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Abstract—Optimal resource allocation is crucial for successful
deployment of energy harvesting wireless sensor networks (EH-
WSN) such as Internet-of-Things (IoT) devices. Non-orthogonal
multiple-access (NOMA) can significantly improve the network
throughput compared to orthogonal multiple-access (OMA). This
paper considers optimal power management and data scheduling
in multi-hop EH-WSN using NOMA. The EH-WSN consists
of M sensor nodes aiming to transmit their data to a sink
node. Assuming network connectivity, the multi-hop EH-WSN is
represented by a directed graph. The resource allocation problem
is formulated to efficiently utilize the available harvested energy
to send the available data to the sink node with minimum cost.
The resource allocation problem given the system dynamics is
non-convex due to the non-convex constraints. Assuming high
signal-to-interference and noise ratio (SINR), the non-convex con-
straints are lower bounded by convex constraints. With the aid
of variable transformation, the constrained non-convex problem
is approximated with a convex problem. The convex problem
is solved using finite horizon dynamic programming considering
offline and online operations. The offline problem is formulated
assuming non-causal information of the harvested energy and
data arrival. Model predictive control (MPC) framework is
used to obtain the solution of the online operation of the EH-
WSN. A distributed MPC (DMPC) is proposed to overcome
the computational complexity of solving the centralized MPC
problem, assuming each sensor node is allowed to exchange
information with its neighboring nodes. In the simulations, we use
energy efficiency and average data transmitted to compare the
performance of the EH-WSN using NOMA and OMA. Simulation
results confirm that NOMA in multi-hop EH-WSN results in
higher throughput compared to OMA.

Index Terms—Wireless sensor network, IoT devices, energy
harvesting, NOMA, OMA, resource allocation, model predictive
control (MPC).

I. INTRODUCTION

It is envisioned to have billions of Internet-of-Things (IoT)
devices to be interconnected in the near future. The applica-
tions of these devices range from environmental monitoring,
home-automation, healthcare, smart cities, irrigation in rural
areas, and many more. Researchers expect that by the year
2030 there will be more than 50 Billion IoT devices [1], [2].
For full deployment of such autonomous networks requires
tremendous cooperation among the wireless sensor nodes,
where each sensor node assists in transmitting the data of
neighboring nodes in addition to its own data. This may result
in an increase in the energy demand of the sensor nodes, and
therefore, in rural and inaccessible areas, it may not be possible
to use standard battery powered nodes [3], [4].

Energy harvesting (EH) techniques have the potential to
overcome the battery size constraints in wireless sensor net-
works (WSNs) and are key enablers for IoT devices. EH
sensor nodes are equipped with circuits to harvest energy from
the surroundings such as radio-frequency (RF), light, heat,
vibration, etc. [5], [6].

Non-orthogonal multiple-access (NOMA) is a promising
multiple access technique for future radio access that can
significantly improve the system throughput. At the trans-
mitter, superposition coding is used where the signals for
various nodes is superposed and transmitted at the same
channel (time and frequency). The receiver on the other hand,
performs multi-user detection such as successive interference
cancellation (SIC) [7]. Due to its effectiveness and improved
connectivity, NOMA is a promising multiple-access technique
for future IoT. NOMA provides high throughput/spectrum
efficiency compared to OMA, which motivates its use for
future IoT on the cost of higher computational complexity at
the transmitter and receiver. Resource allocation such as power
management and channel assignment are crucial to exploit the
full benefits of NOMA system [8]. In NOMA enabled EH-
WSNs, optimal power management is more challenging due to
the system dynamics and the non-convexity of the optimization
problem.

Model predictive control (MPC) or receding horizon control
(RHC) is a framework that can be used to provide reliable
energy-management policies when acceptable system model
is available [9]. The aim of MPC is to determine an online
optimal control vector that minimizes an objective function
to reach a desired state for a given horizon assuming the
knowledge of the system dynamics and the current state.
MPC framework has been successfully applied to solve many
online control problems such as cross-layer-design [10], robots
formation [11], and power management of wireless sensor
nodes [12].

