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Abstract. The formation, properties, and lifetime of sec-
ondary organic aerosols in the atmosphere are largely de-
termined by gas–particle partitioning coefficients of the par-
ticipating organic vapours. Since these coefficients are often
difficult to measure and to compute, we developed a machine
learning model to predict them given molecular structure as
input. Our data-driven approach is based on the dataset by
Wang et al. (2017), who computed the partitioning coeffi-
cients and saturation vapour pressures of 3414 atmospheric
oxidation products from the Master Chemical Mechanism
using the COSMOtherm programme. We trained a kernel
ridge regression (KRR) machine learning model on the sat-
uration vapour pressure (Psat) and on two equilibrium parti-
tioning coefficients: between a water-insoluble organic mat-
ter phase and the gas phase (KWIOM/G) and between an in-
finitely dilute solution with pure water and the gas phase
(KW/G). For the input representation of the atomic structure
of each organic molecule to the machine, we tested different
descriptors. We find that the many-body tensor representa-
tion (MBTR) works best for our application, but the topo-
logical fingerprint (TopFP) approach is almost as good and
computationally cheaper to evaluate. Our best machine learn-
ing model (KRR with a Gaussian kernel + MBTR) predicts
Psat and KWIOM/G to within 0.3 logarithmic units and KW/G
to within 0.4 logarithmic units of the original COSMOtherm
calculations. This is equal to or better than the typical accu-
racy of COSMOtherm predictions compared to experimental
data (where available). We then applied our machine learn-
ing model to a dataset of 35 383 molecules that we generated

based on a carbon-10 backbone functionalized with zero to
six carboxyl, carbonyl, or hydroxyl groups to evaluate its per-
formance for polyfunctional compounds with potentially low
Psat. The resulting saturation vapour pressure and partition-
ing coefficient distributions were physico-chemically reason-
able, for example, in terms of the average effects of the ad-
dition of single functional groups. The volatility predictions
for the most highly oxidized compounds were in qualitative
agreement with experimentally inferred volatilities of, for
example, α-pinene oxidation products with as yet unknown
structures but similar elemental compositions.

1 Introduction

Aerosols in the atmosphere are fine solid or liquid parti-
cles (or droplets) suspended in air. They scatter and absorb
solar radiation, form cloud droplets in the atmosphere, af-
fect visibility and human health, and are responsible for
large uncertainties in the study of climate change (IPCC,
2013). Most aerosol particles are secondary organic aerosols
(SOAs) that are formed by oxidation of volatile organic com-
pounds (VOCs), which are in turn emitted into the atmo-
sphere, for example, from plants or traffic (Shrivastava et al.,
2017). Some of the oxidation products have volatilities low
enough to condense. The formation, growth, and lifetime
of SOAs are governed largely by the concentrations, sat-
uration vapour pressures (Psat), and equilibrium partition-
ing coefficients of the participating vapours. While real at-
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mospheric aerosol particles are extremely complex mixtures
of many different organic and inorganic compounds (Elm
et al., 2020), partitioning of organic vapours is by necessity
usually modelled in terms of a few representative parame-
ters. These include the (liquid or solid) saturation vapour
pressure and various partitioning coefficients (K) in repre-
sentative solvents such as water or octanol. The saturation
vapour pressure is a pure compound property, which es-
sentially describes how efficiently a molecule interacts with
other molecules of the same type. In contrast, partitioning co-
efficients depend on activity coefficients, which encompass
the interaction of the compound with representative solvents.
Typical partitioning coefficients in chemistry include KW/G
for the partitioning between the gas phase and pure water
(i.e. an infinitely dilute solution of the compound) and KO/W
for the partitioning between octanol and water solutions1.
For organic aerosols, the partitioning coefficient between the
gas phase and a model water-insoluble organic matter phase
(WIOM; KWIOM/G) is more appropriate than KO/G.

Unfortunately, experimental measurements of these par-
titioning coefficients are challenging, especially for multi-
functional low-volatility compounds most relevant to SOA
formation. Little experimental data are thus available for
the atmospherically most interesting organic vapour species.
For relatively simple organic compounds, typically with
up to three or four functional groups, efficient empiri-
cal parameterizations have been developed to predict their
condensation-relevant properties, for example saturation
vapour pressures. Such parameterizations include poly-
parameter linear free-energy relationships (ppLFERs) (Goss
and Schwarzenbach, 2001; Goss, 2004, 2006), the GROup
contribution Method for Henry’s law Estimate (GROMHE)
(Raventos-Duran et al., 2010), SPARC Performs Automated
Reasoning in Chemistry (SPARC) (Hilal et al., 2008), SIM-
POL (Pankow and Asher, 2008), EVAPORATION (Comper-
nolle et al., 2011), and Nannoolal (Nannoolal et al., 2008).
Many of these parameterizations are available in a user-
friendly format on the UManSysProp website (Topping et al.,
2016). However, due to the limitations in the available ex-
perimental datasets on which they are based, the accuracy
of such approaches typically degrades significantly once the
compound contains more than three or four functional groups
(Valorso et al., 2011).

Approaches based on quantum chemistry such as
COSMO-RS (COnductor-like Screening MOdel for Real
Solvents; Klamt and Eckert, 2000, 2003; Eckert and Klamt,
2002), implemented, for example, in the COSMOtherm pro-
gramme, can also calculate (liquid or subcooled liquid) satu-
ration vapour pressures and partitioning coefficients for com-
plex polyfunctional compounds, albeit only with order-of-
magnitude accuracy at best. While the maximum deviation
for the saturation vapour pressure predicted for the 310 com-

1The gas–octanol partitioning coefficient (KO/G) can then be ob-
tained to good approximation from these by division.

pounds included in the original COSMOtherm parameter-
ization dataset is only a factor of 3.7 (Eckert and Klamt,
2002), the error margins increase rapidly, especially with the
number of intramolecular hydrogen bonds. In a very recent
study, Hyttinen et al. estimated that the COSMOtherm pre-
diction uncertainty for the saturation vapour pressure and the
partitioning coefficient increases by a factor of 5 for each
intra-molecular hydrogen bond (Hyttinen et al., 2021). How-
ever, for many applications even this level of accuracy is ex-
tremely useful. For example, in the context of new particle
formation (often called nucleation) it is beneficial to know
if the saturation vapour pressure of an organic compound
is lower than about 10−12 kPa because then it could con-
dense irreversibly onto a pre-existing nanometre-sized clus-
ter (Bianchi et al., 2019). An even lower Psat would be re-
quired for the vapour to form completely new particles. This
illustrates the challenge in performing experiments on SOA-
relevant species: a compound with a saturation vapour pres-
sure of e.g. 10−8 kPa at room temperature would be con-
sidered non-volatile in terms of most available measurement
methods – yet its volatility is far too high to allow nucleation
in the atmosphere. For a review of experimental saturation
vapour pressure measurement techniques relevant to atmo-
spheric science we refer to Bilde et al. (2015).

COSMO-RS/COSMOtherm calculations are based on
density functional theory (DFT). In the context of quan-
tum chemistry they are therefore considered computationally
tractable compared to high-level methods such as coupled
cluster theory. Nevertheless, the application of COSMO-RS
to complex polyfunctional organic molecules still entails sig-
nificant computational effort, especially due to the confor-
mational complexity of these species that need to be taken
into account appropriately. Overall, there could be up to 104–
107 different organic compounds in the atmosphere (not even
counting most oxidation intermediates), which makes the
computation of saturation vapour pressures and partitioning
coefficients a daunting task (Shrivastava et al., 2019; Ye et al.,
2016).

Here, we take a different approach compared to previous
parameterization studies and consider a data science perspec-
tive (Himanen et al., 2019). Instead of assuming chemical or
physical relations, we let the data speak for themselves. We
develop and train a machine learning model to extract pat-
terns from available data and predict saturation vapour pres-
sures as well as partitioning coefficients.

Machine learning has only recently spread into atmo-
spheric science (Cervone et al., 2008; Toms et al., 2018;
Barnes et al., 2019; Nourani et al., 2019; Huntingford et al.,
2019; Masuda et al., 2019). Prominent applications include
the identification of forced climate patterns (Barnes et al.,
2019), precipitation prediction (Nourani et al., 2019), cli-
mate analysis (Huntingford et al., 2019), pattern discovery
(Toms et al., 2018), risk assessment of atmospheric emis-
sions (Cervone et al., 2008), and the estimation of cloud opti-
cal thicknesses (Masuda et al., 2019). In molecular and mate-
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rials science, machine learning is more established and now
frequently complements theoretical or experimental methods
(Müller et al., 2016; Ma et al., 2015; Shandiz and Gauvin,
2016; Gómez-Bombarelli et al., 2016; Bartók et al., 2017;
Rupp et al., 2018; Goldsmith et al., 2018; Meyer et al., 2018;
Zunger, 2018; Gu et al., 2019; Schmidt et al., 2019; Coley et
al., 2020a; Coley et al., 2020b). Here we build on our experi-
ence in atomistic, molecular machine learning (Ghosh et al.,
2019; Todorović et al., 2019; Stuke et al., 2019; Himanen
et al., 2020; Fang et al., 2021) to train a regression model
that maps molecular structures onto saturation vapour pres-
sures and partitioning coefficients. Once trained, the machine
learning model can make saturation vapour pressure and par-
titioning predictions at COSMOtherm accuracy for hundreds
of thousands of new molecules at no further computational
cost. When experimental training data become available, the
machine learning model could easily be extended to encom-
pass predictions for experimental pressures and coefficients.

