It is also possible to tune
the performance of the proposed model by adjusting its
hyper-parameters (number of layers, filters, filter size, etc.).
Moreover, frequency-domain and time-domain data can be
combined and tested with a 2D CNN model.
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