In this paper, offline and online power management algo-
rithms are proposed for NOMA EH-WSNs. The offline is
formulated assuming non-causal state information, whereas
the online approaches assume causal state information. The
online algorithms are implemented based on MPC framework,
where centralized and distributed MPC (DMPC) algorithms
are considered. The objective function is formulated to drive
the buffer-state to zero while regulating the used power.
Each sensor node is assumed to be equipped with an energy
harvesting circuit, a finite energy storage and a finite data
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buffer. The performance of the proposed online algorithms are
compared with the offline algorithm in terms of the energy
efficiency and average data transmitted across the network or
received at the sink node. The network connectivity based on
the network graph is utilized in the problem formulation. In
the decentralized approach, the network is divided into sub-
networks, each characterized by a sub-graph that is utilized in
the formulation of the sub-problem. The solution is obtained
for each sub-problem independently.

A. Related Work and Contributions

In this subsection, we survey the literature related to the
solution approach and present the main contributions of the
paper. In [10], MPC is considered for maximizing the wireless
network utility to obtain an online optimal cross-layer network
operation while accounting for the changes in the wireless
channels. Each sensor node is assumed to have a battery of
maximum transmission power, no energy harvesting capability
is assumed. In [12], MPC based strategy is considered for
power management of wireless sensor nodes. The network
consists of multiple sensor nodes communicating with a sink
node directly, no routing is considered. The objective function
is formulated as a mixed integer quadratic programming
problem aiming to achieve a target quality of service with
a minimum number of active nodes. In [13], the authors
propose power control and data transmission for OMA EH-
WSNs using differential game theory. The open-loop Nash
equilibrium is obtained based on receding horizon control.
Similarly, optimal power control and data scheduling are
devised based on centralized MPC algorithm for OMA EH-
WSNs in [14].

In [15], the authors studied energy efficient resource al-
location for machine-to-machine communication with energy
harvesting. In there, the authors considered joint power control
and time allocation assuming both NOMA and time-division
multiple access (TDMA) schemes. The optimization problem
was formulated to minimize the total power consumption
via joint power control and time-allocation. The devices are
assumed to be able to harvest energy from radio-frequency
signals. In [16], the authors considered optimal energy-delay
scheduling for EH-WSNs with interference channels. The
non-convex resource allocation problem was solved using
negatively correlated search, while in their earlier work [17],
the non-convex optimization problem was transformed into a
convex optimization problem by convex approximation. The
optimization problem was formulated to minimize the total
network delay by considering optimal data rates, power allo-
cation and radio-frequency energy transfer. However, resource
allocation problems in NOMA were thoroughly investigated
under different setups. In most of these works, e.g., [8], [18],
[19], the resource allocation problems were considered with
no energy-harvesting assumptions or assuming either uplink
or downlink scenarios.

The main contributions of this paper are summarized as
follows:
• We consider optimal power management and data

scheduling in NOMA enabled multi-hop EH-WSN, where

the sensor nodes use superposition coding for transmis-
sion, and receiving nodes use SIC.

• The considered solution approaches are: offline, central-
ized online power management, and decentralized online
power management.

• The online optimal power management is based on model
predictive control. The offline is used as a benchmark
for the performance of the online resource allocation
approaches.

• The objective function is formulated to balance emptying
the data buffers with minimum amount of power, taking
into account the network connectivity using graph theory.
The objective function is formulated as a quadratic func-
tion in the data state buffer and power control, assuming
the system dynamics.

• The battery state is formulated assuming zero processing
cost and non-zero processing cost. The non-zero process-
ing cost is assumed to be an affine function of the amount
of data transmitted and received.

• The formulated original problem is non-convex. Using
high signal-to-interference and noise ratio (SINR), and
variable transformation, the non-convex problem is ap-
proximated as a convex problem. The convex problem is
solved using the interior point method.

• In the simulations, we evaluate the performance of the
resource allocation problems using energy efficiency as
well as the average amount of data transmitted across the
networks or arrived at the sink node. Comparisons are
made with frequency-division multiplexing OMA (FDM-
OMA) scheme.

• To the best knowledge of the authors, this is the first time
that MPC/RHC framework is applied for online operation
of NOMA enabled multi-hop EH-WSNs.

The remainder of this paper is organized as follows. In
Section II, the system model of the EH-WSNs is introduced.
In Section III, the resource allocation problem, and the offline,
MPC and DMPC algorithms are presented. Numerical results
are presented and discussed in Section IV. Finally, conclusions
are drawn in Section V.

