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Abstract—Queue profile is a crucial measure for traffic man-
agement in the vicinity of signalized intersections. In this study,
we develop a method to identify queue profile using high
resolution data, which can be provided from various sources
such as drones. Our methodology has three main components
which are signal state estimation, queue profile identification, and
lane detection. The developed algorithms are tested on the real-
world dataset collected by drones as a case study for validation.
Remarkably, our method only uses drone data as input and it
is independent from any other data source such as geographic
information system data. The results demonstrate satisfactory
performance of the methodology in extracting queue profile
information from raw drone data. The developed algorithm can
be also applied on data collected via connected vehicles in future.

Index Terms—queue length, traffic management, high resolu-
tion data, trajectory data, clustering

I. INTRODUCTION

Estimation of the traffic state in urban signalized links is an
crucial task for Intelligent Transportation Systems (ITS) [1].
Earlier studies on traffic state estimation have been mainly
based on fixed-location sensors (e.g. radar-based devices, loop
detectors, cameras, etc.) [2]–[4]. However, the collection of
detailed traffic data with fixed-location sensors is a difficult
process as it requires a large amount of installed sensors in
order to cover the entire network [5]. One approach to improve
estimation and overcome the problem of limited fixed-location
sensors is to use advanced mobile sensors, like probe vehicles
or connected vehicles (CVs) [6]–[9]. Such vehicles will contin-
uously upload their status information (e.g., latitude, longitude,
instantaneous speed, and moving direction) to data centers via
wireless communications [10]. The trajectory dataset obtained
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from probe vehicles is pretty useful, but its main limitation will
be the low penetration rate of such vehicles in near future.

Recently, Unmanned Aerial Vehicles (UAV) or “drones”
have started to take the center stage of traffic monitoring as
they can carry high quality cameras and other technological
equipment [5]. This provides new opportunities for more ac-
curate estimation of traffic information. pNEUMA is a unique
vehicles trajectory dataset obtained from the first experiment
using a large number of drones in a dense city center, with un-
precedented high resolution and scale [11]. pNEUMA has been
used in many fields such as map mapping and lane-changing
identification. For example, compared with the well-known
Next Generation Simulation (NGSIM) trajectory dataset [12],
pNEUMA has a larger scale and higher spatial coverage.

Queues are the main cause of traffic delays at signalized
intersections. The accurate estimation of queue profile is
crucial for optimization of traffic signals and vehicle trajec-
tories [13]. Therefore, queue profile estimation at signalised
intersection has been widely studied [14]–[16]. The focus of
this paper is to identify the queue profile from pNEUMA
dataset. Since the dataset does not contain lane information
and signal timing plan, we have developed a queue profile
identification algorithm suitable for multi-lane environment,
which can automatically estimate signal timing plans and
help identify queue profiles. Moreover, we developed a lane
detection algorithm which is useful to find, e.g., the lane
where maximum queue occurs. The algorithm is applied to a
corridor with three links and three signalized intersections and
the results show that the developed algorithm can accurately
identify the queue profile at the intersections.

The remainder of this paper is organized as follows. Sec-
tion II describes the three components of the methodology
of this paper which are signal state estimation, queue profile
identification, and lane detection. Results of implementing
developed methodology on pNEUMA dataset as a case study
are presented in Section III. Finally, Section IV summarises
and discusses the key findings and outlines further research



directions.

II. METHODOLOGY

This section discusses our proposed method for queue
profile extraction, in which the profiles of the stop wave for
each cycle are estimated via a recursive searching process. Our
methodology framework is divided into three main parts: (i)
the estimation of signal timing parameters using the Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) algorithm, (ii) queue profile identification based on
dynamic time-space cells, and (iii) lane detection. The detailed
flowchart of proposed method is shown in Fig. 1 and the
methodology is elaborated as follows.
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Fig. 1. Flowchart of the proposed methodology

A. Signal Timing Plan Estimation

Signal time is crucial to capture the spatial-temporal char-
acteristics of the queue and it is also an important factor
for accurately identifying queue spillback. On urban roads,
signalized intersections are the main reason for queuing. Since
the vehicles follow the rule of stopping at red and starting-up
at green, the stop time of the vehicle at the front of the queue
can be assumed being close to the start time of the red light
and the start-up time is also close to the start time of the green
light. Based on this, we can estimate signal timing plan from
the vehicle trajectories.

