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Distributions of electron waiting times have been measured in several recent experiments and have been
shown to provide complementary information compared with what can be learned from the electric current
fluctuations. Existing theories, however, are restricted to either weakly coupled nanostructures or phase-
coherent transport in mesoscopic conductors. Here, we consider an interacting quantum dot and develop a
real-time diagrammatic theory of waiting time distributions that can treat the interesting regime, in which
both interaction effects and higher-order tunneling processes are important. Specifically, we find that our
quantum-mechanical theory captures higher-order tunneling processes at low temperatures, which are not
included in a classical description, and which dramatically affect the waiting times by allowing fast
tunneling processes inside the Coulomb blockade region. Our work paves the way for systematic
investigations of temporal fluctuations in interacting quantum systems, for example close to a Kondo
resonance or in a Luttinger liquid.
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Introduction.—Electronic waiting time distributions are
an important concept in the analysis of quantum transport
in nanoscale structures [1–36], and recently they have
been measured in several experiments [37–42]. Unlike full
counting statistics, which typically considers the time-
integrated current fluctuations [43–45], waiting time dis-
tributions are concerned with the short time span that
passes between the charge transfers in a nanoscale con-
ductor. The waiting time distribution contains a wealth
of information about the underlying transport processes.
For example, it has been predicted that the waiting time
distribution for a quantum point contact should exhibit a
crossover fromWigner-Dyson statistics at full transmission
to Poisson statistics close to pinch-off [4,9], illustrating a
profound connection between free fermions and the eigen-
values of random matrices [46].
Experimentally, waiting time distributions have been

used to demonstrate accurate control of the emission time
statistics of a dynamic single-electron transistor [22,41] and
to characterize the splitting of Cooper pairs in the time
domain [26,36,42]. Theoretically, electron waiting time
distributions have been considered in two opposite regimes.
For sequential tunneling in nanostructures, the waiting
time distribution can be obtained from a master-equation
description of the charge transport [1,3,35]. On the other
hand, for phase-coherent transport of noninteracting elec-
trons, the waiting time distribution can be evaluated using
scattering theory [4,7,9], tight-binding calculations [12], or
Green’s function methods [11,14]. However, for the inter-
esting intermediate regime, where both interaction effects
and higher-order tunneling processes are important,

a systematic theory of electronic waiting time distributions
has so far been lacking.
In this Letter, we investigate the temporal fluctuations of

charge tunneling in a Coulomb-blockade quantum dot and
develop a real-time diagrammatic theory of electron waiting
time distributions that can treat both strong interactions
and higher-order tunneling processes [47–49]. Cotunneling

FIG. 1. Electron waiting times for an interacting quantum dot
in a magnetic field. Electrons tunnel back and forth (arrows)
between the quantum dot and an external reservoir. We consider
the waiting time between electrons leaving the quantum dot (full
arrow). Waiting time distributions are shown for lowest-order
sequential tunneling only (green curve) as well as with higher-
order processes included (blue curve). The level position with
respect to the chemical potential of the lead is ε ¼ −0.2U, where
U is the Coulomb interaction, and the magnetic field causes the
Zeeman splitting Δ ¼ 1.1U. The temperature and the coupling
are kBT ¼ U=30, ℏΓ ¼ 10−7U.
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processes can be described at the level of mean currents
using T-matrix approaches [48–50], which, however, cannot
account for non-Markovian effects that influence the charge
transport fluctuations beyond average values [51,52]. Our
setup is illustrated in Fig. 1, where we also show waiting
time distributions for sequential tunneling only as well as
with higher-order tunneling processes included. As we will
see, the higher-order tunneling processes are predominantly
of quantum nature, and they tend to get washed out by an
increasing electronic temperature for which we recover a
classical description based on sequential tunneling. While
we here focus on quantum dots, it will become clear that our
approach can be applied to a wide range of interacting
nanostructures at low temperatures and bias voltages, where
quantum effects are important [53–59].
Hamiltonian.—We start by considering a quantum dot

coupled to a single electrode before extending the dis-
cussion to a transport setup with both a source and a drain
electrode. The full Hamiltonian of the setup reads as

