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ABSTRACT: In this work, we demonstrate how to identify and characterize
the atomic structure of pristine and functionalized graphene materials from a
combination of computational simulation of X-ray spectra, on the one hand,
and computer-aided interpretation of experimental spectra, on the other.
Despite the enormous scientific and industrial interest, the precise structure
of these 2D materials remains under debate. As we show in this study, a wide
range of model structures from pristine to heavily oxidized graphene can be
studied and understood with the same approach. We move systematically
from pristine to highly oxidized and defective computational models, and we
compare the simulation results with experimental data. Comparison with
experiments is valuable also the other way around; this method allows us to
verify that the simulated models are close to the real samples, which in turn
makes simulated structures amenable to several computational experiments. Our results provide ab initio semiquantitative
information and a new platform for extended insight into the structure and chemical composition of graphene-based materials.

I. INTRODUCTION

Graphene (G) and graphene oxide (GO) have attracted the
attention of academic research as well as industry globally, in
particular since 2010.1,2 Graphene-based materials are
promising candidates for a vast variety of applications in
several fields, such as biotechnology, nanoelectronics, solar
cells, lithium-ion and sodium-ion batteries, supercapacitors,
anticorrosion coating, and sensors, to name a few.3 This
growing interest led, for instance, to the European Union
launching in 2013 the Graphene Flagship research program,
funded with 1 billion EUR.4

Many of the current scientific endeavors focusing on
graphene and derivatives promise to bring this material and
its outstanding properties (mechanical, thermal and electrical/
electronic) from the laboratory to industry. These efforts are
hindered by the lack of detailed understanding of the atomic
structure of graphene-based materials, beyond the most simple
ones, such as pure sp2-bonded crystalline graphene and
graphite. Carbonaceous materials often also contain elements
other than carbon, especially oxygen functionalizations, in
many forms. Ideally, graphene would consist of monolayered
sp2-bonded carbon only, but in the experimental reality this is
often not the case. When we move from the 2D graphene
structure (including defects, doping and impurities, whether
intentional or not) to graphite, the structure is still sp2-rich, but
the complexity of the material is again increased. Previously,
experimental X-ray spectroscopy has been utilized in order to
understand the structure of GO,5,6 but since the number of
experimental samples has been quite limited and, in addition,

sample preparation methods as well as the precursor materials
differ, it is hard to compare the results. So what do we really
know, in practice, about the structure−property relationships
of these materials?
The actual structure of GO, not to mention graphite oxide,

has been under debate for some time now. In 2010, Dreyer et
al. published a Critical Review7 about synthesis and structure
of GO. Their main conclusion is that there is no single GO but
that the structure, properties, and nature of GO depend
strongly on the quality of the precursor material, i.e., the
graphene or graphite source, as well as the oxidation protocol.7

This conclusion is readily justified, since the complex
chemistry involved can yield several kinds of outcomes. The
same logic applies for many carbon allotropes. Also, more
recent voices have been raised for the importance of
understanding the relationship between the performance and
experimental characterization of this material.8,9 In this work,
we include both GO and reduced GO (rGO), in the form of
samples that contain different amounts of oxygen-containing
functional groups. In other words, we study a range from
ordered, pristine, or precisely functionalized materials to nearly
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amorphous structures. Careful characterization is the key for
understanding the link between the structure and properties of
GO.
In this study, we provide a computational methodology that

extends on initial work in refs 10−13, as well as a
comprehensive set of reference data, for interpreting
experimental X-ray spectroscopy data of graphene-based
compounds, aiming at careful structural and chemical
characterization of these materials. Among the different X-ray
spectroscopy techniques, we focus on X-ray absorption
spectroscopy (XAS) and X-ray photoelectron spectroscopy
(XPS). XAS and XPS are popular and accurate methods for
analyzing the composition of materials in general.14,15 XAS
probes the allowed transitions from electronic core levels to
conduction (unoccupied) states. In other words, it provides
detailed information about the structure of the material’s
conduction band. XPS is a more widely used method. It
provides the spectrum of core−electron binding energies.
However, especially in the case of structurally and chemically
complex materials, as is often the case for GO, interpreting the
experimental data is extremely challenging due to the features
arising from varying chemical environments. Recreating the
spectra from first-principles can be an invaluable aid toward
understanding the highly convoluted experimental data.
Several steps, on different levels of theory, for computational
interpretation of XAS and XPS spectra have already been

taken,10,11,16−29 and now it is time to turn the focus onto
systematic analysis of graphene-based materials.
We use a carefully selected ensemble of model structures, to

represent the different existing types of graphene-based
materials. From these structures, we calculate their signature
X-ray spectral responses from density functional theory
(DFT). These f ingerprint spectra10 are then reclassified
according to the immediate chemical environment of the
atomic sites from which they originate, using unsupervised
machine learning (ML). These calculated spectra can then be
compared with experimental spectra via computational
fitting,11 to estimate the type and composition of the
experimental graphene/graphite sample in question. In this
way, we manage to provide a qualitative and quantitative
means to characterize the range of atomic structures present in
G- and GO-based materials.

