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Abstract: The purpose of this study is to investigate whether spatial-temporal dependence models
can improve the prediction performance of short-term freight volume forecasts in inland ports. To
evaluate the effectiveness of spatial-temporal dependence forecasting, the basic time series forecasting
models for use in our comparison were first built based on an autoregression integrated moving
average model (ARIMA), a back-propagation neural network (BPNN), and support vector regression
(SVR). Subsequently, combining a gradient boosting decision tree (GBDT) with SVR, an SVR-GBDT
model for spatial-temporal dependence forecast was constructed. The SVR model was only used
to build a spatial-temporal dependence forecasting model, which does not distinguish spatial and
temporal information but instead takes them as data features. Taking inland ports in the Yangtze
River as an example, the results indicated that the ports’ weekly freight volumes had a higher
autocorrelation with the previous 1–3 weeks, and the Pearson correlation values of the ports’ weekly
cargo volume were mainly located in the interval (0.2–0.5). In addition, the weekly freight volumes
of the inland ports were higher depending on their past data, and the spatial-temporal dependence
model improved the performance of the weekly freight volume forecasts for the inland river. This
study may help to (1) reveal the significance of spatial correlation factors in ports’ short-term freight
volume predictions, (2) develop prediction models for inland ports, and (3) improve the planning
and operation of port entities.

Keywords: freight volume forecast; spatial-temporal dependence; machine learning; time series
analysis; inland ports

1. Introduction

According to statistics from the United Nations Conference on Trade and Development,
about 80% of global trade is transported by shipping. There is an obvious relationship
between the development of maritime transport and the economic growth of countries,
especially landlocked countries [1,2]. Although the COVID-19 pandemic may slow down
this increasing trend, maritime transportation flows and container demand have continued
to grow [3]. The scale expansion and operational optimization of liner shipping plays a
significant role in transportation and economic development [4]. However, these large
ships also bring some disadvantages, such as extensive pressure on marine container
terminals (MCTs) and port congestion [3]. It is expected that the development of the
economy will make greater demands on shipping management. As indispensable parts
of the shipping system, ports are essential for the establishment and maintenance of
effective trade routes [5]. The increase in the international and domestic trade volume and
commercialization has put considerable pressure on port planning and operation [6,7]. Port
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management departments need to consider how to apply the construction of infrastructure
and make the various operations across ports cooperate in order to reduce the time that
ships spend in ports, shorten the transit times of goods, and enhance the competitiveness
of ports [8–10].

The forecasting of freight volumes could be very helpful for the planning and operation
of port entities [11,12]. From a long-term perspective, these predictions are an important
basis for the evaluation of port investment, whether or not projects should be unertaken,
and when they will be implemented [13,14]. From a short-term perspective, thy can
improve the efficiency of various operations in ports, offering benefits to both ports and
shipping enterprises. Therefore, many studies focus on the freight volume forecasts of
ports. Although these forecasts are related to many factors, including the development
of the local national economy, traffic and transportation conditions, and ports’ historical
statistics [13], most of them involve predictions that are based on the time series of freight
volumes [15–17].

The forecasting methods for freight volume can be divided into two classes. The first
is performed based on autoregression (AR) and moving average (MA). There are advanced
models developed from these basic models, such as the autoregression integrated moving
average model (ARIMA) [18,19] and the seasonal autoregressive integrated moving average
(SARIMA). For example, SARIMA can produce reliable monthly throughput forecasts at
major international ports [15]. The other method is machine learning [20]. Ruiz et al. [17]
compared the effectiveness of SARIMA and various machine learning methods in freight
volume prediction, and their results showed that machine learning methods performed
better. There are also differences between long-term and short-term forecasts, since the
autoregression’s size affects the forecast’s performance [11]. However, it can be seen that
most of the freight flow forecasting of ports is based on their past freight flow data without
considering the effect of their neighboring ports [13]. Indeed, the interaction between ports
can be used to estimate how changes in freight-flow patterns in some specific port locations
affect the freight demand at other ports in the system [6].

Considering the space-time method in road traffic volume [21–23], it could be argued
that building a spatial-temporal forecast model based on inter-port relationships instead
of time series predictions could improve the accuracy of freight volume forecasts. Several
studies in the past concerned with port interaction analysis used some theoretical ap-
proaches, such as game theory and space-time autoregressive moving average (STARMA).
For example, Sahu et al. [6] obtained the competitive or complementary relationships
between ports by analyzing how the freight flow at one port is affected by the changes in
freight flows in its neighbors. Merkel [24] found that the nature of inter-port relationships
tends to differ between major port regions. However, regardless of the nature of inter-port
relationships, analyzing them is likely to improve the performance of a forecast. If there
is competition between port X and port Y, the freight volume of port X could display a
downward trend when that of port X rises; if they were to cooperate, the freight volume of
the two ports could increase or decrease at the same time.

To evaluate the effectiveness of spatial-temporal dependence forecasts for port freight
volumes, this study tried to construct spatial-temporal dependence forecasting models
based on the correlation of multiple time series from different ports, and then compared the
prediction results with those of a single time series forecast. Specifically, autocorrelation
analysis and cross-correlation analysis were first performed on multiple time series in order
to understand the relationship between freight volumes and to determine the parameters
for the forecasting models. Subsequently, the basic time series forecasting models were
built based on ARIMA, a back-propagation neural network (BPNN), and support vector
regression (SVR), and the basic model with the best performance was selected to construct
the spatial-temporal dependence forecasting model combined with a gradient boosting
decision tree (GBDT) model. Finally, the effectiveness of the spatial-temporal dependence
forecast was analyzed by comparing the prediction evaluation results with those of other
forecasting models.
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The main part of this study is organized as follows. Firstly, we review previous
studies from two perspectives relevant to the objective of our research in Section 2. Next,
in Section 3, the framework for spatial-temporal dependence forecasting and analysis
is constructed while the data and experimental design are introduced. In Section 4, we
describe the experiments we carried out on the correlation analysis of port freight vol-
umes and our comparison between the predictions of different models. Subsequently, we
summarize our key findings in Section 5. In Section 6, conclusions are drawn.