Due to the above-mentioned lack of comprehensive exper-
imental databases for saturation vapour pressures and gas–
liquid partitioning coefficients of polyfunctional atmospher-
ically relevant molecules, our machine learning model is
based on the computational data by Wang et al. (2017). They
computed the partitioning coefficients and saturation vapour
pressures for 3414 atmospheric secondary oxidation prod-
ucts obtained from the Master Chemical Mechanism (Jenkin
et al., 1997; Saunders et al., 2003) using a combination of
quantum chemistry and statistical thermodynamics as im-
plemented in the COSMOtherm approach (Klamt and Eck-
ert, 2000). The parent VOCs for the MCM dataset include
most of the atmospherically relevant small alkanes (methane,
ethane, propane, etc.), alcohols, aldehydes, alkenes, ketones,
and aromatics, as well as chloro- and hydrochlorocarbons,
esters, ethers, and a few representative larger VOCs such as
three monoterpenes and one sesquiterpene. Some inorganics
are also included. For technical details on the COSMOtherm
calculations performed by Wang et al., we refer to the COS-
MOtherm documentation (Klamt and Eckert, 2000; Klamt,
2011) and a recent study by Hyttinen et al. (2020) in which
the conventions, definitions, and notations used in COS-
MOtherm are connected to those more commonly employed
in atmospheric physical chemistry. We especially note that
the saturation vapour pressures computed by COSMOtherm
correspond to the subcooled liquid state and that the parti-
tioning coefficients correspond to partitioning between two
flat bulk surfaces in contact with each other. Actual parti-
tioning between e.g. aerosol particles and the gas phase will
depend on further thermodynamic and kinetic parameters,
which are not included here.

We transform the molecular structures in Wang’s dataset
into atomistic descriptors more suitable for machine learning
than the atomic coordinates or the commonly used simplified
molecular-input line-entry system (SMILES) strings. Opti-
mal descriptor choices have been the subject of increased
research in recent years (Langer et al., 2020; Rossi and

Cumby, 2020; Himanen et al., 2020). We test several descrip-
tor choices here: the many-body tensor representation (Huo
and Rupp, 2017), the Coulomb matrix (Rupp et al., 2012), the
Molecular ACCess System (MACCS) structural key (Durant
et al., 2002), a topological fingerprint developed by RDKit
(Landrum, 2006) based on the daylight fingerprint (James
et al., 1995), and the Morgan fingerprint (Morgan, 1965).

Our work addresses the following objectives: (1) with a
view to future machine learning applications in atmospheric
science, we assess the predictive capability of different struc-
tural descriptors for machine learning the chosen target prop-
erties. (2) We quantify the predictive power of our machine
learning model for Wang’s dataset to ascertain if the dataset
size is sufficient for accurate machine learning predictions.
(3) We then apply our validated machine learning model to
a new molecular dataset to gain chemical insight into SOA
condensation processes.

The paper is organized as follows. We describe our ma-
chine learning methodology in Sect. 2, then present the ma-
chine learning results in Sect. 3. Section 4 demonstrates how
we employed the trained model for fast prediction of molec-
ular properties. We discuss our findings and present a sum-
mary in Sect. 5.

2 Methods

Our machine learning approach has six components as illus-
trated in Fig. 1. We start off with the raw data, which we
present and analyse in Sect. 2.1. The raw data are then trans-
formed into a suitable representation2 for machine learn-
ing (step 2). We introduce five different representations in
Sect. 2.2, which we test in our machine learning model (see
Sect. 3). Next we choose our machine learning method. Here
we use kernel ridge regression (KRR), which is introduced in
Sect. 2.3. After the machine learning model is trained in step
4, we analyse its learning success in step 5. The results of
this process are shown in Sect. 3. In this step we also make
adjustments to the representation and the parameters of the
model to improve the learning (see the arrow from “Checks”
to “Features” in Fig. 1). Finally, we use the best machine
learning model to make predictions as shown in Sect. 4.

2.1 Dataset

In this work we are interested in the equilibrium partitioning
coefficients of a molecule between a water-insoluble organic
matter (WIOM) phase and its gas phase (KWIOM/G) as well
as between the gas phase and an infinitely diluted water so-
lution. These coefficients are defined as

KWIOM/G =
CWIOM

CG
, (1)

2We use the words “representation” and “features” interchange-
ably.
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Figure 1. Schematic of our machine learning workflow: the raw input data are converted into molecular representations (referred to as
features in this figure). We then set up and train a machine learning method. After evaluating its performance in step 5, we may adjust the
features. Once the machine learning model is calibrated and trained, we make predictions on new data.

Figure 2. Dataset statistics: panel (a) shows the size distribution (in terms of the number of non-hydrogen atoms) of all 3414 molecules
in the dataset. Panel (b) illustrates how many molecules contain each of the chemical species, and panel (c) depicts the functional group
distribution.

KW/G =
CW

CG
, (2)

where CWIOM, CW, and CG are the equilibrium concentra-
tions of the molecule in the WIOM, water, and gas phase, re-
spectively, at the limit of infinite dilution. In the framework
of COSMOtherm calculations, gas–liquid partitioning coef-
ficients can be converted into saturation vapour pressures, or
vice versa, using the activity coefficients γW or γWIOM in the
corresponding liquid (which can also be computed by COS-
MOtherm). Specifically, if, for example, KW/G is expressed
in units of m3g−1, then KW =

RT
MγWPsat

, where R is the gas
constant, T the temperature, M the molar mass of the com-
pound, and KW and γW the partitioning and activity coef-
ficients in water (Arp and Goss, 2009). This illustrates that
unlike the saturation vapour pressure Psat, which is a pure
compound property, the partitioning coefficient also depends
on the activity of the molecule in the chosen liquid solvent,
in this case water. We caution, however, that many different
conventions exist e.g. for the dimensions of the partitioning
coefficients and the reference states for activity coefficients
– the relation given above applies only to the particular con-
ventions used by COSMOtherm. We refer to Hyttinen et al.
(2020) for a discussion on the connection between different
conventions and the notation used by COSMOtherm, as well
as those commonly employed in atmospheric physical chem-
istry.

Wang et al. (2017) used the conductor-like screening
model for real solvents (COSMO-RS) theory (Klamt and
Eckert, 2000; Klamt, 2011) implemented in COSMOtherm
to calculate the two partitioning coefficients KWIOM/G

3 and

3As a model WIOM phase Wang et al. used a compound
originally suggested by Kalberer et al. (2004) as a represen-

KW/G for 3414 molecules. These molecules were generated
from 143 parent volatile organic compounds with the Master
Chemical Mechanism (MCM) (Jenkin et al., 1997; Saunders
et al., 2003) through photolysis and reactions with ozone, hy-
droxide radicals, and nitrate radicals.

Here, we analyse the composition of the publicly available
dataset by Wang et al. in preparation for machine learning.
Figure 2 illustrates key dataset statistics. Panel (a) shows the
size distribution of molecules as measured in the number of
non-hydrogen atoms. The 3414 non-radical species obtained
from the MCM range in size from 4 to 48 atoms, which trans-
lates into 2 to 24 non-hydrogen atoms per molecule. The
distribution peaks at 10 non-hydrogen atoms and is skewed
towards larger molecules. Panel (b) illustrates how many
molecules contain at least one atom of the indicated element.
All molecules contain carbon (100 % C); 3410 contain hy-
drogen (H; 99.88 %) and 3333 also oxygen (O; 97.63 %).
Nitrogen (N) is the next most abundant element (30.17 %)
followed by chlorine (Cl; 3.05 %), sulfur (S; 0.44 %), and
bromine (Br; 0.32 %). Lastly, panel (c) presents the distri-
bution of functional groups. It peaks at two (34 %) to three
(31 %) functional groups per molecule, with relatively few
molecules having zero (2 %), five (3 %), or six (2 %) func-
tional groups. The percentages for one and four functional
groups are 11 % and 17 %, respectively.