Ĥ ¼ Ĥqd þ Ĥres þ Ĥtun; ð1Þ

where the quantum dot Ĥqd ¼
P

σ εσd̂
†
σd̂σ þUd̂†↑d̂↑d̂

†
↓d̂↓

can be either empty j0i, occupied by a single electron jσi
with spin σ ¼ ↑;↓, or doubly occupied jdi, with U
denoting the on site Coulomb interactions. An applied
magnetic field lifts the degeneracy of spin-up, ε↑ ¼
εþ Δ=2, and spin-down electrons, ε↓ ¼ ε − Δ=2, where
Δ is the Zeeman splitting. The orbital energy ε relative to
the chemical potential μ of the reservoir can be tuned by
an external gate voltage. The reservoir contains noninter-
acting electrons and is described by the Hamiltonian
Ĥres ¼

P
kσ εkσâ

†
kσâkσ , while electron tunneling between

the quantum dot and the reservoir is governed by the
Hamiltonian Ĥtun ¼

P
kσðgâ†kσd̂σ þ g�d̂†σâkσÞ. The tunnel

coupling between the quantum dot and the lead is given by
Γ ¼ 2πjgj2ν=ℏ, where ν is the density of states in the lead,
which is kept at temperature T.
Master equation.—We describe the quantum dot by its

density matrix ρ̂NðtÞ, which is resolved with respect to the
number of transferred particles, so that PNðtÞ ¼ Tr½ρ̂NðtÞ�
is the probability that N ≥ 0 electrons have tunneled into
the reservoir during the time span ½0; t� [44,60,61]. The
dynamics of the quantum dot is governed by the non-
Markovian master equation [51,52,62,63]

d
dt

ρ̂NðtÞ ¼
X

N0

Z
t

0

dt0WN−N0 ðt − t0Þρ̂N0 ðt0Þ þ γ̂NðtÞ; ð2Þ

where the kernel W is obtained by evaluating real-time
diagrams on the Keldysh contour up to the desired order in
the tunnel coupling Γ [47,64]. The inhomogeneity γ̂NðtÞ ¼R
0
−∞ dt0 eWNðt; t0Þρ̂stat describes correlations that build up
between the quantum dot and the lead before the counting

of particles begins at t ¼ 0 [6,52,62,68,69], and it is
expressed in terms of a modified kernel eW, which extends
to earlier times. The quantum dot evolves from an arbitrary
state in the far past and has reached its stationary state ρ̂stat
well before counting begins.
Solving the non-Markovian master equation is a formi-

dable task. However, we can use an operator-valued
generalization of the standard generating function tech-
nique in Laplace space by introducing the transformed
density matrix ρ̂sðzÞ ¼

R∞
0 dte−zt

P
N sN ρ̂NðtÞ together

with similar definitions for the kernel and the inhomoge-
neity. Using these definitions, the solution of Eq. (2) in
Laplace space then becomes [6,52]

ρ̂sðzÞ ¼
1

z −WsðzÞ
½ρ̂stat þ γ̂sðzÞ�; ð3Þ

which is a powerful formal result that in principle yields the
full distribution of transferred charge for any observation
time. As we now will show, it also leads to a systematic
theory of electron waiting times in nanoscale conductors,
which can include both interaction effects and higher-order
tunneling processes.
Electron waiting times.—The waiting time distribution

is the probability density that two consecutive tunneling
events are separated by the time τ [1]. It can be expressed as
wðτÞ ¼ hτi∂2

τΠðτÞ, where hτi ¼ −1=½∂τΠð0Þ� is the mean
waiting time, and ΠðτÞ ¼ PN¼0ðτÞ is the idle-time prob-
ability that no transfers have occurred during the time span
½0; τ� [4,9]. Importantly, the idle-time probability can be
obtained from Eq. (3) using ΠðzÞ ¼ Trfρ̂s¼0ðzÞg. By
expanding the kernel around z ¼ 0, we can return to the
time domain and find [64]

wðτÞ¼
X∞

m¼0

hτi
m!