2. Related Work
2.1. Analysis of Port Freight Volume Relationships

Inter-port relationships are likely to be complex, and the association between them
is not always competitive in nature [24,25]. The reason may be that there is a significant
degree of natural market power between ports [26]. Another possible reason for this
could be that seaports are encouraged by cooperation instead of competition [24]. For
example, the inter-port relationship within the Indian major port system is complementary
or cooperative due to their less than desirable performance levels [24]. Although the freight
volume is higher depending on its past data instead of that of neighboring ports in India,
they are all seaports and may be different from inland ports.

There are a variety of methodological approaches to the analysis of the competitive
relationship between ports, including various qualitative indicators of competition [27],
microeconomic indifferent analysis [28], game-theoretical approaches [29], and measures
of industry concentration [30]. In terms of time series, the correlation analysis is divided
into simple correlation analysis, quantitative correlation analysis, and time correlation
analysis [31]. Furthermore, fluctuation correlation between time series also needs to be
considered, including the order and direction of fluctuation [32]. Specifically, the STARMA
model was introduced by Pfeifer and Deutsh [33,34] for forecasting as well as analytical
purposes. The space-time model best represents the interactions among the neighboring
regions of a system by considering the spatial correlation between them [6]. However, the
primary analysis of these relationships is still based on Pearson correlation. In addition to
Pearson correlation, there are some other methods of correlation analysis between time
series, such as time-lagged cross-correlation (TLCC), dynamic time warping (DTW) [35],
and spatial correlation analysis based on geographical research [36,37].

2.2. Forecasting Methods for Freight Volume

Machine learning (ML) algorithms can handle an extensive amount of data without
any constraint on the degree of complexity compared to conventional statistical tech-
niques [17,38,39], and they can capture the underlying mechanism that governs that
data [40]. ANN (Artificial Neural Network) is the most popular ML method for pre-
dicting freight volume. ANN models were developed to forecast various types of freight
movements at Hong Kong port [41]. The results confirmed that freight volume predictions
are more accurate using ANN models than linear regression. Gosasang et al. [16] compared
their use of neural networks for the forecast of container throughput. Nikolaos et al. [42]
formed an ensemble of neural networks for time series forecasting, leading to improve-
ments in forecasting accuracy and robustness. In addition, Tsai and Huang (2017) adopted
an ANN model to predict traffic flows between major ports [43]. ANN has also been used
jointly with other techniques. For example, ANN with artificial bee colony (ANN-ABC)
and with Levenberg–Marquardt algorithms (ANN-LM) are combined to forecast annual
container traffic [44]. Meanwhile, the improved or hybrid ANN models were compared
with nonlinear regression and a least-squares support-vector machine (LSSVM), showing
that ANN-LM all performed better than multivariate nonlinear regression [45]. On the
other hand, considering that current research emphasizes only time series and regression
analysis, Moscoso-López et al. [46] used a two-stage approach involving an ensemble of
the best SVR models to forecast ro-ro (roll-on-roll-off) freight flow, which was verified as
a promising tool in freight forecasting. For further analysis of the influence of the size of
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the autoregressive window and machine learning models, Ruiz-Aguilar et al. [11] used a
variety of well-known machine learning models (individual learners) and ensemble models
to predict the number of inspections at the Border Inspection Posts (BIPs) on a specific day.
According to previous studies, neural networks and support vector regression generally
perform better than other machine learners in the forecast of freight volume.

2.3. Motivation

Overall, although some researchers try to use an ensemble learning approach to
improve forecasting accuracy, they still only focus on ports’ own time series. Although most
of the current research does not consider the correlation between ports from the perspective
of freight volume, it is of great importance to do so in order to construct an ensemble
forecasting model. In addition, another ensemble learning approach based on multiple time
series from different ports is feasible when considering inter-port relationships. Therefore,
it is necessary to develop a freight volume forecast model to obtain better prediction results
by estimating the reliability of the spatial-temporal dependence model. More specifically,
autocorrelation analysis and cross-correlation analysis are first performed on multiple time
series to preliminarily obtain the correlation between port freight volumes. In addition,
machine learning methods can be used to construct a more accurate ensemble forecasting
model and then reveal the reliability of the spatial-temporal dependence model through
comparison with single-series predictions. Such processes can explicitly demonstrate the
reliability of spatial-temporal dependence within the context of freight volume forecasting
to improve prediction accuracy.

3. Data and Methods

This section describes the ports and data, followed by a logical framework for the
effectiveness analysis of the spatiotemporal dependence forecast of freight volume. In
addition, the experimental design, including dataset partitioning and the selection of
parameters, are illustrated in this section.

3.1. Ports and Data
3.1.1. Port Locations and Freight Volume Data

Due to limited data availability, 12 ports in the main channel of the Yangtze River
were selected as research objects. The locations of all these ports are shown in Figure 1.
From upstream to downstream of the Yangtze River, they are: Chongqing Port, Yichang
Port, Shashi Port, Chenglingji Port, Wuhan Port, Huangshi Port, Fuchi Port, Wuxue Port,
Jiujiang Port, Hukou Port, Tongling Port, and Wuhu port, respectively. It can be seen that
most of them are located in the middle of the Yangtze River.

The time scope of the freight volume data was from 0:00 on 2 January 2012 to 0:00 on
23 February 2015. The period from 0:00 on each Monday to 24:00 on each corresponding
Sunday was recorded as one week, and thus there is a total of 164 weeks’ data.