Figure 3 shows the distribution of the target properties
KWIOM/G, KW/G, and Psat in Wang’s dataset on a logarith-
mic scale. The equilibrium partitioning coefficient KWIOM/G

tative secondary organic aerosol constituent. The IUPAC name
for the compound in question, with elemental composition
C14H16O5, is 1-(5-(3,5-dimethylphenyl)dihydro-[1,3]dioxolo[4,5-
d][1,3]dioxol-2-yl)ethan-1-one.

Atmos. Chem. Phys., 21, 13227–13246, 2021 https://doi.org/10.5194/acp-21-13227-2021
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Figure 3. Dataset statistics: distributions of equilibrium partitioning coefficients (a) KWIOM/G, (b) KW/G, and (c) the saturation vapour
pressure Psat for all 3414 molecules in the dataset.

distribution is skewed slightly towards larger coefficients, in
contrast to the saturation vapour pressure Psat distribution
that exhibits an asymmetry towards molecules with lower
pressures. All three target properties cover approximately
15 logarithmic units and are approximately Gaussian dis-
tributed. Such peaked distributions are often not ideal for
machine learning since they overrepresent molecules near the
peak of the distribution and underrepresent molecules at their
edges. The data peak does supply enough similarity to ensure
good-quality learning, but properties of the underrepresented
molecular types might be harder to learn.

We found 11 duplicate entries in Wang’s dataset. These
are documented in Sect. A in Table A1. The entries have
the same SMILES strings and chemical formula but differ in
their Master Chemical Mechanism ID. Also, the three target
properties differ slightly. These duplicates did not affect the
learning quality, so we did not remove them from the dataset.

Wang’s dataset of 3414 molecules is relatively small for
machine learning, which often requires hundreds of thou-
sands to millions of training samples (Pyzer-Knapp et al.,
2015; Smith et al., 2017; Stuke et al., 2019; Ghosh et al.,
2019). A slightly larger set of Henry’s law constants, which
are related to KW/G, was reported by Sander (2015) for 4632
organic species. Sander’s database is a collection of 17 350
Henry’s law constant values collected from 689 references
and therefore not as internally consistent as Wang’s dataset.
For example, the Sander dataset contains several molecules
with multiple entries for the same property, sometimes span-
ning many orders of magnitude. We are not aware of a larger
dataset that reports partitioning coefficients. For this reason,
we rely exclusively on Wang’s dataset and show that we can
develop machine learning methods that are just as accurate as
the underlying calculations and thus suitable for predictions.

2.2 Representations

The molecular representation for machine learning should
fulfil certain requirements. It should be invariant with re-
spect to translation and rotation of the molecule and permu-
tations of atomic indices. Furthermore, it should be continu-
ous, unique, compact, and efficient to compute (Faber et al.,

2015; Huo and Rupp, 2017; Langer et al., 2020; Himanen
et al., 2020).

In this work we employ two classes of representations for
the molecular structure, also known as descriptors: physi-
cal and cheminformatics descriptors. Physical descriptors en-
code physical distances and angles between atoms in the ma-
terial or molecule. Meanwhile, decades of research in chem-
informatics have produced topological descriptors that en-
code the qualitative aspects of molecules in a compact rep-
resentation. These descriptors are typically bit vectors, in
which molecular features are encoded (hashed) into binary
fingerprints, which are joined into long binary vectors. In
this work, we use two physical descriptors, the Coulomb ma-
trix and the many-body tensor, and three cheminformatics
descriptors: the MACCS structural key, the topological fin-
gerprint, and the Morgan fingerprint.

In Wang’s dataset the molecular structure is encoded
in SMILES (simplified molecular-input line-entry system)
strings. We convert these SMILES strings into structural de-
scriptors using Open Babel (O’Boyle et al., 2011) and the
DScribe library (Himanen et al., 2020) or into cheminfor-
matics descriptors using RDKit (Landrum, 2006).

2.2.1 Coulomb matrix

The Coulomb matrix (CM) descriptor is inspired by an elec-
trostatic representation of a molecule (Rupp et al., 2012). It
encodes the Cartesian coordinates of a molecule in a simple
matrix of the form

Cij =

{
0.5Z2.4

i if i = j
ZiZj
‖Ri−Rj ‖

if i 6= j
, (3)

where Ri is the coordinate of atom i with atomic charge Zi .
The diagonal provides element-specific information. The co-
efficient and the exponent have been fitted to the total ener-
gies of isolated atoms (Rupp et al., 2012). Off-diagonal el-
ements encode inverse distances between the atoms of the
molecule by means of a Coulomb-repulsion-like term.

The dimension of the Coulomb matrix is chosen to fit the
largest molecule in the dataset; i.e. it corresponds to the num-
ber of atoms of the largest molecule. The “empty” rows of

https://doi.org/10.5194/acp-21-13227-2021 Atmos. Chem. Phys., 21, 13227–13246, 2021
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Figure 4. Pictorial overview of descriptors used in this work: (a) ball-and-stick model of 2-hydroxy-2-methylpropanoic acid, (b) corre-
sponding Coulomb matrix (CM), (c) the O–H, O–O, and O–C inverse distance entries of the many-body tensor representation (MBTR), (d)
topological fingerprint (TopFP) depiction of a path with length 3, and (e) Morgan circular fingerprint with radius 0 (black), radius 1 (blue),
and radius 2 (orange).

Coulomb matrices for smaller molecules are padded with ze-
roes. Invariance with respect to the permutation of atoms in
the molecule is enforced by simultaneously sorting rows and
columns of each Coulomb matrix in descending order ac-
cording to their `2 norms. An example of a Coulomb matrix
for 2-hydroxy-2-methylpropanoic acid is shown in Fig. 4b.

The CM is easily understandable, simple, and relatively
small as a descriptor. However, it performs best with Lapla-
cian kernels in the machine learning model (see Sect. 2.3),
while other descriptors work better with the more standard
choice of a Gaussian kernel.

2.2.2 Many-body tensor representation

The many-body tensor representation (MBTR) follows the
Coulomb matrix philosophy of encoding the internal coordi-
nates of a molecule. We will describe the MBTR only quali-
tatively here. Detailed equations can be found in the original
publication (Huo and Rupp, 2017), our previous work (Hi-
manen et al., 2020; Stuke et al., 2020), and Appendix B.

Unlike the Coulomb matrix, the many-body tensor is con-
tinuous and it distinguishes between different types of inter-
nal coordinates. At many-body level 1, the MBTR records
the presence of all atomic species in a molecule by plac-
ing a Gaussian at the atomic number on an axis from 1 to
the number of elements in the periodic table. The weight of
the Gaussian is equal to the number of times the species is
present in the molecule. At many-body level 2, inverse dis-
tances between every pair of atoms (bonded and non-bonded)
are recorded in the same fashion. Many-body level 3 adds
angular information between any triple of atoms. Higher lev-
els (e.g. dihedral angles) would in principle be straightfor-
ward to add but are not implemented in the current MBTR
versions (Huo and Rupp, 2017; Himanen et al., 2020). Fig-
ure 4c shows selected MBTR elements for 2-hydroxy-2-
methylpropanoic acid.

The MBTR is a continuous descriptor, which is advanta-
geous for machine learning. However, MBTR is by far the
largest descriptor of the five we tested, and this can pose re-
strictions on memory and computational cost. Furthermore,
the MBTR is more difficult to interpret than the CM.

2.2.3 MACCS structural key

The Molecular ACCess System (MACCS) structural key is a
dictionary-based descriptor (Durant et al., 2002). It is repre-
sented as a bit vector of Boolean values that encode answers
to a set of predefined questions. The MACCS structural key
we used is a 166 bit long set of answers to 166 questions such
as “is there an S–S bond?” or “does it contain iodine?” (Lan-
drum, 2006; James et al., 1995).

MACCS is the smallest of the five descriptors and ex-
tremely fast to use. Its accuracy critically depends on how
well the 166 questions encapsulate the chemical detail of the
molecules. Is it likely to reach moderate accuracy with low
computational cost and memory usage, and it could be bene-
ficial for fast testing of a machine learning model.

2.2.4 Topological fingerprint

The topological fingerprint (TopFP) is RDKit’s original fin-
gerprint (Landrum, 2006) inspired by the Daylight finger-
print (James et al., 1995). TopFP first extracts all topologi-
cal paths of certain lengths. The paths start from one atom
in a molecule and travel along bonds until k bond lengths
have been traversed as illustrated in Fig. 4d. The path de-
picted in the figure would be OCCO. The list of patterns pro-
duced is exhaustive: every pattern in the molecule, up to the
path length limit, is generated. Each pattern then serves as a
seed to a pseudo-random number generator (it is “hashed”),
the output of which is a set of bits (typically 4 or 5 bits per
pattern). The set of bits is added (with a logical OR) to the
fingerprint. The length of the bit vector, maximum and min-
imum possible path lengths kmax and kmin, and the length of
one hash can be optimized.