II. SYSTEM MODEL

The system under consideration is schematically shown in
Figure 1. The WSN is assumed to consist of M energy-
harvesting sensor nodes aiming to transmit their sensed and
relayed data to a sink node using multi-hop communication.
Each Sensor node is equipped with an energy harvesting
circuit, a limited battery storage, and a limited buffer capacity.
Sensor node Si is allowed to communicate and exchange
information with its next-hop set of neighbors denoted as Ni.
The channel gain h(i,j) of the (i, j) link between sensor node
Si and sensor node Sj is assumed to be constant throughout
the transmission period. Transmission is arranged in time-slots
of fixed duration of T sec, and a finite horizon of K+1 time-
slots. In time-slot k, power P (i,j)

k is used to transmit r(i,j)k bits
over the link (i, j) using NOMA. Sensor node Si uses multi-
user superposition transmission (MUST) to transmit its data
to its neighboring nodes. In this paper, power-domain NOMA
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Fig. 1. System model: NOMA enabled EH-WSN.

multiplexing [7] is considered, where multiple sensors’ data
are superimposed in the power domain exploiting the channel
gains differences.

The WSN is assumed to be static, and hence can be
represented by a directed graph [20], where the communicating
links are the edges and the sensor nodes are the vertices. In-
terference links from non-neighboring nodes are not captured
by the graph. A directed graph G = (V , E) consists of a
set of vertices V = {ν1, . . . , νM+1}, indexed by the sensor
nodes in the network and the sink node, and a set of directed
edges E = {(νi, νj) ∈ V × V}, that contains ordered pairs
of distinct vertices. A connected graph is assumed to enable
data transmission in WSNs [21]. The WSN connectivity is
assumed to be known at the deployment stage, and the modes
of operations and users pairing are assumed to be static and
known beforehand.

An edge-weighted graph G = (V , E ,ω) is a graph in
which the edge (νi, νj) is assigned a weight ωij ≥ 0. The
weight vector associated with the graph G is defined as ω.
The Laplacian matrix L is a positive definite matrix used to
characterize an edge-weighted graph as [11]:

L = DΩDT , (1)

where D is a (M + 1)× |E| incidence matrix of the directed
graph with entries dij ∈ {0,±1}, and Ω = diag(ω) is a
|E| × |E| diagonal weight matrix. The (i, j)th entry of the
incidence matrix is 1 if the source of edge j is node Si, −1
if the tail of edge j is node Si and 0 otherwise.

The sensor nodes are assumed to harvest energy at each
time-slot without energy loss, and the harvested energy in
time-slot k can be utilized in time-slot k+1. The state dynam-
ics of the energy level of sensor node Si for i = 1, . . . ,M+1,
evolves as:

E
(i)
k+1 = E

(i)
k − T

∑
j∈Ni

P
(i,j)
k − φ(i)k +H

(i)
k , (2)

where P (i,j)
k ≥ 0 denotes the power level at time-slot k used

to transmit r(i,j)k bits from sensor node Si to sensor node Sj ,
φ
(i)
k is the processing (circuitry) energy cost, and H(i)

k is the
harvested energy of sensor node Si during time-slot k. The

stored energy overflow constraint of the battery of sensor node
Si is expressed as:

0 ≤ E(i)
k ≤ E

(i)
max. (3)

Since the harvested energy needs to be stored in the battery
before being used for transmission, the transmitted energy
feasibility constraint is stated as:

T
∑
j∈Ni

P
(i,j)
k + φ

(i)
k ≤ E

(i)
k . (4)

Similarly, the state dynamic of the data buffer of sensor
node Si can be written as:

C
(i)
k+1 = C

(i)
k −

∑
j∈Ni

r
(i,j)
k +

∑
j∈Ni

r
(j,i)
k + d

(i)
k , (5)

where C(i)
k is the amount of data contained in the buffer of

sensor node Si at time-slot k in bits, d(i)k denotes the sensed
data by the source node Si and r(j,i)k is the received data from
sensor node Sj for j ∈ Ni at time-slot k. For the sink node
SM+1, the state dynamic of the data buffer evolves as:

C
(M+1)
k+1 =C

(M+1)
k +

∑
j∈NM+1

r
(j,M+1)
k + d

(M+1)
k . (6)

The data buffer overflow constraint can be expressed as:

0 ≤ C(i)
k ≤ C

(i)
max. (7)

The sink buffer is assumed to have a much larger capacity
compared to the buffer of the source nodes, i.e., C(M+1)

max �
C

(i)
max for i = 1 . . . ,M . The transmitted data r(i,j)k from sensor

node Si to a neighboring node Sj for j ∈ Ni at time-slot k
are constrained by the channel capacity of the link as:

0 ≤ r(i,j)k ≤ TW log2

(
1 + Γ

(i,j)
k

)
, (8)

where W is the channel bandwidth, and Γ
(i,j)
k is the signal-

to-interference and noise ratio (SINR) of the (i, j) link at
time-slot k. Since the received data need to be stored in the
buffer before being transmitted, data transmission feasibility
constraint at sensor node Si can be formulated as:∑

j∈Ni

r
(i,j)
k ≤ C(i)

k . (9)

The SINR in (8) depends on the transmission reception
mode of NOMA. In the following subsection, we will dis-
cuss these transmission modes, and give expression for the
corresponding SINR.