Table 1 shows more detailed information about each port and its corresponding freight
volume. It is noted that distance is always used as a measure when characterizing the
intensity of the relationship between ports [6,24]. Therefore, we calculated the channel route
distance between Wuhan Port and each of the other ports based on its middle location in
the Yangtze River channel. In addition, these ports were ranked according to their average
freight volume per year in order to analyze whether there is was a relationship between
spatial-temporal dependence and port grade.
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Table 1. Port information and freight volume statistics.

Port Province/
City

Distance from
Wuhan Port (km)

Average Freight
Volume per Week (t)

Average Freight
Volume per Year (t) Rank

Chongqing Port Chongqing 1286 743,147.4 31,168,095.0 5
Yichang Port Hubei 626 231,196.2 9,781,418.3 9
Shashi Port Hubei 478 87,369.9 5,681,884.9 10

Chenglingji Port Hunan 231 1,290,178.1 57,570,284.1 2
Wuhan Port Hubei 0.0 1,194,259.3 57,803,446.1 1

Huangshi Port Hubei 133 240,774.6 9,994,258.5 8
Fuchi Port Hubei 195 55,721.4 988,158.1 12

Wuxue Port Hubei 204 132,642.0 3,566,179.7 11
Jiujiang Port Jiangxi 250 269,118.6 13,426,721.4 6
Hukou Port Jiangxi 260 264,441.0 12,746,637.7 7

Tongling Port Anhui 496 878,022.6 45,468,097.5 3
Wuhu Port Anhui 600 691,657.1 38,161,639.8 4

3.1.2. Trend Analysis and Stationary Detection

To understand the trend of freight volume data, we drew a curve to represent the
weekly freight volumes. Figure 2a shows the weekly freight volume curves of Wuhan Port,
Chongqing Port, and Jiujiang Port. On the whole, the weekly freight of Wuhan Port and
Chongqing Port showed a small increase while that of Jiujiang Port showed no obvious
change. On the other hand, the curves fluctuated greatly from about January to February
every year. This period corresponds to the Spring Festival in China, when most enterprises
and workers take vacations, resulting in a sharp drop in freight volume.

Another important aspect is to ensure the stability of the time series when performing
time series forecasting, especially for ARIMA [18] and SARIMA [15]. Stationary detection
methods include autocorrelation, partial correlation, and the Augmented Dickey-Fuller
test (ADF). This last test is more objective because it judges the existence of the unit root.
Therefore, ADF was used to detect the stationary of freight cargo volume data. The results
showed that the time series of most ports are stable, except for Yichang Port, Shashi Port,
and Wuhu Port.

In order to eliminate the increasing trend of freight volume and keeping the stability of
time series, all the freight volume data were detrended. Based on this step, we also hoped
to analyze whether detrending processing helps to improve the forecasting performance of
machine learning methods through the experiments detailed in Section 4. The difference
method was adopted in order to eliminate trends in this paper. Furthermore Figure 2b,c
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show the curves of Chongqing Port and Wuhan Port after detrending the time series. It can
be seen that the freight volume data of the two ports fluctuated around 0, and there was no
growth trend.
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3.2. The Framework for Spatial-Temporal Dependence Forecasting and Analysis

The logical framework for spatial-temporal dependence forecasting and analysis
is shown in Figure 3. It consisted of four main parts: a correlation analysis between
freight volume data, the construction of spatial-temporal dependence and time series
forecasting models, data partitioning and model training, and the prediction results from
the comparison and analysis.
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3.2.1. Correlation Analysis of Freight Volume Data

The correlation analysis of the freight volume data included the data autocorrelation
analysis of a single port and the data cross-correlation analysis of different ports. The
autocorrelation analysis was used to determine the temporal dimension δ (autoregressive
window) in Formula (3), whereas the latter analysis was used to obtain the correlation
between the port freight volume and the spatial dimension m in Formula (3).

3.2.2. Autocorrelation Analysis

The freight volumes displayed periodicity with day [12] and season [15] as the grain
size, respectively. In addition, Ruiz-Aguilar et al. [11] point out that although the prediction
result will improve with the increasing size of the autoregressive window, the improvement
will reduce with each increment of the size of the autoregressive window, up to a point of
21 days in the past, which implies that δ = 3 (weeks) may be a good choice. We verified
this value through further experiments.

Spectrum analysis and autocorrelation analysis are usually used in periodic detec-
tion [47]. Spectrum analysis assumes that there is a period in the time series, whereas there
is no such assumption in autocorrelation analysis. There was no clear periodic pattern
in the port weekly freight volume data. Therefore, autocorrelation analysis was used in
this paper. The autocorrelation function judges the correlation of time series by analyzing
the similarity between the current value and the value with different lag k, as shown in
Formula (1) [48]:

r(k) =
∑n−k

i=1 (xi − x)(xi+k − x)

∑n
i=1(xi − x)2 (1)

where xi is the measurement at time i and x is the mean value.

3.2.3. Cross-Correlation Analysis

As mentioned in Section 2.1, the Pearson correlation was firstly used to obtain the
overall relationship between the freight volumes of different ports. However, this method
still did not provide insights into series dynamics. It would be better to know the leader–
follower relationship in different time series when constructing the forecasting model. For
example, if the freight volume of port X increases in this stage, resulting in the rise of freight
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volume at port Y in the next stage, then port X could be considered in the forecasting model
for freight volume of port Y. Thus, we also used time-lagged cross-correlations (TLCC),
which can identify directionality between double-time series. If the peak value of the
relation curve is located in the center (that is, the offset is 0), the double-time series are
synchronized at that time. The model definition of TLCC is similar to autocorrelation, as
shown in Equation (2):

gxy
k = 1

n ∑n−k
t=0 (yt − y)(xt+k − x)

rxy
k = gxy

k /√SDx × SDy

(2)

where SDx and SDy represent the standard deviation of series X and Y, and rxy
k is the

cross-correlation coefficient with the lag k between them.