Topology is an informative molecular feature. We there-
fore expect TopFP to balance good accuracy with reasonable
computational cost. However, this binary fingerprint is diffi-
cult to visualize and analyse for chemical insight.

Atmos. Chem. Phys., 21, 13227–13246, 2021 https://doi.org/10.5194/acp-21-13227-2021
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2.2.5 Morgan fingerprint

The Morgan fingerprint is also a bit vector constructed by
hashing the molecular structure. In contrast to the topologi-
cal fingerprint, the Morgan fingerprint is hashed along circu-
lar or spherical paths around the central atom as illustrated
in Fig. 4e. Each substructure for a hash is constructed by
first numbering the atoms in a molecule with unique inte-
gers by applying the Morgan algorithm. Each uniquely num-
bered atom then becomes a cluster centre, around which we
iteratively increase a spherical radius to include the neigh-
bouring bonded atoms (Rogers and Hahn, 2010). Each radius
increment extends the neighbour list by another molecular
bond. The “circular” substructures found by the algorithm
described above, excluding duplicates, are then hashed into a
fingerprint (James et al., 1995; Landrum, 2006). The length
of the fingerprint and the maximum radius can be optimized.

The Morgan fingerprint is quite similar to the TopFP in
size and type of information encoded, so we expect similar
performance. It also does not lend itself to easy chemical in-
terpretation.

2.3 Machine learning method

2.3.1 Kernel ridge regression

In this work, we apply the kernel ridge regression (KRR)
machine learning method. KRR is an example of supervised
learning, in which the machine learning model is trained on
pairs of input (x) and target (f ) data. The trained model then
predicts target values for previously unseen inputs. In this
work, the input x represents the molecular descriptors CM
and MBTR as well as the MACCS, TopFP, and Morgan fin-
gerprints. The targets are scalar values for the equilibrium
partitioning coefficients and saturation vapour pressures.

KRR is based on ridge regression, in which a penalty for
overfitting is added to an ordinary least squares fit (Friedman
et al., 2001). In KRR, unlike ridge regression, a nonlinear
kernel is applied. This maps the molecular structure to our
target properties in a high-dimensional space (Stuke et al.,
2019; Rupp, 2015).

The target values f are a linear expansion in kernel ele-
ments:

f (x)=

n∑
i=1

αik(xi,x), (4)

where the sum runs over all training molecules. In this work,
we use two different kernels, the Gaussian kernel,

kG(x,x
′)= e−γ ‖x−x

′
‖

2
2 , (5)

and the Laplacian kernel,

kL(x,x
′)= e−γ ‖x−x

′
‖1 . (6)

The kernel width γ is a hyperparameter of the KRR model.

The regression coefficients αi can be solved by minimiz-
ing the error:

min
α

n∑
i=1
(f (xi)− yi)

2
+ λαTKα, (7)

where yi represents reference target values for molecules in
the training data. The second term is the regularization term,
whose size is controlled by the hyperparameter λ. K is the
kernel matrix of training inputs k(xi,xj ).

This minimization problem can be solved analytically for
the expansion coefficients αi .

α = (K− λI)−1y (8)

The hyperparameters γ and λ need to be optimized sepa-
rately.

We implemented KRR in Python using scikit-learn (Pe-
dregosa et al., 2011). Our implementation has been described
in Stuke et al. (2019, 2020).

2.3.2 Computational execution

Data used for supervised machine learning are typically di-
vided into two sets: a large training set and a small test set.
Both sets consists of input vectors and corresponding target
properties. The KRR model is trained on the training set, and
its performance is quantified on the test set. At the outset,
we separate a test set of 414 molecules. From the remaining
molecules, we choose six different training sets of size 500,
1000, 1500, 2000, 2500, and 3000 so that a smaller training
size is always a subset of the larger one. Training the model
on a sequence of such training sets allows us to compute a
learning curve, which facilitates the assessment of learning
success with increasing training data size. We quantify the
accuracy of our KRR model by computing the mean abso-
lute error (MAE) for the test set. To get statistically mean-
ingful results, we repeat the training procedure 10 times. In
each run, we shuffle the dataset before selecting the training
and test sets so that the KRR model is trained and tested on
different data each time. Each point on the learning curves
is computed as the average over 10 results, and the spread
serves as the standard deviation of the data point.

Model training proceeds by computing the KRR regres-
sion coefficients αi , obtained by minimizing Eq. (7). KRR
hyperparameters γ and λ are typically optimized via grid
search, and average optimal solutions are obtained by cross-
validating the procedure. In cross-validation we split off a
validation set from the training data before training the KRR
model. KRR is then trained for all possible combinations
of discretized hyperparameters (grid search) and evaluated
on the validation set. This is done several times so that
the molecules in the validation set are changed each time.
Then the hyperparameter combination with minimum aver-
age cross-validation error is chosen. Our implementation of
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a cross-validated grid search is also based on scikit-learn (Pe-
dregosa et al., 2011). The optimized values for γ and λ are
listed in Table B2.

Table 1 summarizes all the hyperparameters optimized in
this study, those for KRR and the molecular descriptors, and
their optimal values. In the grid search, we varied both γ
and λ by 10 values between 10−1 and 1010. In addition, we
used two different kernels, Laplacian and Gaussian. We com-
pared the performance of the two kernels for the average of
five runs for each training size, and the most optimal ker-
nel was chosen. In cases in which both kernels performed
equally well, e.g. for the fingerprints, we chose the Gaussian
kernel for its lower computational cost.

To compute the MBTR and CM descriptors we employed
the Open Babel software to convert the SMILES strings
provided in the Wang et al. dataset into three-dimensional
molecular structures. We did not perform any conformer
search. MBTR hyperparameters and TopFP hyperparameters
were optimized by grid search for several training set sizes
(MBTR for sizes 500, 1500, and 3000 and TopFP for sizes
1000 and 1500), and the average of two runs for each train-
ing size was taken. We did not extend the descriptor hyperpa-
rameter search to larger training set sizes, since we found that
the hyperparameters were insensitive to the training set size.
The MBTR weighting parameters were optimized in eighty
steps between 0 (no weighting) and 1.4 and the broadening
parameters in six steps between 10−1 and 10−6. The length
of TopFP was varied between 1024 and 8192 (size can be var-
ied by 2n). The range for the maximum path length extended
from 5 to 11, and the bits per hash were varied between 3 and
16.

3 Results

In Fig. 5 we present the learning curves for our objectives
KWIOM/G, KW/G, and Psat. Shown is the mean average er-
ror (MAE) as a function of the training set size for all three
target properties and for all five molecular descriptors. As
expected, the MAE decreases as the training size increases.
For all target properties, the lowest errors are achieved with
MBTR, and the worst-performing descriptor is CM. TopFP
approaches the accuracy of MBTR as the training size in-
creases and appears likely to outperform MBTR beyond the
largest training size of 3000 molecules.

Table 2 summarizes the average MAEs and their standard
deviations for the best-trained KRR model (training size of
3000 with MBTR descriptor). The highest accuracy is ob-
tained for partitioning coefficient KWIOM/G, with a mean av-
erage error of 0.278, i.e. only 1.9 % of the entire KWIOM/G
range. The second-best accuracy is obtained for saturation
vapour pressure Psat with an MAE of 0.298 (or 2.0 % of the
range of pressure values). The lowest accuracy is obtained
for KW/G with an MAE of 0.428. However, the range for
partitioning coefficient KW/G is also the largest, as seen in

Fig. 3, so this amounts to only 2.7 % of the entire range of
values. Our best machine learning MAEs are of the order of
the COSMOtherm prediction accuracy, which lies at around a
few tenths of log values (Stenzel et al., 2014; Schröder et al.,
2016; van der Spoel et al., 2019).

Figure 6 shows the results for the best-performing descrip-
tors MBTR and TopFP in more detail. The scatter plots il-
lustrate how well the KRR predictions match the reference
values. The match is further quantified by R2 values. For
all three target values, the predictions hug the diagonal quite
closely, and we observe only a few outliers that are further
away from the diagonal. The predictions of the partitioning
coefficient KWIOM/G are most accurate. This is expected be-
cause the MAE in Table 2 is lowest for this property. The
largest scatter is observed for partitioning coefficient KW/G,
which has the highest MAE in Table 2.