II. COMPUTATIONAL AND EXPERIMENTAL
PROTOCOLS

In this study, we investigate the role of the defect
concentration of several computational models, in the form
of vacancies and oxygen-containing groups, to study trends in
their X-ray spectroscopic signatures. The changes that take
place when the structural models are modified, going from
pristine to nearly amorphous, are depicted in Figure 1. Clearly,
the dominant effect is an increasing “smearing” of the well-

Figure 1. Simulated C 1s XAS spectra of graphene samples when defect and/or oxygen concentration is gradually increased: (a) pristine graphene,
(b) graphene with a single vacancy defect, (c) defective sample with high vacancy concentration, (d) graphene with some oxygen, (e) graphene
with more oxygen, and (f) graphene with high oxygen and defect concentration. The upper row consists of samples without oxygen, whereas the
oxygen-containing samples are placed in the lower one. The oxygen concentration varies from 10 at. % up to 19 at. %. After the pristine sample, the
defect concentration varies systematically from one SV defect to four missing carbon atoms, although some samples showed tendency for self-
healing, i.e., vacancies were closed during relaxation, which lead to the presence of some disordered ring structures (Section III). The
corresponding spectra change from representing pristine graphene to something that is nearly amorphous. The main pristine graphene peak
positions are depicted with dashed lines as references. Calculated individual spectra of the sites in the samples are depicted with gray lines. It is clear
how disorder increases as the number of inequivalent local chemical environments is varied. Schematic images of the corresponding structures are
presented next to the spectra. Spectrum was reproduced with permission from ref 11. Copyright 2019 American Chemical Society. Spectra very
similar to spectra b and d have also been published in ref 30, which discusses trends of carbon-based materials in XAS measurements from the
experimental point of view.
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defined spectroscopic features of the crystalline sample as more
defects are introduced. Before going into the detailed analysis
of the connection between spectra and structures in Section
III, this section introduces the methodologies used for
obtaining the structural models, computing the spectra,
doing the data classification and carrying out the experimental
measurements.
II.A. Carbon-Based Structural Models. Pristine gra-

phene, single vacancy (SV), double vacancy (DV) and multiply
defective graphene structural models (Figure 1a−c and Figure

3) were made in house, using established methods, i.e., via
lattice parameter optimization and relaxation. Similar struc-
tures (pristine graphene and SV) have been employed in our
previous work,10,11,30,33 but the structural optimization and
several tests were repeated for this study with a newer version
of the GPAW code,34 to ensure methodological consistency
with the new calculations.
The oxygen-containing structural models have been taken

from ref 35 (Figure 1d−f and Figure 4). The oxygen
concentrations shifts from 10 at. % up to 19 at. %. We
performed additional cell-shape optimization and relaxation on
those samples, in order to ensure consistency with the
generation method and the level of theory used for our pure
carbon samples. Although we have previously used a ML-based
interatomic potential36 for efficient structure generation of
amorphous carbon samples,10,11,37−39 this potential is limited
to elemental carbon. Therefore, we rely on DFT-based
functionalization for the time being following refs 37 and 38,
but we envision that we will be able to expand the
compositional and configurational space spanned by the
present work in the near future, as reliable carbon−hydro-
gen−oxygen (CHO) ML potentials become available.
The monolayered systems used here consist of 176−213

atoms and periodic boundary conditions (PBC) were applied
during relaxation. The system size and the convergence of
excited state calculations were carefully studied before carrying
out the calculations on larger scale. All calculations in this work

were carried out with the DFT code GPAW,34,40 using the
PBE functional,41 and van der Waals corrections as introduced
by Tkatchenko and Scheffler.42

II.B. X-ray Spectra Calculations. To explain experimental
results, we employ DFT-based simulations of XAS and XPS
spectra, all performed on the structural models described
above. XAS calculations are carried out as implemented in the
GPAW code34 by Ljungberg et al.43 While different
approximations to computational X-ray spectroscopy may
not always yield satisfactory results,17 the GPAW implementa-
tion has been shown to perform particularly well for systems
containing carbon and oxygen, and it has been shown to
produce XAS spectra that are in good agreement with
experiment.10,11,43,44 Additionally, the method has been
validated by testing it with smaller molecules; benzene and
formic acid (Figure 2). The first one has been a candidate for
testing also previously,20 and the latter one shows how the
sharp peak position is also related to carboxylic acid that is
anticipated to be present in these substances. The experimental
spectra are from refs 31 and 32, respectively. General
information about excited state calculations is available in
refs 20 and 45.
XAS calculations within this framework consist of two steps.