∂m
z TrfJ ðzÞWm

0 ðzÞeW0ðzÞτ eJ ðzÞρ̂statgz¼0; ð4Þ

which is a general result that enables a systematic analysis
of how tunneling processes of different orders contribute
to the distribution of waiting times. Here, we have defined
the jump operators J ðzÞ ¼ W1ðzÞ −W0ðzÞ and eJ ðzÞ ¼
J ðzÞ þ R

∞
0 dtze−zt

R
0
−∞ dt0½ eW1ðt; t0Þ − eW0ðt; t0Þ�, and we

note that memory effects are encoded in nonzero deriva-
tives with respect to z. Thus, only the lowest-order term
(m ¼ 0) remains in the Markovian limit, where we recover
the well-known result [1]

wMðτÞ ¼ hτiTr½J eW0τJ ρ̂stat�; ð5Þ
since the kernel in that case does not depend on z.
Equation (5) is useful to evaluate waiting time distributions
in the sequential tunneling regime, where the charge
transport can be described by a classical rate equation.
By contrast, Eq. (4) allows us to consider lower temper-
atures, where quantum effects become important.
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Tunneling processes.—To evaluate the waiting times
between electrons tunneling out of the quantum dot, we
expand the kernel order-by-order in the tunnel coupling Γ
asWsðzÞ ¼

P∞
n¼1 W

ðnÞ
s ðzÞ, with similar expressions for the

jump operators and the density matrix. Each term is
evaluated using the real-time diagrammatic technique for
quantum transport in nanostructures [47–49,64]. Within
this framework, we analytically evaluate the waiting time
distribution in Eq. (4) up to second order in the coupling
and compare our results with the expression in Eq. (5) using
sequential tunneling rates [64]. The expansion is controlled
by the coupling over the interaction ℏΓ=U. In addition,
some sequential tunneling rates get exponentially sup-
pressed at low temperatures and are comparable to second-
order processes. Higher-order processes, by contrast, can
safely be ignored.
Figure 2 shows distributions of waiting times between

electrons tunneling out of the quantum dot as indicated by
the full arrow in Fig. 1. Our quantum-mechanical calcu-
lations are presented with solid lines, while results based on
sequential tunneling are indicated with dashed lines.
In panel (a), we first focus on waiting time distributions
for different electronic temperatures. The state of a single
spin-down electron is situated well below the chemical
potential of the lead, while the state of a spin-up electron is
positioned slightly above the chemical potential. The
doubly occupied state has a larger energy.
At low temperatures, we observe marked differences

between the quantum-mechanical results that include
second-order processes and the classical description based
on sequential tunneling only. For the classical description,
the quantum dot is likely occupied by a spin-down electron,
which energetically is situated below the chemical potential
of the lead. It is unlikely that the quantum dot is occupied
by a spin-up electron or even doubly occupied. It only

rarely happens that the spin-down electron tunnels out of
the quantum dot, which is then quickly refilled by a new
spin-down electron, which then tunnels out again much
later. Thus, there is a long waiting time between electrons
tunneling out of the dot as seen in the corresponding
waiting time distribution.
The quantum-mechanical results reveal a completely

different physical picture with a large peak at short waiting
times (solid blue line). The higher-order processes that are
now included lead to a renormalized tunnel coupling as well
as an increased tunneling rate that makes it possible for the
quantum dot to be doubly occupied [64]. From the doubly
occupied state there are two decay paths with very different
dynamics. If the spin-up electron tunnels out first, the
quantum dot is left with a spin-down electron, and there will
be a long waiting time until this electron leaves the quantum
dot. On the other hand, if the spin-down electron first tunnels
out, the quantumdot is left in an excited statewith the spin-up
electron, which then quickly leaves the quantum dot, giving
rise to the large peak at short waiting times. Thus, higher-
order processes lift the blockade of the tunneling events that
occurs when only sequential tunneling is considered.
To corroborate this physical picture, it is instructive to

investigate the effects of an increased electronic temper-
ature, where the doubly occupied state comes into play
because of thermal excitations. In this case, the sequential
tunneling processes become dominant, and the classical
and quantum descriptions in panel (a) coincide as one
would expect at high temperatures. A similar behavior is
observed in panel (b), where we gradually shift the level
upward, so that the energy of a spin-down electron comes
close to the chemical potential, and the blockade is lifted. In
this case, the spin-up state and the doubly occupied state are
energetically out of reach, and the classical and quantum-
mechanical results again agree.