4 Predictions

In the previous section we showed that our KRR model
trained on the Wang et al. dataset produces low prediction
errors for molecular partitioning coefficients and saturation
vapour pressures and can now be employed as a fast predic-
tor. When shown further molecular structures, it can make in-
stant predictions for the molecular properties of interest. We
demonstrate this application potential on an example dataset
generated to imitate organic molecules typically found in the
atmosphere.

Atmospheric oxidation reaction mechanisms can be gener-
ally classified into two main types: fragmentation and func-
tionalization (Kroll et al., 2009; Seinfeld and Pandis, 2016).
For SOA formation, functionalization is more relevant, as it
leads to products with intact carbon backbones and added
polar (and volatility-lowering) functional groups. Many of
the most interesting molecules from an SOA-forming point
of view, e.g. monoterpenes, have around 10 carbon atoms
(Zhang et al., 2018). These compounds simultaneously have
high enough emissions or concentrations to produce appre-
ciable amounts of condensable products, while being large
enough for those products to have low volatility.

We thus generated a dataset of molecules with a backbone
of 10 carbon (C10) atoms. For simplicity, we used a linear
alkane chain. In analogy to Wang’s dataset, we then deco-
rated this backbone with zero to six functional groups at dif-
ferent locations. We limited ourselves to the typical groups
formed in “functionalizing” oxidation of VOCs by both of
the main daytime oxidants OH and O3: carboxyl (-COOH),
carbonyl (=O), and hydroxyl (-OH) (Seinfeld and Pandis,
2016). The (-COOH) group can only be added to the ends
of the C10 molecule, while (=O) and (-OH) can be added to
any carbon atom in the chain. We then generated all pos-
sible arrangements combinatorially and filtered out dupli-
cates resulting from symmetric combinations of functional
groups. In total we obtained 35 383 unique molecules. Ex-
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Table 1. All the hyperparameters that were optimized.

Hyperparameters Optimized values

KRR width of the kernel γ , regularization parameter λ descriptor-dependent
MBTR broadening parameters σ2,σ3; weighting parameters w2,w3 0.0075, 0.1; 1.2, 0.8
TopFP vector length; maximum path length kmax; bits per hash 8192; 8; 16
Morgan vector length; radius 2048; 2

Figure 5. The learning curves for equilibrium partitioning coefficients KWIOM/G, KW/G, and saturation vapour pressure Psat for predictions
made with all five descriptors.

ample molecules are depicted in Fig. 9. While the functional
group composition of our C10 dataset is atmospherically rel-
evant, the particular molecules are not. The purpose of this
dataset is to perform a relatively simple sanity check of the
machine learning predictions on a set of compounds struc-
turally different from those in the training dataset. We note
that using e.g. more atmospherically relevant compounds
such as α-pinene oxidation products for this purpose might
be counterproductive, since Wang et al.’s dataset used for
training contains several such compounds.

For each of the 35 383 molecules, we generated a SMILES
string that serves as input for the TopFP fingerprint. We did
not relax the geometry of the molecules with force fields or
density functional theory. We chose TopFP as a descriptor
because its accuracy is close to that of the best-performing
MBTR KRR model, but it is significantly cheaper to evalu-
ate. TopFP is also invariant to conformer choices, since the
fingerprint is the same for all conformers of a molecule. We
then predicted Psat, KWIOM/G, and KW/G with the TopFP–
KRR model.

Figures 7 and 8 show the predictions of our TopFP–KRR
model for the C10 dataset. For comparison with Wang’s
dataset, we broke the histograms and analysis down by
the number of functional groups. For a given number of
functional groups, the partitioning coefficients for our C10
dataset are somewhat higher, and the saturation vapour
pressures correspondingly somewhat lower, than in Wang’s
dataset. This follows from the fact that our C10 molecules

are on average larger4 than those contained in Wang’s dataset
(Fig. 2). However, as seen from Fig. 8, the averages of all
three quantities (for a given number of functional groups)
are not substantially different, illustrating the similarity of
the two datasets. A certain degree of similarity is required
to ensure predictive power, since machine learning models
do not extrapolate well to data that lie outside the training
range.

The variation in the studied parameters is larger in Wang’s
dataset for molecules with four or fewer functional groups
but similar or smaller for molecules with five or six func-
tional groups. This is likely the case because Wang’s dataset
contains relatively few compounds with more than four func-
tional groups. The variation in the studied parameters (for
each number of functional groups) predicted for the C10
dataset is in line with the individual group contributions pre-
dicted based on fits to experimental data, for example by
the SIMPOL model (Pankow and Asher, 2008) for satura-
tion vapour pressures. According to SIMPOL, a carboxylic
acid group decreases the saturation vapour pressure at room
temperature by almost a factor of 4000, while a ketone group
reduces it by less than a factor of 9. Accordingly, if interac-
tions between functional groups are ignored, a dicarboxylic
acid, for example, should have a saturation vapour pressure
more than 100 000 times lower than a diketone with the same
carbon backbone. This is remarkably consistent with Fig. 8,
where the variation of saturation vapour pressures for com-

4Our C10 molecules range in size from 10 to 18 non-hydrogen
atoms since the largest of our molecules contains two carboxylic
acid and four ketone and/or hydroxyl groups.
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Table 2. The mean average errors (MAEs) and the standard deviations for all the descriptors and target properties (equilibrium partitioning
coefficients KWIOM/G, KW/G, and saturation vapour pressure Psat) with the largest possible training size of 3000.

KWIOM/G KW/G Psat

Descriptor MAE 1 MAE 1 MAE log(kPa) 1 log(kPa)

CM 0.470 ±0.020 0.787 ±0.028 0.530 ±0.016
MBTR 0.278 ±0.013 0.427 ±0.015 0.298 ±0.016
MACCS 0.412 ±0.020 0.522 ±0.020 0.431 ±0.014
Morgan 0.396 ±0.026 0.552 ±0.014 0.413 ±0.022
TopFP 0.292 ±0.014 0.451 ±0.021 0.310 ±0.014

Figure 6. Scatter plots for predictions of the partitioning coefficients of a molecule between water-insoluble organic matter and the gas phase
KWIOM/G, water and the gas phase KW/G, and the saturation vapour pressure Psat for the test set of 414 molecules using MBTR (top) and
TopFP (bottom). The prediction with the lowest mean average error was chosen for each scatter plot.

pounds with two functional groups in our C10 dataset is
slightly more than 5 orders of magnitude.

Figure 7 illustrates the fact that the saturation vapour pres-
sure Psat decreases with increasing number of functional
groups as expected, whereas KWIOM/G and KW/G increase.
This is consistent with Wang’s dataset as shown in Fig. 8,
where we compare averages between the two datasets. The
magnitude of the decrease (increase) amounts to approxi-
mately 1 or 2 orders of magnitude per functional group and
is, again, consistent with existing structure–activity relation-
ships based on experimental data (e.g. Pankow and Asher,
2008; Compernolle et al., 2011; Nannoolal et al., 2008).

The region of low Psat is most relevant for atmospheric
SOA formation. However, we caution that COSMOtherm
predictions have not yet been properly validated against ex-
periments for this pressure regime. As discussed above, we
can hope for order-of-magnitude accuracy at best. Figure 9b
shows histograms of only molecules with 7 or 8 oxygen
atoms. These are compared to the full dataset. Since the “8
O atom set” is a subset of the “7 or 8 O atoms” set, which in

turn is a subset of “all molecules”, the lengths of the bars in
a given bin reflect the percentages of molecules with 7 or 8
O atoms. We observe that below 10−10 kPa, almost all C10
molecules contain 7 or 8 O atoms, as there is little grey visi-
ble in that part of the histogram. In the context of atmospheric
chemistry, the least-volatile fraction of our C10 dataset corre-
sponds to LVOCs (low-volatility organic compounds), which
are capable of condensing onto small aerosol particles but
not actually forming them. Our results are thus in qualitative
agreement with recent experimental results by Peräkylä et al.
(2020), who concluded that the highly oxidized C10 products
of α-pinene oxidation are mostly LVOCs. However, we note
that the compounds measured by Peräkylä et al. are likely to
contain functional groups not included in our C10 dataset, as
well as structural features such as branching and rings.

Figure 9a and c show the molecular structures of the
lowest-volatility compounds and the highest-volatility com-
pounds with 7 or 8 O atoms, respectively. The six shown
highest-volatility compounds inevitably contain at least one
carboxylic acid group, as we have restricted the number of
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Figure 7. Histograms of C10 TopFP–KRR predictions for (a) KWIOM/G, (b) KW/G, and (c) Psat. The histograms are divided into different
numbers of functional groups. Molecules with two or fewer functional groups have been omitted from these histograms because their total
number is very low in the C10 dataset.