First, the cross section for the transitions between the core
level and the different conduction band states is obtained via
the Haydock recursion method. Second, a so-called Δ Kohn−
Sham (ΔKS) calculation is carried out to estimate the energy
differences between the ground state and the lowest excited
state (i.e., the excited state for which the core electron is
promoted to the system’s Fermi level). This provides an
accurate estimate of the correct energy alignment of the XAS
spectra. In addition, there is a correspondence between the
ΔKS values and experimental XPS spectra. Further details
about the method are given in refs 43 and 46, and its
applicability to carbon-based systems has been covered in
detail in the literature.23,47,48 We particularly refer the reader to
our previous work on amorphous carbon.10,11

Compared to our previous work,10,11 we have introduced
some improvements in the methodology, especially for more
consistent handling of the magnetic structure (local magnet-
ization) that arises in the presence of defects and/or
amorphous structures.8,49 Even for crystalline materials, local
magnetization effects appear in the presence of a core hole.43

For the present study, we carry out five self-consistent-field
(SCF) DFT calculations for the ground state energy of each
structure. Each of these calculations starts with a different
(random) initialization of the local magnetic moments (local
spins). For systems with complex magnetic structure, such as
highly disordered carbons (the case here), each of these
calculations may converge to a different metastable ground
state. Typical differences in these energies range from
negligible (μeV) up to 100 meV or so. The lowest among
these five energies is selected as ground state energy. For the
subsequent excited state calculation, the system’s total
magnetic moment is fixed to the magnetic moment of the
ground state plus and minus one spin, corresponding to the
two possible core-state to conduction-band transitions (one
where the core electron’s spin has the same sign as the valence
band’s total spin, and one where it has opposite sign). In total,
for each atomic site we carry out (i) five “ground state”
calculations, (ii) two ΔKS calculations (“spin up” and “spin
down”), and (iii) two Haydock recursion calculations for the
XAS cross sections (also spin up and spin down). We note

Figure 2. Experimental spectra of well-known molecules: benzene and
formic acid, compared with computational spectra. Experimental
spectra are reproduced with permission from refs 31,32, respectively.
Copyright 2004 Elsevier and 2001 American Chemical Society,
respectively. Note that the experimental formic acid spectrum is
measured on copper substrate, which alters the result compared to the
computational mode however, the agreement between the spectra is
notable.
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that, at nine DFT calculations per site, for a typical periodic
supercell of ∼200 atoms, these calculations are about 2000
times more expensive than a regular DFT calculation. The
numbers reported here are the transition energies averaged
between both spins, noting that this is reasonable for
condensed matter systems where the splitting is small. On
the other hand, splittings can be rather large for molecular
systems, such as O2.

50 Nevertheless, averaging between the
spin channels allows us to make sure that we are examining all
possible cases that can be present in the samples.
In all cases, k-space integration was performed on a 2 × 2 ×

1 Monkhorst−Pack (MP) grid.51 The simulation box
dimensions along the x and y directions were approximately
22 and 21 Å, respectively. The unit cell size along the z
direction was 15 Å when oxygen is not present in the samples.
In the case of oxygen-containing samples the amount of
vacuum was increased to 20 Å in order to ensure convergence,
due to the presence of functional groups on both sides of the
films and because the most defective structures are buckled.
Because of the importance of spin effects highlighted above, all
calculations were carried out with spin polarization.
In addition to the existence of local magnetic moments in

disordered carbon structures, they exhibit excitonic effects due
to the Coulomb interaction between the core hole and the
excited core electron. There are two sides to core excitons in
disordered carbons, both of which pose challenges within the
context of the present methodology.10,22 On the one hand, the
excitonic resonance in the XAS, whereby the cross section for
core electron excitations is increased for transition energies
corresponding to the bound exciton state (which shows up as a
characteristic sharp feature in the XAS of crystalline carbon
materials), cannot be reproduced.43 On the other hand, for the
ΔKS calculations, a bound hole−electron pair forms when the
core electron is removed from the core and added to the
conduction band. The corresponding exciton binding energy
would need to be subtracted to obtain the actual energy
difference between the core state and the Fermi level (i.e., the
actual core electron’s binding energy). There is currently no
established procedure to carry out this correction. Fortunately,
this artifact leads to a systematic underestimation of ΔKS
energies, which is easily accounted for with a constant shift of
the energy scale, as discussed in more detail in refs 10 and 22.
Therefore, when experimental spectra are fitted with computa-
tional data sets, a small constant shift of all ΔKS values, i.e., the
energy alignment of the spectra, is applied.
Finally, the spectra depicted in this work are either averages

for each sample, i.e., each “simulation box”, or averages for an
“atomic motif”, obtained by clustering data from similar
chemical sites, as explained below. The total data set used in
this study consists of approximately 2000 computational
spectra.
II.C. Data Classification: Clustering of the Chemical

Environments. All the atomic sites in the computational
samples used in this study are grouped together (“clustered” in
ML jargon) according to similarities in their local structure, in
order to obtain the f ingerprint spectra11 of the characteristic
chemical environments present in our data set. For this
purpose, a many-body atomic descriptor52 based on the
“smooth overlap of atomic positions” (SOAP)53,54 has been
employed. SOAP descriptors encode atomic structures into a
rotationally invariant numerical representation, which can then
be used in ML models, e.g., to parametrize interatomic
potentials55 or to perform data classification, as here. From