As shown in Fig. 2, there are many factors that can
make vehicles stop, including: queue caused by red lights at
signalized intersections (Case 1), queue caused by spillback
generated downstream (Case 2), and some random events,
such as pedestrians crossing the street (Case 3), so only data
belong to Case 1 are useful for signal timing plan estimation.
As we can see, vehicles stopping at red and starting-up at
green is periodical due to the fixed signal timing in Case
1, which makes possible to classify parking samples (data
collected when vehicles stopped) whose speed is less than

the preset threshold by cycle using a clustering algorithm, and
extract signal timing plan from each cycle’s parking samples.
Since we have no information about the number of clusters,
we use an unsupervised clustering algorithm that is able to find
the optimum clusters as well as is able to remove the noise.
DBSCAN [17] is a density-based clustering non-parametric
algorithm: given a set of points in some space, it groups
together points that are closely packed together (points with
many nearby neighbors), marking as outliers the points that lie
alone in low-density regions (whose nearest neighbors are too
far away) [18]. Therefore, using DBSCAN to classify parking
samples is expected to achieve a good result. The detailed flow
of the algorithm is as follows.

Fig. 2. Example of vehicle trajectories and vehicle stopping cases.

First, we can filter out moving samples (data collected when
vehicles are moving) by setting a threshold for vehicle’s speed
according to

V EHk
i,c =

{
S V EHk

i,v ≤ vth

M VEHk
i,v > vth

(1)

where V EHk
i is the k-th sample of the i-th vehicle, V EHk

i,v

is the speed of the k-th sample of the i-th vehicle, V EHk
i,c

is the category of the k-th sample of the i-th vehicle, and vth
is the preset speed threshold, which is set as 3.6 km/h in this
paper.

Next, we filter out moving samples, since only parking
samples near the stop-line in Case 1 are needed, and the
parking time of this part of the parking samples is longer than
the parking samples in other cases. Therefore, the data can be
further filtered by the parking time. Parking samples in j-th
parking for i-th vehicle are filtered as follows:

jV EHi,st = max
t

( jV EHk
i,t)−min

t
( jV EHk

i,t) (2)

jV EHk
i,t=tmin,c = S1 (3)

jV EHk
i,t=tmax

, c = S2

((i, j) ∈ {(i, j)|( jV EHi,st ≤ tth}

tmax = argmax
t

jV EHk
i,t, tmin = argmin

t

jV EHk
i,t) (4)

where jV EHi,st is the total parking time of the i-th vehicle
during the j-th parking period, and jV EHk

i,t is the timestamp



of the k-th sample during the j-th parking of the i-th vehicle.
As we just want to estimate when red light and green light
start, only stopping samples S1 (data collected when vehicle
start parking) and starting-up samples S2 (data collected
when vehicles start-up) that are in front of queue are useful.
According to shockwave theory, the parking time of vehicles
at the front of the queue should be longer than that of vehicles
at the back of the queue. So in order to extract those samples,
a relatively bigger tth should be set.

After stopping samples S1 and starting-up samples S2 in
front of queue in Case 1 are extracted, the DBSCAN algorithm
is used to cluster them into different cycles. In order to obtain
an accurate number of cycles, we set up a loop to continuously
test the two main parameters of DBSCAN, namely eps and
min samples, until the convergence condition is reached, that
is, the number of cycles remains unchanged for six iterations.
Among them, eps is a parameter specifying the radius of a
neighborhood and min samples is the minimum number of
points required to form a dense region. Taking S1 for example,
the steps are as follows.