Figure 8. Box plot comparing C10 (in blue) with Wang’s dataset (in red) for KWIOM/G, KW/G, and Psat for different numbers of functional
groups. Shown are the minimum, maximum, median, and first and third quartile.

functional groups to six or fewer, and only the acid groups
contain two oxygen atoms. Comparing the two sets, we see
that the lowest-volatility compounds contain more hydroxyl
groups and fewer ketone groups, while the highest-volatility
compounds with 7 or 8 oxygen atoms contain almost no
hydroxyl groups. This is expected, since e.g. a hydroxyl
group lowers the saturation vapour pressure by over a fac-
tor of 100 at 298 K, while the effect of a ketone group is,
as previously noted, less than a factor of 9 according to the
SIMPOL model (Pankow and Asher, 2008). However, even
the lowest-volatility compounds (Fig. 9a) contain a few ke-
tone groups such that the numbers of hydrogen-bond donor
and acceptor groups are roughly similar. This result demon-
strates that unlike the simplest group contribution models
such as SIMPOL, which would invariably predict that the
lowest-volatility compounds in our C10 dataset should be
the tetrahydroxydicarboxylic acids, both the original COS-
MOtherm predictions and the machine learning model based
on them are capable of accounting for hydrogen-bonding in-
teractions between functional groups. As we did not include
conformational information for our C10 molecules in the ma-
chine learning predictions, this is most likely due to struc-
tural similarities between the C10 compounds and hydrogen-
bonding molecules in the training dataset.

Lastly, we consider the issue of non-unique descriptors.
Although the cheminformatics descriptors are fast to com-
pute and use, a duplicate check revealed that it is possible

to obtain identical descriptors for different molecule struc-
tures, even for this relatively small pool of molecules. The
MACCS fingerprint in particular produced over 500 dupli-
cates (about 15 % of the dataset) because its query list is not
sufficiently descriptive of this molecule class. Some dupli-
cates were also observed for TopFP (< 1.5 %), whereas phys-
ical descriptors were both entirely unique, as expected. The
original dataset itself contained 11 identical molecular struc-
tures labelled with different SMILES strings, as mentioned
in Sect. 2.1. Machine learning model checks revealed that the
number of duplicates in this study was small enough to have
a negligible effect on predictions (apart from the MACCS
key models), so we did not purge them.

5 Conclusions

In this study, we set out to evaluate the potential of the
KRR machine learning method to map molecular structures
to its atmospheric partitioning behaviour and establish which
molecular descriptor has the best predictive capability.

KRR is a relatively simple kernel-based machine learn-
ing technique that is straightforward to implement and fast to
train. Given model simplicity, the quality of learning depends
strongly on the information content of the molecular descrip-
tor. More specifically, it hinges on how well each format en-
capsulates the structural features relevant to the atmospheric
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Figure 9. (a) Atomic structure of the six molecules with the lowest predicted saturation vapour pressure Psat. (b) Psat histograms for
molecules containing 7 or 8 O atoms (orange) or only 8 O atoms (green). For reference, the histogram of all molecules (grey) is also shown.
(c) Atomic structure of the six molecules with 7 and 8 O atoms and the highest saturation vapour pressure Psat.

behaviour. The exhaustive approach of the MBTR descriptor
to documenting molecular features has led to very good pre-
dictive accuracy in machine learning of molecular properties
(Stuke et al., 2019; Langer et al., 2020; Rossi and Cumby,
2020; Himanen et al., 2020), and this work is no exception.
The lightweight CM descriptor does not perform nearly as
well, but these two representations from physical sciences
provide us with an upper and lower limit on predictive accu-
racy.

Descriptors from cheminformatics that were developed
specifically for molecules have variable performance. Be-
tween them, the topological fingerprint leads to the best
learning quality that approaches MBTR accuracy in the limit
of larger training set sizes. This is a notable finding, not
least because the relatively small TopFP data structures in
comparison to MBTR reduce the computational time and
memory required for machine learning. MBTR encoding re-
quires knowledge of the three-dimensional molecular struc-
ture, which raises the issue of conformer search. It is unclear
which molecular conformers are relevant for atmospheric
condensation behaviour, and COSMOtherm calculations on
different conformers can produce values that are orders of
magnitude apart. TopFP requires only connectivity informa-
tion and can be built from SMILES strings, eliminating any
conformer considerations (albeit at the cost of possibly losing
some information on e.g. intramolecular hydrogen bonds).
All this makes TopFP the most promising descriptor for fu-
ture machine learning studies in atmospheric science that we
have identified in this work.

Our results show that KRR can be used to train a model
to predict COSMOtherm saturation vapour pressures, with
error margins smaller than those of the original COSMOth-
erm predictions. In the future, we will extend our training
set to especially encompass atmospheric autoxidation prod-
ucts (Bianchi et al., 2019), which are not included in exist-
ing saturation vapour pressure datasets and for which exist-
ing prediction methods are highly uncertain. We also intend
to extend the machine learning model to predict a larger set
of parameters computed by COSMOtherm, such as vapor-
ization enthalpies, internal energies of phase transfer, and
activity coefficients in representative phases. While COS-
MOtherm predictions for complex molecules such as autox-
idation products also have large uncertainties, a fast and ef-
ficient “COSMOtherm-level” KRR predictor would still be
immensely useful, for example, for assessing whether a given
compound is likely to have extremely low volatility or not.
Experimental volatility data for such compounds are also
gradually becoming available, either through indirect infer-
ence methods such as Peräkylä et al. (2020) or, for exam-
ple, from thermal desorption measurements (Li et al., 2020).
These can then be used to constrain and anchor the model and
also ultimately yield quantitatively reliable volatility predic-
tions.
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Appendix A: Dataset duplicates

Table A1. Duplicates found in Wang et al.’s dataset: listed are the index in the dataset, the ID in the Master Chemical Mechanism (MCM_ID),
the corresponding SMILES string, the chemical formula, and the three target properties (KWIOM/G, KW/G, and Psat).

No. Index MCM_ID SMILES Formula KWIOM/G KW/G Psat

1 83 MACRNB CC(C=O)(CON(=O)=O)O C4H7NO5 5.51 3.42 4.33E-02
716 MACROHNO3 CC(C=O)(CON(=O)=O)O C4H7NO5 5.59 3.5 3.44E-02

2 1943 CHOMOHCO3H CC(C=O)(C(=O)OO)O C4H6O5 5.93 5.32 2.26E-02
84 COHM2CO3H CC(C=O)(C(=O)OO)O C4H6O5 5.89 4.83 2.55E-02

3 439 IEB1OOH CC(C=O)(C(CO)O)OO C5H10O5 7.22 8.02 1.64E-04
2624 C57OOH CC(C=O)(C(CO)O)OO C5H10O5 7.24 7.47 1.90E-04

4 730 MACRNBCO3H CC(CON(=O)=O)(C(=O)O)O C4H7NO6 8.06 6.85 2.86E-04
2469 MACRNBCO2H CC(CON(=O)=O)(C(=O)O)O C4H7NO6 8.12 6.93 2.34E-04

5 817 TDICLETH C(=CCl)Cl C2H2Cl2 2.54 0.41 4.15E+01
3141 CDICLETH C(=CCl)Cl C2H2Cl2 2.54 0.41 4.15E+01

6 819 CHOMOHPAN CC(C=O)(C(=O)OON(=O)=O)O C4H5NO7 5.49 2.31 1.43E-01
1221 COHM2PAN CC(C=O)(C(=O)OON(=O)=O)O C4H5NO7 5.37 2.08 1.99E-01

7 900 THEX2ENE CC=CCCC C6H12 2.4 −0.92 1.95E+01
3372 CHEX2ENE CC=CCCC C6H12 2.4 −0.92 1.94E+01

8 1443 CPENT2ENE CC=CCC C5H10 1.9 −0.86 7.84E+01
3119 TPENT2ENE CC=CCC C5H10 1.91 −0.85 7.71E+01

9 1649 CBUT2ENE CC=CC C4H8 1.5 −0.84 2.56E+02
1665 TBUT2ENE CC=CC C4H8 1.49 −0.84 2.58E+02

10 2188 CO2N3CHO CC(=O)C(C=O)ON(=O)=O C4H5NO5 5.16 2.62 1.22E-01
3040 C4CONO3CO CC(=O)C(C=O)ON(=O)=O C4H5NO5 5.21 2.72 1.05E-01

11 2127 C59OOH CC(CO)(C(=O)CO)OO C5H10O5 7.59 7.86 6.75E-05
2636 IEC1OOH CC(CO)(C(=O)CO)OO C5H10O5 7.53 7.76 8.09E-05
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Appendix B: Many-body tensor representation

In this Appendix we provide the mathematical struc-
ture of the MBTR as it is implemented in the DScribe
library (Himanen et al., 2020). The many-body lev-
els in the MBTR are denoted as k. For k = 1,2,
and 3, geometry functions encode the different features:
g1(Zl)= Zl (atomic number), g2(Rl,Rm)= |Rl−Rm| (dis-
tance), or g2(Rl,Rm)=

1
|Rl−Rm|

(inverse distance), and
g3(Rl,Rm,Rn)= cos(6 (Rl−Rm,Rn−Rm)) (cosine of an-
gle).