these SOAP descriptors, a “kernel” function can be constructed
that provides a measure of similarity between any two given
atomic environments. The method used to cluster atomic
environments based on these similarity scores is an
unsupervised ML technique for data classification known as
k-medoids.56,57 Clustering by SOAP kernels rests upon
structural motifs, i.e., separating sites based on their bonding
environment (bond lengths and angles) as well as on the
chemical nature of the neighboring atoms. The variant of
SOAP that we use, described in detail in ref 52, improves in
speed and accuracy upon the standard implementation, via the
introduction of modifications to the algorithm and basis
functions, respectively (the basis functions in SOAP are used
to numerically expand the atomic density field). Multispecies
support, not described in ref 52, is added by augmenting the
overall radial basis set with one basis (sub)set per species,
where the bases corresponding to different species span
orthogonal function spaces. All sites in the samples are
clustered at the same time, with the same kernel, regardless of
the central element (C, O, or H) in question. Since there are
no hydrogen spectra to study, hydrogen sites in the data set are
disregarded.
We find that the clustering of oxygen spectra closely recovers

common “chemical intuition”. When we combine the
computed X-ray spectroscopy data from all the oxygen sites
in our database, we obtain fingerprints of the oxygen-
containing functional groups very consistently. In the case of
carbon, the situation is more complicated, since carbon is
present in a wider variety of chemical environments. For this
reason, SOAP hyperparameters were optimized to put more
emphasis on bond lengths compared to the nature of the
functional group that is possibly bonded to the carbon site. In
this way, we manage to reliably separate differently bonded
carbons within the sp2 network, i.e., distinguish between
different ring structures where defects are present and estimate
whether the carbon site in question is bonded with a double or
single bond to the neighboring atoms.

II.D. Experimental Spectra. Experimental spectra of three
samples were analyzed by utilizing computational references.
Fabrication methods and the spectra themselves have been
previously published in ref 30 as a part of a more
comprehensive data set of carbon materials. These particular
experimental samples, which are sp2-rich, were chosen because
they are suitable to be analyzed with the computational
references obtained in this work for graphene-based systems.
The experimental samples were acquired as follows: highly
oriented pyrolytic graphite (HOPG) was obtained from a
commercial source (Scanwel, U.K.), the graphene sample was
fabricated via thermal annealing, and the graphite oxide sample
was made by applying a modified Hummers’ method.30,58

For XAS measurements, described in more detail in ref 30, a
bending magnet (beamline 8−2) was used at the Stanford
Synchrotron Radiation Lightsource (SSRL), employing a 55°
incidence angle (magic angle) of X-ray incidence. This
beamline has a spherical grating monochromator with
approximately 200 meV resolution (using 40 × 40 μm2

slits). The total flux was on the order of 1010 photons/s, for
which beam damage with spot size around 1 × 1 mm2 at the
interaction point was not noticeable, even for extended
exposure. The X-ray energy ranges scanned for absorption
edges were as follows: carbon 1s from 260 to 350 eV and
oxygen 1s from 520 to 560 eV. During all the measurements,
the incoming flux was recorded using a nickel grid with a gold
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sputtered film. A more detailed description about the
measurements as well as sample fabrication can be found in
ref 30, and ref 59 provides more experimental data about these
types of samples.

III. RESULTS AND DISCUSSION

III.A. XAS Spectra of Whole Structures. The structures
we employ as representative examples of oxygen-free graphene
are depicted in Figure 1a−c. The defect concentration in the
samples was systematically increased by creating vacancies.
The C 1s XAS spectra calculated from these structures are
depicted in Figures 1 and 3 for the whole samples and for
selected sites around the vacancies in Figure 3b. Figure 3a
shows how the features of the spectra are broadened when
defect concentration increases. This is to be expected since the
presence of defects breaks the symmetry of the graphene
structure. In other words, the presence of defects increases the
number of inequivalent atomic sites (for pristine graphene,
there is only one inequivalent site). This behavior has also
been shown experimentally.5,30

A slight shift of the π* and the σ* peaks toward higher
energies can also be observed, especially in the case of the most
defective sample. As discussed, the presence of the defects
affects the peak positions. However, the interpretation of this
broadening as observed in the calculated average spectrum of
the whole sample is not straightforward. This is the reason why
we also study, individually, the spectroscopic signatures of the
sites around the defects themselves. Figure 3b shows how the
presence of the less stable SV defect, which has a very reactive
site10 in the middle of the larger ring structure, presents a π*
feature lower in energy than that of the more stable DV defect.
At the same time, the σ* feature for the SV is shifted toward
higher energies than that of the DV. Compared to pristine
graphene, the DV defect presents shifts of the π* and σ*
features toward higher and lower energies, respectively. In

contrast, the SV defect spectrum does not show appreciable
shifts of these features. Instead, the main effect is a broadening
of the peaks, accompanied by the emergence of two very small
peaks at lower energies than the π*, which are related to the
highly energetic dangling bond.
When the spectra from all samples are clustered, i.e.,

separated into different groups according to their chemical
environment and, especially, their bond length, fingerprint
spectra can be assigned to the different atomic motifs. Those
spectra can then be flexibly combined for comparison with
(and to fit) XAS and XPS data from experimental samples.
The structures presented in the study by Kumar et al.35