3.2.4. Spatial-Temporal Dependence Forecasting Model for Port Freight Volumes

The prediction based on the spatial-temporal dependence model can be seen as a
function of multiple time serie, except it considers the relationship between the freight
volumes of different ports. The ports whose freight volume has a spatial correlation
with the target port P0 are P = {P1, P2, · · · , Pm }, and xi

t(i ∈ [0, m]) represents the freight
volume of ith the port at the period of t. In particular, i = 0 indicates the target port. The
spatial-temporal dependence forecasting model can be expressed as follows:

x0
t+1 = F




x1
t−(δ−1) . . . x1

t
...

xm
t−(δ−1)

. . .
. . .

...
xm

t
x0

t−(δ−1) . . . x0
t


 (3)

The model was further separated into two steps: the first was to obtain the forecasting
of the time series, as in Step 1 in Figure 4a; the next was to obtain the final prediction
combining the multiple forecasting results from Step 1 with the original data from other
related ports, as in Step 2 in Figure 4a. The essential idea was to modify the time series
predictions through a spatial forecasting model. The other option was to directly take the
data of port P0 and other ports as the input features of the forecasting model, as shown in
Figure 4b.
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Some forecasting methods for the time series are described in detail in Section 3.2.3,
and the best forecasting model was used for Step 1 in Figure 4a, according to the comparison
between the corresponding forecasting results in Section 4.2.1. On the other hand, we used
the GBDT to complete the forecasting for Step 2 in Figure 4a. Its role in the freight volume
forecast is analyzed below.
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3.2.5. GBDT Forecasting Process

GBDT improves decision-making results by adding models (the linear combination of
basic functions) and continuously reducing the residuals generated by the training process.
Combined with Step 2 in Figure 4, the forecasting process for the freight volume of target
ports was analyzed as follows:

1. We calculated the average of
[
x1

t+1, x2
t+1, · · · , xm

t+1, x0
t+1
′] as the initial learner f0(x);

2. We calculated the residuals ri = −
[

∂L((x0
t+1)i , f ([x1

t+1,x2
t+1,··· ,xm

t+1,x0
t+1
′]i))

∂ f ([x1
t+1,x2

t+1,··· ,xm
t+1,x0

t+1
′])i

]
, where L is

the lost function, and
([

x1
t+1, x2

t+1, · · · , xm
t+1, x0

t+1
′]

i,
(
x0

t+1
)

i

)
is the ith training data;

3. We built a tree with a goal of predicting the residuals, which takes ([x1
t+1, x2

t+1, · · · ,
xm

t+1, x0
t+1
′], ri) as the training data of the new tree;

4. We calculated the best-fitting value γj = argmin︸ ︷︷ ︸
γ

∑yi∈Rj
L(xi, f (yi) + γ) for leaf node

area Rj, j = 1, 2, · · · , J, where J is the number of leaf nodes of the tree;

5. We updated f (x) with f (x) = f (x) + ∑J
j=1 γi;

6. We repeated step 2 to step 4 until the number of iterations n matches the number
specified by the hyperparameter;

7. We used the last f (x) to make a final prediction x0
t+1 as to the value of the freight

volume of the target port.

3.2.6. The Single-Stage GBDT Forecasting Model

The freight volume of the target port at t + 1 can be forecasted through GBDT only
based on their own data and those of correlated ports at t. In this way, [x1

t+1, x2
t+1, · · · , xm

t+1,
x0

t+1
′] in Step 2 in Figure 4 could be replaced by

[
x1

t+1, x2
t+1, · · · , xm

t+1, x0
t+1
]
, and Step 1

in Figure 4 could be omitted. We also carried out experiments in order to analyze the
effectiveness of the spatial-temporal dependence forecasting model and the single-stage
GBDT forecasting model.

3.3. Time Series Forecasting Models of Port Freight Volumes

Through implementing time series forecasting, we were able to determine whether
the spatial-temporal dependence model was better by comparison. On other hand, the best
time series model was used for Step 1 in Figure 4. Formula (4) depicts the model of time
series forecast for freight volumes [11]; the parameters are introduced above.

x(t + 1) = F{x(t), x(t− 1), · · · , x(t− (δ− 1))} (4)

According to Section 2.2, the neural network and support vector regression generally
performed better than other machine learners in freight volume forecasts. In addition to
the machine learning methods, the traditional method, ARIMA model, was also selected as
a model for comparison.

3.3.1. Auto-Regression Integrated Moving Average

The ARIMA model consists of an AR model and an MA model, as shown in For-
mula (5). The AR model, which requires that the time series be stationary and that it has
a certain autocorrelation, is used to describe the relationship between the current value
and the historical value. The MA model illustrates the accumulation of error terms in the
autoregressive model to eliminate the random fluctuation in prediction:

xt+1 = µ + ∑δ

i=1 γixt−(i−1) + εt+1 + ∑q
i=1 θiεt−(i−1) (5)

where µ is a constant term, whereas εt+1 is an error term, γi and θi are coefficient, and the
parameters δ and q need to be determined based on the Bayesian Information Criterion
(BIC). In addition, the time series need to be converted into stationary series by different
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methods, which are described in Section 3.1.2. Therefore, the construction process of the
ARIMA model includes: (a) the conversion of the time series into into stationary sequences;
(b) the determination of the parameters δ and q; (c) the construction of the ARIMA model
in order to perform forecasts according to the parameters.