• Step 1: Initialization: set DBSCAN algorithm parameter
eps = 1, and min samples = 3; set i = 0;

• Step 2: Input the samples t into DBSCAN algorithm,
output the labels for each data l and numbers of class n0,
where t are the timestamp set attached to the samples in
S1.

• Step 3: if n0 > 1:
Continue;

else:
Set eps = eps + 1 and return to Step 2;

• Step 4: Set eps = eps + 1, input the t into DBSCAN,
output the labels for each data l and numbers of class n;

• Step 5: if n− n0 == 0:
i = i + 1
Continue;

else:
if n > 1:

n0 = n
Skip to step 7;

• Step 6: if i == 6:
Set l = l∗, n∗ = n and skip to Step 8;

else:
Return to Step 4;

• Step 7: Set i = 0 and return to Step 4;
• Step 8: According to labels l∗, cluster samples in S1 to

cycles, and filter out the noise identified by DBSCAN.

Thirdly, after samples in S1 and S2 are classified into cycles,
the start time of the red and green lights of each period can
be determined by the minimum and maximum timestamps of
the samples in each period belong to S1 and S2.

Finally, it should be noted that, in order to ensure that the
number of cycles obtained is accurate, we need to set a larger
neighbor distance threshold. In this case, DBSCAN cannot
remove noise well. To solve this problem, we clustered the
sample twice. First, we cluster the entire sample, setting a

larger neighbor distance with the goal of obtaining the exact
number of cycles. Then, samples are clustered in each period,
setting a smaller neighbor distance to achieve better noise
removal effect.

B. Queue Profile Identification

We introduced that parking samples can be extracted by
speed threshold vth and, since all parking samples are needed
in the process of identifying the queue profile, we cannot
filter out the parking samples of Cases 1,2 by setting the
threshold of the parking time. To this end, we designed a
queue profile identification algorithm which can describe the
spatial-temporal formation and dissipation of queues, and the
algorithm can work regardless of whether a spillback occurs
or not. Before proceeding to the next step, the distance from
the parking sample to the stop line needs to be calculated,
so that the parking sample can fall on the time-space plane
composed of timestamp and the distance between sample and
stop line.

To illustrate our method, let us refer to the scenario depicted
in Fig. 3, where the 2nd link is upstream of 1st link, and both
intersections are signalized. tr is the effective red light start
time of a certain period of 1st link, and tg is the effective
green light start time of the period. The red line in the graph
is the data collected when the vehicle is parked. t1 is the time
when the first vehicle in second space interval starts to stop,
t2 is the time when the first vehicle in second space interval
start-up, and t3 is the is the time when the first vehicle in third
space interval starts to stop. In order to filter out the parking
samples that do not belong to Case 1, we first divide the time-
space plane by the space interval ∆d. Then, we traverse each
distance interval from top to bottom, and determine whether
the samples in the current interval belong to Case 1 by judging
whether there are parking samples in the previous interval of
the current interval. If there is no sample in a certain interval,
it means that the end of the queue is in the previous interval.
Although there may be samples in the following intervals,
those samples do not belong to Case 1. However, since the data
in each space interval is generated in multiple cycles, we must
also limit the time range of the data in each space interval. To
this end, we propose a queue profile identification algorithm
based on dynamic time-space cells, it can remove the parking
samples that do not belong to Case 1 and identify the queue
profile for each cycle. The basic assumption of the algorithm
is that after dividing the time-space plane by the space interval
∆d, (i) the time when the first vehicle in the current interval
starts to stop is later than the time when the first vehicle in the
previous interval starts to stop, that is, t3 is greater than t1;
(ii) the time when first vehicle in the current interval starts to
stop is earlier than the time when first vehicle in the previous
interval starts-up, that is, t3 is less than t2. For example, if we
want to identify the profile of the queue generated by the red
light (tr to tg) of 1st link, the detailed flow of the algorithm
is as follows.
• Step 1: Extract parking samples S3 by speed threshold

vth and filter out samples whose timestamp is less than



Fig. 3. Queue profile identification.