allow us to perform our XAS and XPS (Section III.C)
calculations since we want to compare GO structures with
varying amounts of different oxygen-containing groups system-
atically. Some attempts to create larger databases of ML-based
GO structures have been made.60,61 We focus here on a more
limited set of structures, because of the computational
demands of full electronic-structure computations. Moreover,
given the intrinsic locality of core−electron excitations, the
results obtained here, within periodic boundary conditions,
and utilizing data clustering, are representative of larger
systems and can be directly compared with experiment. As a
matter of fact, the structures presented in Figure 1 do not need
to be seen as slabs, but can rather be regarded as a collection of
local chemical environments, that will be present in
experimental samples with different proportions. Furthermore,
we carried out tests to verify that the results obtained from
computational 2D models are also applicable to fit graphite-
based experimental spectra (i.e., from 3D graphitic materials).
This is because the layers in graphite do not exhibit covalent
bonding, being instead bonded via weak van der Waals
interactions, with correspondingly negligible chemical shifts in
the X-ray spectra associated with them.
The 2D samples by Kumar et al.35 provide a wide variety of

chemical environments, including also quite unexpected

Figure 3. (a) Simulated XAS spectra of defective graphene samples without functionalization. The depicted spectra are averages calculated from the
whole sample, except in the case of pristine graphene, since in that sample all the sites are symmetry equivalent. Corresponding structures are
depicted in Figure 1. As in the case of Figure 1, the pristine spectrum has been published before in ref 11 and the SV spectrum in ref 30. Reprinted
with permission. Copyright 2019 and 2020 American Chemical Society. Note that the calculated spectra are depicted as they appear, and they are
not shifted according to any literature reference. (b) Fingerprint spectra of the defects: SV and DV. Only the sites around the defect were taken into
account when the average spectra were calculated. Schematic images of SV and DV are depicted next to the plot.
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atomic environments, such as sp chains (Figure 1e,f). Similar
atomic motifs have also been observed in amorphous models
created with ML-based methods.37,38 These aforementioned
models have been shown to be in very good agreement with
experiment.62,63 Since we reclassify all the sites present in the
samples individually to be compared with experimental spectra,
also exotic chemical environments are a matter of interest since
we want to understand whether those atomic motifs are
present in the experimental samples. When the comparison,
i.e., computational fitting, is carried out, clustered sites that are
not present in the samples will not show up in the fit. Also, the
convergence criteria was, naturally, kept the same for all
excitation calculations and all the sites in the samples, and thus,
if some sites were not physically sound enough to converge
with respect to the set criteria, they were automatically
removed from the data set.
Interestingly, during structural relaxation the most defective

and buckled structures showed behavior resembling the so-
called self-healing properties that graphene-based materials are
known to have64−67 by closing created vacancies and forming
new bonds between carbon atoms. As a result of this
phenomenon these structures ended up having more
disordered ring structure instead of clear SV or DV types of
vacancy defects. It has been experimentally shown that vacancy
defects can travel along the 2D model, they can change their
nature65 and the resulting graphene sheet can be even
completely amorphous.65,68 Presence of defects, not to
mention lack of long-range order, changes the properties,
such as conductivity and photoluminescence, of the material
dramatically.35,65−68

The C 1s XAS spectra of oxygen-containing samples, i.e.,
averaged over the individual spectra of all carbon sites in the
samples, are presented in Figure 4. The trends are clear: the
less defective structure with less oxygen (Figure 1d) has sharp

features resembling the crystalline spectra, whereas the most
defective and oxidized sample (Figure 1f) has a spectrum that
resembles an amorphous sample.10,11,44 The O 1s XAS spectra
from the same samples are depicted in Figure 4. The O 1s
spectra are slightly more smeared in the plots (Gaussian
smearing σ = 0.5 eV) than the C 1s spectra (Gaussian smearing
σ = 0.3 eV) to account for configurational disorder and thermal
broadening,11 since the oxygen sampling is significantly smaller
than carbon sampling in our structures. The same settings
apply to all O 1s spectra in this work. During the fitting of the
experimental spectra, in Section III.D, smearing also accounts
for broadening of experimental spectra due to the finite
precision of the apparatus. For fitting the spectra, a Gaussian
smearing with σ = 0.5 eV is used in all cases.
As observed for the C 1s spectra in Figure 4, in the case of O

1s, there is a clear trend of how the features become broader
when the amount of oxygen and the defect concentration
increases and, thus, also the variety of local chemical
environments increases. Figure 4 introduces an additional
spectrum that was not shown in Figure 1, from a hydroxyl-rich
sample (structure depicted in Figure 4c). We note that the O
1s spectra of hydroxyl-rich and ketone-rich samples differ
regarding the onset of the spectra, whereas the C 1s spectra
(Figure 4d) from the same samples remain nearly the same.
Both samples contain hydroxyl and ketone groups, which is
also likely to happen in the experimental reality. However, just
by looking at the C 1s spectra it is speculative to say anything
about their relative proportions. Furthermore, the features at
the onset of the O 1s spectrum of the ketone-rich sample
originate from the presence of ketone groups. This is
evidenced by the fact that, when the oxygen sites are clustered
according to their chemical environments (Figure 6), it is the
ketone cluster that exhibits these features. These observations
strongly suggest that, when the presence of oxygen-containing

Figure 4. Simulated (a) C 1s and (b) O 1s XAS spectra of graphene samples with different oxygen concentrations ranging from 10 at. % up to 19
at. %. The depicted spectra are averages calculated from the whole sample and the corresponding structures are depicted in Figure 1 as well as here
(c) ketone-rich (left) and hydroxyl-rich (right) next to the spectra (d) to highlight the difference between the samples.
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functional groups is being analyzed, most of the attention
should be paid to the oxygen spectrum.
III.B. XAS Spectra of Atomic Motifs. The clustering of

the sites in the computational samples was carried out by
utilizing a SOAP kernel,52−54 as detailed in Section II.C.
The clustered XAS spectra are presented in Figures 5 and 6.