3.3.2. Support Vector Regression

SVR is always used in prediction and performs well [17,49]. The kernel function
further promotes prediction accuracy [50]. As shown in Figure 5a, SVR combines the
support vector machine (SVM) and regression methods, and thus it still features the
characteristics of SVM, which means that the loss is calculated only if the difference
between the predicted value and the actual value is greater than ε. The goal of SVR is to
minimize forecasting errors and to maximize the interval between two margins that are
parallel to the hyperplane. If the expression of the hyperplane is f (x) = wTx + b, then the
objective function is as follows:

min
w,b

1
2
‖w‖2 + C ∑m

i=1 lε( f (xi)− yi) (6)

where lε(z) =

{
0, i f |z| ≤ ε

|z| − ε, otherwize
and C is the regularization constant, and (xi, yi),

i ∈ (1, m) represents the training data. If the samples cannot be fitted by the linear model,
the original space needs to be mapped into high-dimensional space. The kernel functions,
such as linear kernel function and polynomial kernel function, are always used in SVR.
Generally, SVR for forecasting includes the following four steps:

(a) data standardization to prevent local features from being too large or too small, and
to speed up the calculation;

(b) the determination of the kernel function and the parameters C, and the construction
of the SVR model;

(c) training of the SVR model based on training data;
(d) the prediction of the target value after obtaining the model.

3.3.3. Back-Propagation Neural Network

Although deep learning methods, especially long-short term memory (LSTM) net-
works, are able to capture the features of time series over a longer time span [51–53], the
21 days (three weeks) is an appropriate autoregressive window, and neural networks
perform better than any other model independently of the size of the autoregressive win-
dow [11]. Therefore, BPNN is still used for comparison research instead of LSTM. As
shown in Figure 5b, BPNN includes the input layer, the hidden layer, and the output layer.
The whole BPNN consists of many neural units, and each neural unit can be represented as:

y = f
(
∑n

i=1 wixi + b
)

(7)

where xi is the input of the current neural unit, wi is the connecting weight, b is the thresh-
old, and f is the activation function. Unlike other neural networks, BPNN updates weights
and thresholds by minimizing the errors between predicted and true values. The processes,
which are similar to those in SVR, include: (a) data standardization; (b) the structural
determination of BPNN and the initialization of weights and thresholds; (c) updating the
parameters through a back-propagation algorithm based on training data; (d) the prediction
of the target value after obtaining the model.
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3.3.4. Evaluation Methods for Forecasting Results

There are several statistical methods available to evaluate forecast performance [17],
including the standard correlation coefficient R, the index of agreement d, mean absolute
error MAE, and mean absolute percent error MAPE, as follows:

R =
∑N

i=1(yi − y)(xi − x)√
∑N

i=1(yi − y)2 ∑N
i=1(xi − x)2

(8)

d = 1− ∑N
i=1(yi − xi)

2

∑N
i=1(|yi − x|+ |xi − x|)2 (9)

MAE =
1
N ∑N

i=1|yi − xi| (10)

MApE =
100
N ∑N

i=1
|yi − xi|

xi
(11)

where xi and yi are the true and predicted values, x and y are the corresponding average
values, and N is the number of samples. Notably, R and d close to 1 performed better,
whereas lower MAE and MAPE indicated overperformance.

3.4. Experimental Design

To ensure the stability and accuracy of the predictions, the strategy of dataset parti-
tioning and parameter selection for obtaining models were considered.

3.4.1. Dataset Partitioning

Common cross-validation procedures can be adapted for time series prediction evalu-
ation when autoregressive models are used [54]. Therefore, the K-fold cross-validation was
performed on the time series. As mentioned in Section 3.1, there was a total of 164 weeks’
data on multiple ports, therefore the analysis was carried out by performing 5-fold cross-
validation. In this sense, the models were fitted in four folds (train set) and tested in the
left fold. This procedure can be repeated 20 times to guarantee the randomness of the
partitioning process [11]. However data partitioning is not suitable for ARIMA, and thus
we used the detrended data directly for training and testing, while keeping the data size
the same as for the machine learning methods.
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3.4.2. Parameter Selection

It is important to select suitable parameters for machine learning models to create
accurate predictions. Generally, there are three methods of parameter adjustment in
machine learning, namely, grid search, random search, and Bayesian optimization. Grid
search offers reliable results but it is too slow, while random search is fast but important
points may be missed in the search space. Therefore, Bayesian optimization was adopted for
this paper. The optimization results were different for each data random division process;
we took the mean values of the continuous variables and the modes of the discrete variables.

Specifically, grid search is applicable in ARIMA due to the limitation on δ and q. As
for BPNN, the number of layers is set 3 and the number of neurons of the middle layer can
be determined as follows:

Nh =
Ns

α ∗ (Ni + No)
(12)

where Ni is the number of neurons in the input layer, No is the number of neurons in the
output layer, Ns is the number of training samples, and α is always selected between 2 and
10. In this way, we were able to set the scope of the number of neurons in the middle layer
when using Bayesian optimization.

4. Results

This section contains the correlation analysis of port freight volumes and the compari-
son between the predictions of different models.

4.1. Correlation Analysis of Port Freight Volume

The autocorrelation analysis of the port weekly freight volume data and the correlation
analysis between the weekly freight volume data of different ports can not only help to
understand the actual weekly freight volume of inland ports but it can also be used to
determine parameters for the forecasting models.

4.1.1. Autocorrelation Analysis of Port Freight Volume

Generally, the weekly freight volume of a specific port has a stronger correlation
with that of the previous few weeks [11]. Therefore, all the data from 2012 to 2014 were
divided into 13 segments, and each segment contained 12 weeks (approximately a quarter’s
worth) of data. The temporal correlation between the last week and the first 11 weeks of
freight volume in each segment was analyzed. Figure 6 shows the weekly autocorrelation
results of the different grades. The horizontal axis 0 represents the current week, the
horizontal axis i represents the previous week, and the vertical axis represents the date of
the current Sunday.
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It can be seen that:

(a) There was no obvious periodic pattern in the time series of weekly freight volume;
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(b) With the increase of the time interval between the current week and the previous
week, the correlation decreased gradually;

(c) The weeks with higher correlation are the antecedent 1–3 weeks, but there is both
positive and negative autocorrelation.