(a) (b)

FIG. 2. Distribution of electron waiting times. The quantum-mechanical results are based on Eq. (4) evaluated up to second order in
the tunnel coupling ℏΓ ¼ U=60 (solid lines), while the results for sequential tunneling using Eq. (5) are evaluated up to first order
(dashed lines). (a) The temperature is increased in equidistant steps from kBT ¼ U=12 to kBT ¼ U=2, and we use ε ¼ −0.2U and
Δ ¼ 1.1U for the level position and the Zeeman splitting as in Fig. 1. (b) The level position is ε=U ¼ −0.2, 0.1, 0.3, 0.4, and 0.5, and the
temperature and Zeeman splitting are kBT ¼ U=12 and Δ ¼ 1.1U.
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Transport setup.—Having understood the importance
of higher-order tunneling processes, we go on to consider
a transport setup, where a bias voltage between two
electrodes drives a current through the quantum dot. We
consider the waiting time between electrons that tunnel into
the drain electrode and evaluate the waiting time distribu-
tion up to second order in the equal couplings to the source
and the drain electrodes ΓS ¼ ΓD [64]. Figure 3(a) shows a
conductance map as a function of the bias voltage V and
the gate voltage, which controls the energy level ε of the
quantum dot. In the low-bias regime (green circle),
Coulomb blockade suppresses the current in the quantum
dot, and elastic cotunneling is the dominant transport
mechanism. With an increasing voltage, additional trans-
port processes are activated; first inelastic cotunneling
(orange square), then sequential tunneling (blue triangle),
and eventually all excitations are inside the bias window
such that the Coulomb interactions effectively become
irrelevant (red star).
Figure 3(b) shows waiting time distributions correspond-

ing to the four points in the conductance map. At low
voltages, the waiting time distribution is suppressed at short
times, showing that elastic cotunneling processes rarely
occur simultaneously. In this case, the quantum dot mainly
makes transitions between being occupied by a spin-down
electron and being doubly occupied. As the voltage is
increased, the suppression at short times is lifted as inelastic
cotunneling gets activated, and the quantum dot can now
make transitions from the doubly occupied state to being
occupied by a spin-up electron, which quickly leaves via
the drain electron before the quantum dot is refilled again.
These fast events give rise to the peak at short waiting
times, while the long waiting times occur when the
quantum dot is occupied by a spin-down electron. As
the voltage is further increased, sequential tunneling
becomes the main transport mechanism, which can be
captured by a classical description as we have checked.

Thus, we find that the waiting time distributions can be
explained with a classical theory for large bias voltages,
while our quantum theory is needed to capture the temporal
fluctuations inside the Coulomb blockade region for small
voltages and temperatures.
Experimental perspectives.—Finally, we comment on

realistic experimental parameters and the perspectives
for measuring the waiting time distributions found here.
Taking an interacting strength of about U ≃ 50 μeV, the
tunneling rate in Fig. 1 would be about Γ ≃ 10 kHz, and
the temperature around T ≃ 30 mK. These parameters are
compatible with recent measurements of waiting time
distributions [41] and the real-time detection of single-
electron tunneling involving virtual processes [70].
Moreover, state-of-the-art setups can detect single electrons
on a microsecond timescale [71], corresponding to tunnel-
ing rates on the order of Γ ≃ 1 MHz as in Fig. 3 for
U ≃ 50 μeV and T ≃ 10 mK. In addition, we expect further
improvements of charge detectors with bandwidths that are
1 or 2 orders of magnitude larger.
Conclusions.—We have investigated the temporal fluc-

tuations of charge tunneling in a quantum dot and developed
a real-time diagrammatic theory of electron waiting time
distributions that enables a systematic description of inter-
action effects and higher-order tunneling processes. Our
theoretical framework bridges the gap between non-
interacting theories of electron waiting times, valid for
phase-coherent transport in mesoscopic conductors, and
master-equation descriptions, which apply to sequential
tunneling in nanostructures with strong interactions. We
have found that our quantum-mechanical theory captures
higher-order tunneling processes at low temperatures, which
are not included in a classical description, and which
dramatically affect the distribution of waiting times, for
example by allowing fast tunneling processes inside the
Coulomb blockade region of a quantum dot. Our work paves
theway for future investigations of waiting time distributions

(a) (b)

FIG. 3. Waiting time distributions for a transport setup. A bias between two electrodes drives a current through the quantum dot.
(a) Differential conductance as a function of the bias voltage and the gate voltage. Parameters are kBT ¼ U=200, Δ ¼ 0.7U, and
ΓS ¼ ΓD ≡ Γ ¼ 10−5U=ℏ. (b) Waiting time distributions corresponding to the points in the conductance map.
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in systems with strong correlations, for example close to a
Kondo resonance [72,73] or in a Luttinger liquid [74,75].
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