These spectra together with additional auxiliary spectra, i.e.,
spectra corresponding to defects or carboxylic acid (COOH)
group, are used to fit the experimental spectra according to the
absolute O 1s intensity measured from the sample. When the
clustering was performed, emphasis was put on bond lengths
over nature of neighboring atoms, although that was also taken
into account. As a result, we were able to cluster oxygen sites
closely following common chemical classification (ether,
ketone, hydroxyl, etc.). By contrast, in the case of carbon, we
can obtain more detailed information about the precise way
how carbon atoms are bonded to their nearest neighbors. Short
bond length indicates double bonding, whereas elongated
bond length suggests repeated single bonding, which can be
present, e.g., in bigger ring structures and in turn disrupts the
sp2 network. In other words, this clustering scheme can

distinguish between carbon bonded to oxygen with a longer
single bond or with a double bond, and whether the sp2

network is defective.
With respect to the fitting of experimental spectra, the used

approach was introduced in our previous work.11 However,
this time we focus on carbon-based materials that contain sp2-
bonded carbon only. As we have shown in ref 10, different
types of carbon, more precisely differently bonded carbon sites,
naturally have dissimilar X-ray spectroscopic signatures. Thus,
in order to compare computational references with sp2-rich
experimental samples, references obtained from sp2-based
computational samples are necessary. Since the complexity of
graphene/graphite oxide can reach the level of amorphous
material, it can only be represented by a large data set of
computational spectra. Then, data clustering is needed to
reduce this complexity. These clustered X-ray fingerprints can
be used in analysis of experimental spectra, as will be discussed
in Section III.D.

III.C. Computational XPS Spectra. The calculated C 1s
ΔKS distributions, that correspond to experimental XPS
spectra, of the structures presented in this work are depicted

Figure 5. C 1s XAS spectra based on a clustering technique. All carbon sites in all samples presented in this work were clustered, i.e., classified
according to their chemical environment. The individual spectra are depicted in gray, which gives an estimate of how many sites there are in each
cluster and how often these sites occur in the original samples.
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in Figure 7a. The spectra for individual motifs (obtained from
the clustering) are plotted in Figure 7b for comparison. The
pristine graphene sample has only one C 1s ΔKS value, since
all the sites are symmetry equivalent, and it is plotted with a
vertical line as a reference. Note that the clusters contain two
types of sp bonded carbon. The two types of sp sites in the
samples arise from sites that are part of a ring (lower in energy)
and sites that are part of a chain (higher in energy). The XAS
calculations for chain sites did not converge, but the XPS
calculations (ΔKS) did, and they are thus included in the ΔKS
data set.
In this context, O−C−O refers to a carbon that is bonded to

two oxygen-containing functional groups. These groups can be
very different but, over all, they seem to fit in the same energy
range. For instance, the computational ΔKS value for
carboxylic acid (for the carbon that is bonded to the ketone
and to the hydroxyl group) is approximately 286 eV, which is
in good agreement with.22 Our results suggest that in XAS
measurements this particular site shows a clear peak,10 whereas
in XPS measurements it can be seen only as a weak tail.
Experimental results support this observation.5,6,9

All computational XPS spectra are depicted by applying
Voigtian lineshapes in order to reproduce the broadening
caused by instrumental resolution (Gaussian broadening) and
broadening that is caused by the lifetime of the excitation
(Lorentzian broadening).22,23 All ΔKS distributions presented
in this work are normalized.
The samples that contain only carbon (plotted with dashed

lines) have narrower distributions than the samples with
carbon sites that are bonded to oxygen (plotted with solid
lines) (Figure 7a). Again, the simulated spectra, this time XPS
spectra, show a clear trend: as the disorder increases, features
are broadened. The oxygen-containing samples also have

bimodal distributions, i.e., features that appear higher on the
energy scale, compared to the pure carbon samples. This has
also been observed experimentally.5 This so-called “tail”
becomes higher when the amount of oxygen is increased.
When we look at the clustered C 1s ΔKS distributions (Figure
7b), it is clear that these features, higher in energy, do in fact
arise from carbon sites that are bonded to oxygen.
The simulated O 1s XPS spectra, depicted in Figure 7c, do

not show such clear trends. Instead, the location of the main
peak shifts toward higher energies as the oxygen content and
the defect concentration of the sample increase. Attending to
the clustered O 1s spectra (Figure 7d), this may be caused by
increasing amounts of ethers within the carbon network. This
would be a natural consequence of increased defect
concentration, since vacancies in graphene can be reactive,
and thus, enable oxygen becoming part of the ring structures.