tr; calculate the distance between samples and stop-line;
• Step 2: Divide S3 on the time-space plane according to

the space intervals ∆d to obtain the parking sample set
{pd1, pd2, ..., pdm};

• Step 3: Initialization: i = 1, t1 = tr, t2 = tg, profilef =
(tr, 0), profiled = (tg, 0). Among them, profilef de-
scribes the formation of the queue, which is composed of
the coordinates of the yellow solid squares in the Fig. 3,
and profiled describes the queue dissipation, which is
composed of the coordinates of the green solid squares
in the Fig. 3.

• Step 4: Find the distance and time when the first vehicle
starts to stop in pdi,which is the coordinates of yellow
solid square in the i-th space interval in the Fig. 3: get
parking samples S4 with timestamp between t1 and t2
in pdi; find the sample with the smallest time stamp and
smallest distance in S4.

tf = mint(V EHk
i,t)

df = argmin
d

(V EHk
i,t=tf ,d

)

V EHk
i ∈ S4

Insert (tf ,df ) to profilef
Where V EHk

i,t is the timestamp of k-th sample of the i-th
vehicle, and V EHk

i,t=tf ,d
is the distance of k-th sample

of the i-th vehicle from the stop-line at time tf .
• Step 5: Find the distance and time when the first vehicle

starts-up in pdi, which is the coordinates of green solid
square in the i-th space interval in the Fig. 3;
Find first vehicle set in pdi, since the research is carried
out in a multi-lane environment, the vehicle cannot be
uniquely determined by time and distance, So there may
be more than one so-called first vehicle.

I = {i|∃k make V EHk
i,t = tf and V EHk

i,d = df}
V EHk

i ∈ S4

Where I is the set of vehicles with samples whose
timestamp and distance equal to tf and df .
Find the sample with the largest timestamp and smallest
distance belonging to the vehicle in the vehicle set I in

S3;
td = max

t
(V EHk

i∈I,t)

dd = argmin
d

(V EHk
i∈I,t=td,d

)

V EHk
i ∈ S3

insert (td,dd) to profiled
• Step 6: i = i + 1;
• Step 7: Repeat step3 - step5 until there is no data in a

certain space interval;

C. Lane detection

Lane detection is performed on each separated short seg-
ment, rather than on the whole road, because of the possible
changes in the number of lanes in the road, as well as potential
curvatures. The motorcycle data are filtered out in the lane
detection because motorcycles do not follow the lane rule
closely and their data create noise in the lane detection. The
2-dimensional trajectory data is converted to 1-dimensional
data by calculating the distance of each vehicle position to
the boundary of the road in each segment. Then, the Gaussian
Mixture Model (GMM) is applied to perform clustering,
considering the position of both stopping and moving vehicles.

Determining the optimal number of clusters is one of the
main challenges in applying GMM. Three factors are used
in this paper, i.e., Akaike Information Criterion (AIC), the
difference of the mean of a cluster, and the number of points
in clusters. After the clustering, the lane index for each cluster
is determined by the mean distance between the cluster and
the road boundary. The leftmost lane along the road is labelled
as lane 1, while the shoulder lane has the largest index. The
lane information for every vehicle position is determined by
predicting which cluster it belongs to. So when the position
of maximum queue length is estimated, the lane that the
maximum queue length belongs to can also be obtained. The
procedures of lane detection are summarized in the following.
• Step 1: Get the trajectories data within each segment and

remove the data from motorcycles;
• Step 2: Calculate the distance of each trajectory point to

the road boundary;
• Step 3: Use GMM to determine the clustering on the

distance data with the number of clusters varying from 1
to 8;

• Step 4: Select the number of clusters with the smallest
AIC;

• Step 5: Check the difference between the mean of clus-
ters. If any of the difference of means of every Gaussian
distribution component is smaller than a threshold (2.2
m is used in this paper, which is representative of the
minimum acceptable lane width), the number of clusters
is reduced by 1;

• Step 6: Check the number of points in clusters. If the
minimum number of points in a cluster is less than 20%
of the second minimum number of points, the number of
clusters is reduced by 1.