In addition, there were few differences between the freight volume autocorrelation
results of different ports. For example, the proportion of positive correlation to negative
correlation was basically the same in the previous 1–2 weeks for Wuhan Port. However,
the weekly freight volume in the past week mainly showed a positive correlation for
Chongqing Port, while that in the previous 2 weeks mainly showed a negative correlation.
For Shashi Port, the previous 1–2 weeks mainly showed a positive correlation.

Compared with the freight volume autocorrelation, with a quarter as the time gran-
ularity [6], the current freight volume only showed a strong correlation with the freight
volume of the previous 1–2 stages. Therefore, we also determined δ = 3 according to
Ruiz-Aguilar’s conclusion [11].

4.1.2. Freight Volume Correlation Analysis between Ports

The Pearson correlation was first used to carry out primarily correlation analysis, as
shown in Table 2. Most correlations between the ports’ weekly freight were positive, but
there was a negative correlation between Fuchi Port and Jiujiang Port. The highest Pearson
correlation value of the ports’ weekly freight volume was 0.615, and the Pearson correlation
values were mainly distributed between 0.2 to 0.5, which account for 50% of the total. In
addition, the highest Pearson correlation values (bold italic numbers) in more rows did
not tend to approach the diagonal of the matrix, indicating that there seemed not to be a
higher correlation between the weekly freight volume of ports located close to each other;
we numbered the ports from the upstream to downstream of Yangtze River.

Table 2. Pearson correlation coefficient matrix of port freight volumes.

1 2 3 4 5 6 7 8 9 10 11 12

1 1 0.572 0.293 0.157 0.353 0.464 0.173 0.457 0.321 0.173 0.094 0.425
2 0.572 1 0.266 0.367 0.432 0.347 0.164 0.615 0.219 0.237 0.169 0.356
3 0.293 0.266 1 0.139 0.164 0.219 0.221 0.139 0.079 0.068 0.152 0.230
4 0.157 0.367 0.139 1 0.308 0.141 0.203 0.148 0.040 0.0490 0.227 0.370
5 0.3523 0.432 0.164 0.308 1 0.392 0.095 0.271 0.160 0.254 0.390 0.473
6 0.464 0.347 0.219 0.141 0.392 1 0.185 0.280 0.221 0.265 0.237 0.384
7 0.173 0.164 0.221 0.203 0.095 0.185 1 0.130 −0.108 0.270 0.190 0.113
8 0.457 0.615 0.139 0.148 0.271 0.280 0.130 1 0.360 0.345 0.092 0.262
9 0.321 0.219 0.079 0.040 0.160 0.220 −0.108 0.360 1 0.114 0.060 0.175

10 0.173 0.237 0.068 0.0490 0.254 0.265 0.269 0.345 0.114 1 0.160 0.201
11 0.094 0.169 0.152 0.227 0.390 0.237 0.190 0.092 0.060 0.160 1 0.402
12 0.425 0.356 0.230 0.370 0.473 0.384 0.113 0.262 0.175 0.201 0.402 1

The numbers from 1 to 12 indicate Chongqing Port, Yichang Port, Shashi Port,
Chenglingji Port, Wuhan Port, Huangshi Port, Fuchi Port, Wuxue Port, Jiujiang Port,
Hukou Port, Tonling Port, and Wuhu Port.

In addition to considering the overall relevance between port weekly freight volumes,
we also paid attention to whether there was a lag between the ports’ weekly freight vol-
umes, whether the correlation was related to the ports’ grades, and whether the relevance
changed dynamically.

4.1.3. Was There a Lag between the Weekly Freight Volumes of Different Ports?

We tried to determine whether there was a lag between the weekly freight volumes
in order to judge whether there was a guide-follow relationship between the different
ports. We set the window size at 20 weeks and then used windowed time-lagged cross-
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correlations (WTLCC) based on Equation (2) to analyze the weekly freight volume of the
target port and that of the other ports every month, as shown in Figure 7.
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Shashi Port.

The freight volume correlations between these three ports and Wuhan Port were
different. For example, although the main weekly freight volume correlations between
the three ports and Wuhan Port were positive when the offset week was 0, the correlation
between Chongqing Port and Wuhan was relatively continuous, while the correlations
between Chenglingji Port, Shashi Port, and Wuhan Port were segmented. Generally, if there
is a guide–follow relationship between two port freight volumes, it will mainly display
negative (positive) values in the negative offset weeks while displaying positive (negative)
values in the positive offset weeks. However, according to Figure 7, it seems that there was
no such trend, except for Chenglingji Port, where the freight volume correlation with other
ports remained unstable.

4.1.4. Is the Correlation of Ports’ Weekly Freight Volume Dynamic?

As shown in Figure 7, the freight volume correlations between specific ports and
Wuhan Port changed dynamically. For example, the higher correlations between the freight
volumes of Wuhan Port and Chenglingji Port were found in June 2012 and June 2014, while
this was not the case for June 2013, which indicates that there was no periodic pattern of
correlation between the freight volume of different ports. However, we could also consider
the dynamic variation characteristics of correlation when carrying out the spatial-temporal
correlation prediction.

4.1.5. Is the Correlation of Ports’ Weekly Freight Volume Related to Ports’ Grades?

To determine whether the correlation of weekly freight volumes was related to the
ports’ grades, we changed the order of the volumes in Table 2 and displayed it through
a heat map, as shown in Figure 8. It shows that ports with higher grades had a higher
correlation of weekly freight volume with each other than with ports with a lower grade.
In addition, Huangshi Port, Yichang Port, and Wuxue Port had a higher correlation with
other ports.

Furthermore, the spatial dimension m for the spatial forecasting model needed to be
determined. The predictions of GBDT based on different m dimensions were compared.
Figure 9 shows that there was no obvious difference between different m dimensions. To
maintain consistency with the input dimensions of the time series predictions, we also
set m = 3, which meant that the weekly freight volume data of the three ports thathad
the highest correlation with the target port were used as the input data for the spatial
forecasting model, including the target port’s own freight volume data.
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4.2. Prediction Comparison between Different Forecasting Models

This work aimed to verify whether the spatial-temporal dependence model can im-
prove the forecasting of the short-term freight volume of inland ports. Therefore, we
first carried out a forecast based on spatial-temporal dependence forecasting models and
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time series forecasting models, as discussed in Section 4.2.1. We then analyzed the effect
of the dynamic correlation and the detrending process on spatial-temporal dependence
forecasting, as discussed in Sections 4.2.2 and 4.2.3, respectively.