III.D. Computational Fitting of Experimental Data. On
the one hand, XAS spectra contain far more information than
XPS spectra.10,11 On the other hand, the interpretation of both
XAS and XPS experimental spectra can be equally demanding,
and computational references can aid in both. However, in this
work we focus on XAS fitting only, since the information
captured by XPS measurement is implicitly included in XAS
data in the form of energy alignment, and the measured XAS
spectra are rich with features that cannot be detected with
XPS.
In this work we aim at using computational reference spectra

to fit, and thus interpret, three experimental XAS spectra from
three different sp2-rich samples (Figure 8). The experimental
data, taken from prior work,30 are chosen to be representative
of three different types of material: A is an annealed graphene
sample, B is highly oriented pyrolytic graphite (HOPG), and C
is a GO material. The data is fitted via the method presented in

Figure 6. O 1s XAS spectra based on a clustering technique. Also oxygen sites in all samples presented in this work were clustered, i.e., separated
from the original surroundings and classified according to their chemical environment. The individual spectra are depicted in gray, which gives an
estimate of how many sites there are in each cluster and how often these sites occur in the original samples. In the case of oxygen, the clustering is
in perfect agreement with the chemistry of the sites in question.
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ref 11, i.e., using a linear combination of selected reference
spectra. The raw data from the experimental spectra are
interpolated to incorporate the same grid as the computational
spectra used in the fitting. In this case, two of the experimental
samples, graphene, and HOPG,30 contain so little oxygen that
only the C 1s fitting is possible (see the inset of Figure 8b for
the absolute intensities). The C 1s database, in the case of A
and B, is based on clustered carbon spectra (Figure 5) from
carbon sites that are not bonded to oxygen. This database is
complemented with additional references from pristine
graphene (Figure 3a) and from single and double vacancy
sites (Figure 3b). As discussed in Section III.A, the presence of
defects has a drastic effect on the properties of sp2-rich carbon-
based materials.35,65−68 By using this set of selected references,
we can estimate the defect concentrations in the experimental
samples. The GO sample C,30 on the other hand, has
substantial amounts of oxygen and, thus, also its O 1s spectrum
can be fitted. For GO, we rely on a data set that is composed of
all the carbon spectra presented in Figure 5, including carbon
that is bonded to oxygen, as well as an auxiliary spectrum from
carbon that is bonded within a carboxylic acid group. COOH
seems to be a reliable reference, weakly dependent on the
specific chemical surroundings.10,11 The COOH reference
used here is computed by using a graphene-based surface with

a SV and it is included separately because it is not present in
the oxygen-containing computational samples, even though it
is anticipated to appear in experimental samples.5,7

Comparison of the fitting results from the experimental
samples A and B samples suggests that the defect
concentration in the graphene sample is much higher than in
HOPG; 70% and 40% of the bonds between the carbon atoms
differ from standard sp2 network, respectively. The graphene
sample exhibits higher amounts of SV defects (smaller ring
size) as well as more elongated sp2 bonds (larger ring
structure). This result suggests that the structure of the
graphene sample is to some extent disordered and there are
varying amounts of different ring sizes. The HOPG sample
contains mostly pristine or nearly pristine sp2-bonded carbon,
60% in fact, but it is not completely free of defects either.
Elongated sp2 bonds are not present in the HOPG fit. Both
samples seem to have very small (1−2%), but not negligible,
amounts of sp-bonded carbon which could appear when
defects are formed or the samples are prepared for the
experiments. Not being a 2D material, HOPG can be expected
to be more mechanically stable than graphene and, thus, able
to maintain its ordered structure while it is being handled for
study. Experimental interpretation of the spectra also support
these computational observations: the HOPG sample has both

Figure 7. (a) Simulated C 1s XPS spectra of the graphene samples. The structures are depicted in Figures 1 and 4. The simulated XPS spectra are
normalized distributions calculated from all carbon sites in the sample. (b) Clustered C 1s XPS spectra. Simulated XPS spectra are normalized
distributions calculated from all clustered carbon sites. The spectra in part a can be constructed from a linear combination of these “building
blocks”. The ΔKS value of pristine graphene is indicated with a vertical line. (c) Simulated O 1s XPS spectra of the oxygen-containing graphene
samples (the structures are depicted in Figures 1 and 4). The simulated XPS spectra are normalized distributions calculated from all oxygen sites in
the sample. (d) Clustered O 1s spectra. The spectra are normalized distributions calculated from all clustered oxygen sites and together, with
different combinations, they form the spectra depicted in part c.
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sharper π* and excitonic features than the graphene sample.
From this computational fit, we can provide approximate
estimates of the presence of certain types of defects in the
samples as discussed above.
The spectrum for C, which is a representative of GO

materials, was fitted with the oxygen-containing data set.
Separate SV and DV references were excluded in this case,
because having too many reference spectra makes the fitting
method prone to instability. However, the sites around the
defects are included in the reference data set, so we can get an
estimation of the defect concentration. The fitting results
suggest that the sample is highly oxidized. According to the C
1s spectrum fit, more than 60% of the carbon sites seem to be
bonded to oxygen. This is in line with experimental reports
based on XPS,69,70 which show that the amount of oxygen in
some GO samples can be extremely high. We note that some
of the carbons that appear, according to the fit, to be bonded
to oxygen, could in fact also be bonded to other chemical
species. Overlapping features caused by impurities in the
experimental sample, most notably nitrogen, which are not
included in the present data set, will be a topic of future
research. However, experimental results show that, in the case
of this particular sample, nitrogen content is very low.30