• Step 7: Select the best number of clusters and return
the result of clustering. The lane id of each point is



determined by the probability of belonging to every
cluster.

III. CASE STUDY AND RESULTS

In order to verify the effectiveness of the proposed algo-
rithm, this paper utilises part of the Leof. Alexsandras road,
which is shown in the red area in Fig. 4, located in central
Athens, Greece. The red area contains three links and three
signalized intersections.

Fig. 4. Research area.

Since the pNEUMA dataset does not directly allows to filter
data for a specific road, it is necessary to extract the data for
the road in analysis. After extracting the data for the red area,
different links are also distinguished for specific analysis of
each road section. The final result is shown in Fig. 5, where
Link 1 is the most downstream link among the three links.
Moreover, the data shows that spillbacks often occur during
peak periods in the region.

Fig. 5. Trajectories separated by links.

We proceed by first estimating the signal timing plans of the
three signalized intersections. Fig. 6 shows a box-plot of the
estimated cycle length of three signalized intersections with
different periods. It can be seen that the estimated cycle length
of the three links does not fluctuate much and is relatively
stable, which conforms to the characteristics of fixed signal
timing. The black dashed line in Fig. 7 represents the time
when the red light starts in each cycle of Link 1. It can be
seen that the estimate can reflect the real situation.

The results of queue profile identification on Link 2 is
shown in Fig. 8, where blue lines are the trajectories of vehi-
cles on Link 2 and Link 3. Red and green lines describe the
spatio-temporal formation and dissipation of queues formed
by the red lights of Link 2. It can be seen from the Fig. 8
that our algorithm has high accuracy and robustness, because

Fig. 6. Estimated cycle length distribution.

Fig. 7. Start time of red light in Link 1.

it can not only accurately identify the queue profile without
spillback, but also accurately identify the overflow part of the
queue when a spillback occurs.

The graphical representation of lane identification of three
links is presented in Fig. 9. As can be seen from the Fig. 9,
the data is well classified into lanes. In this way, we can obtain
some key information in the queue, such as in which lane the
maximum queue length occurs.

IV. CONCLUSION

In this paper, we introduced a comprehensive method to
extract queue profile information as well as other prerequisites
information,i.e., signal state from drone data. In particular,
we use a set of machine learning-based methods to obtain
the required information. In the first step, we implemented
the DBSCAN algorithm in order to estimate signal state at
each time step. Then, we used a queue profile identification
algorithm based on dynamic time-space cell in order to iden-
tify queue profile, which works also when spillback appears.
Furthermore, we deployed GMM clustering model to separate
the vehicles based on lane, which is useful to find the lane
where maximum queue occurs. The findings demonstrate that
our method estimates signal state, identifies queue profile, as



Fig. 8. The results of queue profile identification on Link 2

Fig. 9. Lane identification result.

well as position of maximum queue length, and detects queue
lane by acceptable and useful accuracy.

The merit of this work is that the process of extracting the
queue profile is done without recurring to any other external
data sources, such as, e.g., geographic information system
data. In other words, our methodology is able to identify the
queue profile only by employing trajectory data, obtained from
drones. This enables the application of our methodology on
any other similar dataset, allowing to extract queue profile
information at lane level. Our developed methodology can be
used for various purposes. Firstly, identifying historical queue
profile using drone data is extremely promising for future
traffic management and developing efficient signal timing
plans at signalized intersections. Moreover, our methodology
may be extended for usage in a CV environment, where all
vehicles can transmit similar trajectory data to the controller
via V2I (vehicle-to-infrastructure) communication systems in
real-time. However, further investigations are required in or-
der to operate the method in low penetration rate of CVs.
Furthermore, our method can be used as baseline for other
queue profile estimations method,e.g., using point detectors or
probe vehicle data.
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