As mentioned above, the hyper-parameters are important for machine learning meth-
ods, and Bayesian optimization was used to obtain suitable parameters. Table 3 shows the
best hyper-parameters of four basic forecasting models when δ = 3 (for SVR, BPNN) and
m = 3 (for GBDT). The hyper-parameters were different for the weekly freight volume
data of different ports. The hyper-parameters of subsequent models were determined by
Bayesian optimization.

Table 3. Hyper-parameters of freight volume forecasting models.

Ports

Models and Hyper-Parameters

ARIMA SVR BPNN GBDT

δ q C Kernel Activation Number of
Neurons

n
Estimators Learning Rate Max Depth

Chenglingli 2 0 8.01 linear relu 7 97 0.0266 18
Chongqing 3 3 8.53 poly relu 10 103 0.0012 21

Fuchi 0 1 5.43 rbf tanh 5 95 0.0018 20
Huangshi 0 1 6.96 linear tanh 9 97 0.0567 19

Hukou 0 1 7.52 linear relu 9 99 0.0777 20
Jiujiang 1 0 12.28 linear identity 8 103 0.0216 23
Shashi 0 2 5.06 rbf relu 8 93 0.0315 22

Tongling 2 1 10.05 linear relu 9 100 0.1166 21
Wuhan 2 0 9.2 rbf tanh 9 99 0.1235 22
Wuhu 2 0 6.63 linear tanh 7 98 0.1042 22
Wuxue 1 0 9.33 linear relu 10 98 0.1672 20
Yichang 2 2 9.81 poly relu 8 97 0.05378 18

4.2.1. Comparison between Spatial-Temporal Dependence Forecasting and Time
Series Forecasting

As shown in Figure 10, we used MAE and d to evaluate the prediction results based on
the ARIMA, BPNN, SVR, and single-stage GBDT forecasting models. Figure 10a shows that
the models with the most accurate and most stable predictions were BPNN and SVR, while
the ARIMA model performed poorly. According to the MAE in Figure 10b, the single-stage
GBDT forecasting model was not reliable, while SVR was more accurate than BPNN.

According to the evaluation analysis based on Figure 10, SVR was selected for spatial-
temporal dependence forecasting models in Figure 4a, and noted as SVR-GBDT. In addition,
the SVR was also deemed to be suitable for the construction of forecasting models based
on Figure 4b, and noted as Sspatial-temporal SVR (STSVR). Consequently, the prediction
results of SVR, SVR-GBDT, and STSVR, were compared, as shown in Table 4.
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Table 4. Evaluation results of predictions based on SVR, SVR-GBDT, and STSVR.

Ports Models R d MAE MAPE

Chongqing Port
SVR-GBDT 0.6142 0.7645 114814 17.5140

STSVT 0.6354 0.7793 109594 17.2641
SVR 0.6271 0.7549 111383 17.1492

Yichang Port
SVR-GBDT 0.6318 0.7860 46907.8 23.0705

STSVT 0.7110 0.8323 37346.2 18.8978
SVR 0.6131 0.7723 39594.2 18.6422

Shashi Port
SVR-GBDT 0.6629 0.7979 27866.8 71.2912

STSVT 0.7717 0.8652 20955.1 62.7795
SVR 0.7619 0.8609 21156 52.5459

Chenglingji Port
SVR-GBDT 0.4909 0.6913 388887 43.795

STSVT 0.6209 0.7776 295815 35.539
SVR 0.6197 0.7759 274525 30.2371

Wuhan Port
SVR-GBDT 0.3544 0.6002 150934 14.3819

STSVT 0.4212 0.6399 112476 11.1286
SVR 0.4685 0.6852 114343 10.6734

Huangshi Port
SVR-GBDT 0.4383 0.6420 62257.2 20.0887

STSVT 0.5985 0.7533 45119.9 20.1444
SVR 0.5276 0.7141 45383 21.4577

Fuchi Port
SVR-GBDT 0.8013 0.8817 23504.5 124.399

STSVT 0.7941 0.8727 24230.3 335.966
SVR 0.7912 0.8724 22878.8 268.399

Wuxue Port
SVR-GBDT 0.6732 0.7971 43535.6 44.4348

STSVT 0.7878 0.8699 29921.2 29.4547
SVR 0.7589 0.8534 30449 32.8891

Jiujiang Port
SVR-GBDT 0.2311 0.5185 69281.1 28.7139

STSVT 0.3651 0.6139 49234.8 20.9561
SVR 0.3922 0.6107 52461.3 22.0805

Hukou Port
SVR-GBDT 0.4671 0.6751 62505.6 25.4328

STSVT 0.6364 0.7829 43338.2 18.0239
SVR 0.6780 0.8084 40370 16.5361
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Table 4. Cont.

Ports Models R d MAE MAPE

Tongling Port
SVR-GBDT 0.1231 0.4481 220966 30.5405

STSVT 0.2423 0.5294 156148 24.1003
SVR 0.3308 0.5934 137192 20.0258

Wuhu Port
SVR-GBDT 0.6333 0.7758 143389 23.1780

STSVT 0.6627 0.7838 126290 20.5344
SVR 0.7797 0.8729 97741.1 15.9640

As can be seen in Table 4, the prediction results of SVR and STSVR were better and
similar, whereas the SVR-GBDT did not show good forecasting effectiveness. It seems
that spatial-temporal correlation information helps in the performance of weekly freight
volume forecasts for most inland ports (bold marker). However, the spatial-temporal
dependence forecast models do not offer great improvements in the prediction of weekly
freight volume.