Nevertheless, only 10% of the carbon in the sample belongs
to a regular sp2 network and the rest of the sites are either
defective or functionalized. This can also be observed by
comparing the experimental spectrum of C (Figure 8a) with
the spectra presented in Figure 1. The closest corresponding
computational model can be found in Figure 1e. In other
words, by applying our fitting procedure, which is based on
clustering of the structures and linear combination of the
clustered spectra, we can recreate the experimental spectrum
from its constituent blocks, and give more precise estimates
about the composition of the sample. However, the nonoxygen
related defect concentration derived from the fitting result for
sample C is also high, and there is only a little pristine sp2-
bonded carbon left. There are varying ring sizes with elongated
sp2 bonds but also some sp-bonded carbon present.
Closer inspection of the O 1s spectrum reveals more about

the distribution of oxygen-containing functional groups.
Hydroxyl groups seem to dominate in this particular sample
(60%), but ketones are also strongly present (20%). Ether
(8%), COOH (6%), and epoxide (3%) groups appear next, in
that order. Epoxides are the rarest, but still not negligible, of
the groups. This is not an unreasonable conclusion, since the
ring structure formed by two carbons and one oxygen is known
to be unstable.38 These results highlight the conclusion that,
when oxygen-containing functional groups are studied in more
detail, most of the attention should be paid to the O 1s
spectrum.

IV. CONCLUSIONS
In this work, we have computed a data set of approximately
2000 XAS spectra, and just as many ΔKS values, for simulating
the XPS spectra, in order to interpret the experimental X-ray
spectra of graphene and graphene/graphite oxide samples. The
data will be made openly available in the near future via
Zenodo. This data set can be used to understand the X-ray
spectroscopy of sp2-rich carbon-based materials. The observed
trends are as follows: the spectroscopic features are broadened
as the amount of defects (either crystallographic or in the form
of chemical functionalization) increases. New features appear
in both XAS and XPS spectra when oxygen is present. The
positions of the two main peaks that are typically exhibited by
sp2-bonded carbon, π* and σ*, shift depending on vacancy and
oxygen concentration and the nature of these defects or
functionalizations. Classifying the sites in the computational
samples according to their chemical environment, via ML-
based clustering (or more simply, according to chemical
intuition as we have done for vacancies and carboxylic acid),
allows us to compare these computational spectroscopic
fingerprints to experimental spectra. From these comparisons,
we can make quantitative estimates of how often certain
features appear in the measured spectra, and make the link
with the material’s atomic structure. In addition, this method
allows us to confirm whether or not simulated models are
similar enough with experimental samples to be used in reliable
computational experiments. Most importantly, we believe that
this study will provide new insights into the characterization of
sp2-rich carbon-based compounds, and help in the tailoring of
novel materials for a variety of applications.
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Synthesis and properties of free-standing monolayer amorphous
carbon. Nature 2020, 577, 199−203.
(69) Rani, J. R.; Lim, J.; Oh, J.; Kim, D.; Lee, D.; Kim, J.-W.; Shin,
H. S.; Kim, J. H.; Jun, S. C. Substrate and buffer layer effect on the
structural and optical properties of graphene oxide thin films. RSC
Adv. 2013, 3, 5926−5936.
(70) Muthoosamy, K.; Bai, R. G.; Abubakar, I. B.; Sudheer, S. M.;
Lim, H. N.; Loh, H.-S.; Huang, N. M.; Chia, C. H.; Manickam, S.
Exceedingly biocompatible and thin-layered reduced graphene oxide
nanosheets using an eco-friendly mushroom extract strategy. Int. J.
Nanomed. 2015, 10, 1505.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.1c03238
J. Phys. Chem. C 2021, 125, 18234−18246

18246

https://doi.org/10.1103/PhysRevB.102.174201
https://doi.org/10.3390/polym10020114
https://doi.org/10.3390/polym10020114
https://doi.org/10.1103/PhysRevLett.106.105505
https://doi.org/10.1103/PhysRevLett.106.105505
https://doi.org/10.1016/j.carbon.2011.11.010
https://doi.org/10.1002/adma.200901582
https://doi.org/10.1002/adma.200901582
https://doi.org/10.1002/adma.200901582
https://doi.org/10.1038/s41586-019-1871-2
https://doi.org/10.1038/s41586-019-1871-2
https://doi.org/10.1039/c3ra00028a
https://doi.org/10.1039/c3ra00028a
https://doi.org/10.2147/IJN.S75213
https://doi.org/10.2147/IJN.S75213
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c03238?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