The scalar values returned by the geometry functions gk
are Gaussian-broadened into continuous representations Dk .
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2

2σ2
1 (B1)

Dl,m
2 (x)=

1

σ2
√

2π
e
−
(x−g2(Rl ,Rm))

2

2σ2
2 (B2)

Dl,m,n
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The σk values are the feature widths for the different k levels,
and x runs over a predefined range [xkmin,x

k
max] of possible

values for the geometry functions gk .
Finally, a weighted sum of distributions Dk is generated

for each possible combination of chemical elements present
in the dataset.
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1 (x)=

|Z1|∑
l

wl1D
l
1(x) (B4)

MBTRZ1,Z2
2 (x)=

|Z1|∑
l

|Z2|∑
m

w
l,m
2 Dl,m

2 (x) (B5)

MBTRZ1,Z2,Z3
3 (x)=

|Z1|∑
l

|Z2|∑
m

|Z3|∑
n

w
l,m,n
3 Dl,m,n

3 (x) (B6)

The sums for l,m, and n run over all atoms with atomic num-
bers Z1, Z2, and Z3. wk represents weighting functions that
balance the relative importance of different k terms and/or
limit the range of inter-atomic interactions. For k = 1, usu-
ally no weighting is used (wl1 = 1). For k = 2 and k = 3 the
following exponential decay functions are implemented in
DScribe.

w
l,m
2 = e

−sk |Rl−Rm| (B7)

w
l,m,n
3 = e−sk(|Rl−Rm|+|Rm−Rn|+|Rl−Rn|) (B8)

The parameter sk effectively tunes the cutoff distance. The
functions MBTRk(x) are then discretized with nk many
points in the respective intervals [xkmin,x

k
max].
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Table B1. Values of the optimal KRR hyperparameter λ obtained by cross-validation as a function of descriptor type and training set size. The
procedure was repeated 10 times with re-shuffled data. Average values (λ̄) were used in further KRR models. We also report the statistical
standard deviation 1λ.

Descriptor Training set size KWIOM/G KW/G Psat

λ̄ 1λ λ̄ 1λ λ̄ 1λ

CM 500 0.00E+00 4.50E-03 9.10E-03 2.85E-03 1.00E-02 0.00E+00
1000 8.20E-03 3.79E-03 5.50E-03 4.74E-03 1.00E-02 0.00E+00
1500 5.50E-03 4.74E-03 3.70E-03 4.35E-03 5.50E-03 4.74E-03
2000 3.70E-03 4.35E-03 1.81E-03 2.89E-03 5.50E-03 4.74E-03
2500 2.80E-03 3.79E-03 1.00E-03 0.00E+00 1.90E-03 2.85E-03
3000 1.90E-03 2.85E-03 1.00E-03 0.00E+00 1.90E-03 2.85E-03

MBTR 500 5.30E-05 4.97E-05 7.30E-05 4.35E-05 1.44E-04 3.04E-04
1000 8.02E-05 4.17E-05 1.00E-04 0.00E+00 1.81E-04 2.89E-04
1500 1.72E-04 2.93E-04 2.62E-04 3.91E-04 2.71E-04 3.85E-04
2000 2.53E-04 3.96E-04 3.16E-04 4.73E-04 5.32E-04 4.94E-04
2500 6.04E-04 5.11E-04 7.03E-04 4.78E-04 9.01E-04 3.13E-04
3000 7.03E-04 4.78E-04 5.05E-04 5.22E-04 1.00E-03 0.00E+00

TopFP 500 5.50E-03 4.74E-03 3.70E-03 4.35E-03 9.10E-03 2.85E-03
1000 8.20E-03 3.79E-03 1.90E-03 2.85E-03 7.30E-03 4.35E-03
1500 8.20E-03 3.79E-03 3.70E-03 4.35E-03 9.10E-03 2.85E-03
2000 1.00E-02 0.00E+00 1.00E-03 0.00E+00 9.10E-03 2.85E-03
2500 7.30E-03 4.35E-03 1.00E-03 0.00E+00 8.20E-03 3.79E-03
3000 7.30E-03 4.35E-03 1.00E-03 0.00E+00 9.10E-03 2.85E-03

MACCS 500 1.00E-02 0.00E+00 3.10E-02 4.65E-02 1.00E-02 0.00E+00
1000 1.00E-02 0.00E+00 9.10E-02 2.83E-02 1.00E-02 0.00E+00
1500 1.00E-02 0.00E+00 1.00E-01 0.00E+00 1.00E-02 0.00E+00
2000 8.20E-03 2.84E-03 1.00E-01 0.00E+00 5.50E-02 4.47E-02
2500 2.80E-03 3.74E-03 1.00E-01 0.00E+00 9.01E-02 3.11E-02
3000 1.00E-03 0.00E+00 1.00E-01 0.00E+00 9.01E-02 3.11E-02

Morgan 500 4.00E-04 4.72E-04 7.10E-03 4.57E-03 5.10E-03 4.86E-03
1000 3.00E-03 4.72E-03 1.00E-02 0.00E+00 9.10E-03 2.83E-03
1500 1.00E-02 0.00E+00 1.90E-02 2.83E-02 1.00E-02 0.00E+00
2000 1.00E-02 0.00E+00 1.00E-02 0.00E+00 1.00E-02 0.00E+00
2500 1.00E-02 0.00E+00 1.00E-02 0.00E+00 1.00E-02 0.00E+00
3000 1.00E-02 0.00E+00 1.00E-02 0.00E+00 1.00E-02 0.00E+00
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Table B2. Values of the optimal KRR hyperparameter γ obtained by cross-validation as a function of descriptor type and training set size. The
procedure was repeated 10 times with re-shuffled data. Average values (γ̄ ) were used in further KRR models. We also report the statistical
standard deviation 1γ .

Descriptor Training set size KWIOM/G KW/G Psat

γ̄ 1γ γ̄ 1γ γ̄ 1γ

CM 500 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00
1000 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00
1500 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00
2000 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00
2500 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00
3000 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00

MBTR 500 5.30E-05 5.30E-05 7.30E-05 4.35E-05 5.40E-05 4.86E-05
1000 8.20E-05 8.20E-05 1.00E-04 0.00E+00 1.81E-04 2.89E-04
1500 1.90E-04 1.90E-04 2.80E-04 3.79E-04 2.80E-04 3.79E-04
2000 2.80E-04 2.80E-04 3.70E-04 4.35E-04 5.50E-04 4.74E-04
2500 6.40E-04 6.40E-04 7.30E-04 4.35E-04 9.10E-04 2.85E-04
3000 7.30E-04 7.30E-04 5.50E-04 4.74E-04 1.00E-03 0.00E+00

TopFP 500 1.00E-04 0.00E+00 9.10E-05 2.85E-05 1.00E-04 0.00E+00
1000 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00
1500 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00
2000 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00
2500 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00
3000 1.00E-04 0.00E+00 1.00E-04 0.00E+00 1.00E-04 0.00E+00

MACCS 500 1.00E-02 0.00E+00 9.10E-02 2.83E-02 1.00E-02 0.00E+00
1000 1.00E-02 0.00E+00 9.10E-02 2.83E-02 1.00E-02 0.00E+00
1500 1.00E-02 0.00E+00 1.00E-01 0.00E+00 1.00E-02 0.00E+00
2000 1.00E-02 0.00E+00 1.00E-01 0.00E+00 5.50E-02 4.47E-02
2500 1.00E-02 0.00E+00 1.00E-01 0.00E+00 9.10E-02 2.83E-02
3000 1.00E-02 0.00E+00 1.00E-01 0.00E+00 9.10E-02 2.83E-02

Morgan 500 4.00E-04 4.72E-04 9.00E-03 3.14E-03 5.10E-03 4.86E-03
1000 3.00E-03 4.72E-03 1.00E-02 0.00E+00 9.01E-03 3.11E-03
1500 1.00E-02 0.00E+00 1.00E-02 0.00E+00 1.00E-02 0.00E+00
2000 1.00E-02 0.00E+00 1.00E-02 0.00E+00 1.00E-02 0.00E+00
2500 1.00E-02 0.00E+00 1.00E-02 0.00E+00 1.00E-02 0.00E+00
3000 1.00E-02 0.00E+00 1.00E-02 0.00E+00 1.00E-02 0.00E+00
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Code and data availability. The Wang dataset (Wang
et al., 2017) and the novel C10 dataset of atmospheric
molecules (https://doi.org/10.5281/zenodo.4291795, Lu-
miaro, 2020) are freely available online. The KRR
code employed in this study can be found on GitLab
(https://gitlab.com/cest-group/krr-and-atmospheric-molecules,
Gitlab, 2020).
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Lumiaro, E., Todorović, M., Rinke, P., Kurten, T., and
Vehkamäki, H.: Atmospheric C10 dataset, Zenodo [data
set], https://doi.org/10.5281/zenodo.4291795, 2020.

Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., and Svetnik, V.: Deep
Neural Nets as a Method for Quantitative Structure–Activity Re-
lationships, J. Chem. Inf. Model., 55, 263–274, 2015.

Masuda, R., Iwabuchi, H., Schmidt, K. S., Damiani, A., and
Kudo, R.: Retrieval of Cloud Optical Thickness from Sky-View
Camera Images using a Deep Convolutional Neural Network
based on Three-Dimensional Radiative Transfer, Remote Sens.-
Basel, 11, 1962, https://doi.org/10.3390/rs11171962, 2019.

Meyer, B., Sawatlon, B., Heinen, S., von Lilienfeld, O. A., and
Corminboeuf, C.: Machine learning meets volcano plots: com-
putational discovery of cross-coupling catalysts, Chem. Sci., 9,
7069–7077, 2018.

Morgan, H. L.: The Generation of a Unique Machine Description
for Chemical Structures-A Technique Developed at Chemical
Abstracts Service, J. Chem. Doc., 5, 107–113, 1965.

Müller, T., Kusne, A. G., and Ramprasad, R.: Machine Learning in
Materials Science, chap. 4, pp. 186–273, John Wiley and Sons,
Ltd, Hoboken, New Jersey, USA, 2016.

Atmos. Chem. Phys., 21, 13227–13246, 2021 https://doi.org/10.5194/acp-21-13227-2021

https://doi.org/10.1002/advs.201900808
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1088/1748-9326/ab4e55
https://doi.org/10.1088/1748-9326/ab4e55
https://doi.org/10.5194/acp-20-5679-2020
https://doi.org/10.5194/acp-20-5679-2020
https://doi.org/10.1016/S0378-3812(00)00357-5
https://doi.org/10.1016/S0378-3812(00)00357-5
http://www.rdkit.org/
https://doi.org/10.5194/acp-20-2489-2020
https://doi.org/10.5194/acp-20-2489-2020
https://doi.org/10.5281/zenodo.4291795
https://doi.org/10.3390/rs11171962


E. Lumiaro et al.: Predicting gas–particle partitioning coefficients of atmospheric molecules 13245

Nannoolal, Y., Rarey, J., and Ramjugernath, D.: Estimation of pure
component properties: Part 3. Estimation of the vapor pressure of
non-electrolyte organic compounds via group contributions and
group interactions, Fluid Phase Equilibr., 269, 117–133, 2008.

Nourani, V., Uzelaltinbulat, S., Sadikoglu, F., and Behfar, N.:
Artificial Intelligence Based Ensemble Modeling for Multi-
Station Prediction of Precipitation, Atmosphere, 10, 80,
https://doi.org/10.3390/atmos10020080, 2019.

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeer-
sch, T., and Hutchison, G. R.: Open Babel: An open chemical
toolbox, J. Cheminformatics, 3, 33, 2011.

Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group con-
tribution method for predicting vapor pressures and enthalpies
of vaporization of multifunctional organic compounds, Atmos.
Chem. Phys., 8, 2773–2796, https://doi.org/10.5194/acp-8-2773-
2008, 2008.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, É.: Scikit-learn: Machine learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Peräkylä, O., Riva, M., Heikkinen, L., Quéléver, L., Roldin, P., and
Ehn, M.: Experimental investigation into the volatilities of highly
oxygenated organic molecules (HOMs), Atmos. Chem. Phys.,
20, 649–669, https://doi.org/10.5194/acp-20-649-2020, 2020.

Pyzer-Knapp, E. O., Li, K., and Aspuru Guzik, A.: Learning from
the Harvard Clean Energy Project: The Use of Neural Networks
to Accelerate Materials Discovery, Adv. Funct. Mater, 25, 6495–
6502, 2015.

Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon,
C., and Aumont, B.: Structure-activity relationships to es-
timate the effective Henry’s law constants of organics of
atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654,
https://doi.org/10.5194/acp-10-7643-2010, 2010.

Rogers, D. and Hahn, M.: Extended-connectivity fingerprints, J.
Chem. Inf. Model., 50, 742–754, 2010.

Rossi, K. and Cumby, J.: Representations and descriptors unifying
the study of molecular and bulk systems, Int. J. Quantum Chem.,
120, e26151, https://doi.org/10.1002/qua.26151, 2020.

Rupp, M.: Machine learning for quantum mechanics in a nutshell,
Int. J. Quantum Chem., 115, 1058–1073, 2015.

Rupp, M., Tkatchenko, A., Müller, K.-R., and von Lilienfeld, O. A.:
Fast and Accurate Modeling of Molecular Atomization Ener-
gies with Machine Learning, Phys. Rev. Lett., 108, 058301,
https://doi.org/10.1103/PhysRevLett.108.058301, 2012.

Rupp, M., von Lilienfeld, O. A., and Burke, K.: Guest Editorial:
Special Topic on Data-Enabled Theoretical Chemistry, J. Chem.
Phys., 148, 241401, https://doi.org/10.1063/1.5043213, 2018.

Sander, R.: Compilation of Henry’s law constants (version 4.0)
for water as solvent, Atmos. Chem. Phys., 15, 4399–4981,
https://doi.org/10.5194/acp-15-4399-2015, 2015.

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M.
J.: Protocol for the development of the Master Chemical Mech-
anism, MCM v3 (Part A): tropospheric degradation of non-
aromatic volatile organic compounds, Atmos. Chem. Phys., 3,
161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.

Schmidt, J., Marques, M. R. G., Botti, S., and Marques, M. A. L.:
Recent advances and applications of machine learning in

solid-state materials science, npj Comput. Mater., 5, 83,
https://doi.org/10.1038/s41524-019-0221-0, 2019.

Schröder, B., Fulem, M., and M. A. R. Martins: Vapor pressure
predictions of multi-functional oxygen-containing organic com-
pounds with COSMO-RS, Atmos. Environ., 133, 135–144, 2016.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and
Physics: From Air Pollution to Climate Change, 3rd Edn., Wi-
ley, New Jersey, 2016.

Shandiz, M. A. and Gauvin, R.: Application of machine learning
methods for the prediction of crystal system of cathode materi-
als in lithium-ion batteries, Comput. Mater. Sci., 117, 270–278,
2016.

Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guen-
ther, A. B., Jimenez, J. L., Kuang, C., Laskin, A., Martin, S. T.,
Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Se-
infeld, J. H., Shilling, J., Smith, J. N., Thornton, J. A., Volka-
mer, R., Wang, J., Worsnop, D. R., Zaveri, R. A., Zelenyuk, A.,
and Zhang, Q.: Recent advances in understanding secondary
organic aerosol: Implications for global climate forcing, Rev.
Geophys., 55, 509–559, https://doi.org/10.1002/2016RG000540,
2017.

Shrivastava, M., Andreae, M. O., Artaxo, P., Barbosa, H. M. J.,
Berg, L. K., Brito, J., Ching, J., Easter, R. C., Fan, J.,
Fast, J. D., Feng, Z., Fuentes, J. D., Glasius, M., Goldstein, A. H.,
Alves, E. G., Gomes, H., Gu, D., Guenther, A., Jathar, S. H.,
Kim, S., Liu, Y., Lou, S., Martin, S. T., McNeill, V. F.,
Medeiros, A., de Sá, S. S., Shilling, J. E., Springston, S. R.,
Souza, R. A. F., Thornton, J. A., Isaacman-VanWertz, G.,
Yee, L. D., Ynoue, R., Zaveri, R. A., Zelenyuk, A., and
Zhao, C.: Urban pollution greatly enhances formation of natural
aerosols over the Amazon rainforest, Nat. Commun., 10, 1046,
https://doi.org/10.1038/s41467-019-08909-4, 2019.

Smith, J. S., Isayev, O., and Roitberg, A. E.: ANI-1: an extensible
neural network potential with DFT accuracy at force field com-
putational cost, Chem. Sci., 8, 3192–3203, 2017.

Stenzel, A., Goss, K.-U., and Endo, S.: Prediction of partition co-
efficients for complex environmental contaminants: Validation of
COSMOtherm, ABSOLV, and SPARC, Environ. Toxicol. Chem.,
33, 1537–1543, 2014.
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