4.2.2. Comparison between Static Spatial Dependence and Dynamic Spatial Dependence

Due to the complexity of the inter-port relationship [24] and its variability, as influ-
enced by a range of factors [55], the spatial correlation of port freight volume is dynamic,
as demonstrated by Figure 7. Therefore, we tried to construct new training data and test
data corresponding to the dynamic cross-correlation results.

The specific steps were as follows. Firstly, the first 152 weeks’ data from each port were
evenly separated into 38 segments, where each segment contained 10 weeks’ data, and the
interval between the beginning of each segment was about one month. Subsequently, the
weekly freight volume cross-correlation coefficient between each segment of each port was
calculated according to Equation (2). Finally, according to the data stage of the target port
and the cross-correlation results from the corresponding period, the data of the three ports
with the highest correlations with the target port were chosen to build training sets and
test sets. We inputted these datasets into SVR models, notated the dynamic STSVR, and
compared the predictions with those of the static STSVR, as mentioned earlier.

As shown in Figure 11, according to the evaluation results based on d and R, the
dynamic STSVR performed better than the static STSVR for almost all ports except Wuxue
Port. Furthermore, in addition to Jiujiang Port, Wuxue Port, and Huangshi Port, the
dynamic STSVR also obtained better prediction results according to the evaluation results
based on MAE and MAPE. Therefore, although there was no great difference between
static and dynamic STSVR, the dynamic SRSVR still offered improved predictions.

4.2.3. Comparison between Time Series with and without Stationary Processing

Although the question of whether stationary processing is significant for weekly
freight volume forecasting is not the main goal of this work, it also plays an important
role in the formation of accurate predictions. Thus, we also carried out experiments on the
prediction comparison based on time series with and without stationary processing. The
dynamic STSVR and the SVR for time series forecasting were selected for this compari-
son experiment.

By comparing Figure 12a with Figure 12c, we found that the prediction results based
on data with stationary processing were generally better than those based on original data,
and that the time series forecasts were more easily affected by the stationary processing.
However, according to the evaluation results based on MAE Figure 12b,d, the dynamic
STSVR method with detrending time series featured more errors, which was the opposite
of the performance of the SVR model with detrending time series.
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On the other hand, by combining Table 4 with Figure 12, we found that the spatial-
temporal dependence models and the time series forecasting models performed similarly.
If the prediction results based on SVR were good, the corresponding results based on
spatial-temporal dependence models were also acceptable, and vice versa. This finding
can be explained by the fact that forecasting results of ports are more dependent on their
past data.
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5. Discussion

This paper proposed a short-term freight volume forecasting model focusing on inland
ports, and a case study was performed in order to investigate the ports in the Yangtze River,
China. The results indicated that the spatial-temporal dependence model improved the
weekly freight volume forecasts for this inland river, and that the prediction accuracy for
the weekly freight volumes of inland ports was higher when using the ports’ own past data
instead of data from other ports. However, the spatial-temporal dependence model was not
sensitive enough to offer a major improvement in the weekly freight volume forecasting of
the inland river, although did offer a minor improvement.

In addition, we found that the ports’ weekly freight volumes had a higher autocor-
relation with the previous 1–3 weeks, which implies that the freight flows during the
current stage are highly dependent on the volume of its earlier stage, which is line with
Sahu’s results [55]. However, there was no regular positive or negative autocorrelation for
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different ports. On the other hand, the inter-port Pearson correlation values were mainly
located in the 0.2–0.5 range, indicating that the weekly freight volumes of the inland river
ports were not correlated with each other. Furthermore, it seems that the correlation was
more related to ports’ grades rather than their spatial distance from each other [24].

In terms of the weekly freight volume forecasting models, the models based on ma-
chine learning methods were shown to perform better than ARIMA [17]. Furthermore,
the historical data of the ports themselves were the key determinant in freight volume
forecasting, although the spatial information from other ports also offered modest improve-
ments [6]. In addition, it is helpful to take the dynamic freight volume correlation into
account when carrying out predictions based on spatial-temporal dependence models.
Furthermore, stationary processing is still significant in the adoption of machine learning
methods to perform freight volume forecasts.

These results contribute a clearer understanding of the effectiveness of spatial-temporal
dependence in inland port freight volume forecasting. This study can be consulted for
short-term forecasting of freight volume, and the proposed models can be used directly.
However, it was beyond the scope of this study to investigate the spatial competition
and complementary correlation between ports, which can also help in the construction of
spatial-temporal dependence forecasting models.

6. Conclusions

Freight volume forecasts are important to the planning and operation of ports. How-
ever, most research until now has focused solely on ports’ own time series without consid-
ering spatial information from other ports, especially inland ports. In order to understand
whether past freight volume data can improve forecasting for inland ports, the spatial-
temporal dependence forecasting models were constructed first, and then the prediction
results were compared with those from the time series forecasting models, taking inland
ports in Yangtze River as examples. The key conclusions may be summarized as follows:

• The weekly freight volume of an inland port is higher depending on its past data.
• The spatial-temporal dependence model is not sensitive enough to offer a major

improvement in the forecasting of the weekly freight volume forecasting for inland
river ports, although it does offer a minor improvement.

• Dynamic freight volume correlation and stationary processing help to make predic-
tions more accurate.

• The weekly freight volume forecasts of different ports show obvious differences.
• In order to make more accurate predictions, for the benefit of port management

departments, these freight volume forecasting models and results should be taken
into account when carrying out related research.

The analysis of inter-port relationships is not the key point in this paper. However, it
is still a significant and interesting research topic. Future research could focus more on the
analysis of inter-port relationships. By considering the availability of ship movement data,
such as AIS data, it may be feasible to accurately analyze inter-port relationships through
analysis of the ship traffic between ports.
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