A. NOMA Transmission Modes

In NOMA, the SINR depends on the position of the sensor
node in the network which will define the type of interference
based on the decoding scheme as follows. Let the normalized
channel gain γ(i,j) be defined as: γ(i,j) = |h(i,j)|2

σ2 ∀j ∈ Ni,
with σ2 is the noise power. Assume node Si is communicating
with next-hop neighboring nodes using MUST, and using the
ordered channel gains as γ(i,j1) > γ(i,j2) > . . . > γ(i,jNi ),
where Ni = |Ni|, then the SINR Γ(i,jl) for all jl ∈ Ni is:

Γ
(i,jl)
k =

γ(i,jl)P
(i,jl)
k

γ(i,jl)
∑l−1
m=1 P

(i,jm)
k + 1 + I

(jl)
k

, (10)
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where I(jl)k accounts of other inter-interference at node jl from
neighboring nodes that are not within the same cluster of nodes
but using the same resource block (RB).

Assume sensor node Si is a next-hop node for multiple
sensor nodes, and hence sensor Si performs successive in-
terference cancellation (SIC). Assume the channel gains are
ordered as: γ(j1,i) > γ(j2,i) > . . . > γ(jMi ,i), hence the SINR
of the links connected to node Si can be written as:

Γ
(jl,i)
k =

γ(jl,i)P
(jl,i)
k∑Mi

m=l+1 γ
(jm,i)P

(jm,i)
k + 1 + I

(i)
k

, (11)

where Mi is the number of nodes communicating with node
Si simultaneously as a next-hop.

Assuming non-zero processing cost at a sensor node Si,
the processing cost is greatly affected by these transmission
modes. Hence, taking into consideration these transmission
modes in NOMA, the processing cost can be broken into three
parts: a fixed cost for circuitry operation, a transmission cost
as a function of the transmission data rate, and a reception
and/or decoding cost as a function of the decoded data streams’
rates. The reception cost is of two parts: a SIC processing cost
and a decoding cost. In OMA system, different models were
considered for the processing cost as in [22]. In this paper,
we consider the processing cost to be a linear function of
the transmission data rate and the decoded data stream rates
as follows. Assuming that sensor node Si is communicating
with next-hop neighboring nodes Sj |j∈Ni using MUST, and
performs SIC of received data streams from neighboring nodes
Sjm for m = 1 . . . ,Mi and possibly performs decoding of
superimposed unintended data streams, the processing cost can
be formulated as:

φ
(i)
k = εc+εt

∑
j∈Ni

r
(i,j)
k +εr

(
Mi∑
m=1

(
r
(jm,i)
k +

∑
l∈Njm,i

r
(jm,l)
k

))
(12)

where εc is the fixed circuitry processing cost in Joules, εt
and εr are the transmission and reception processing cost
coefficients in Joules/bit respectively, and Njm,i is the set of
nodes such that γ(jm,i) > γ(jm,j), ∀j ∈ Njm .

III. PROBLEM FORMULATION

Power allocation and data scheduling are critical for suc-
cessful operation of EH-WSNs. In EH-WSNs, the resource
allocation problem has many properties that differentiate it
from the resource allocation in conventional WSNs. In EH-
WSN, theoretically, the sensor node has access to unlimited
source of energy, but this energy can only be utilized after
being harvested and stored. The amount of harvested energy is
not known in advance, and entails rapid spatial and temporal
variations. Whereas, in conventional WSN, the sensor node
has access to a limited and fixed source of energy, the spatial
and temporal variations, and causality constraints are not
applicable. To reap the full benefits of NOMA, optimal power
allocation is more crucial than optimal power management in
OMA systems. In NOMA, the users in the downlink scenario
(MUST) are power multiplexed, therefore there will be no
control on the additional interference in the system which will
exhibit further degradation on the system throughput.

The main objective of the proposed resource allocation in
EH-WSN is to maximize the life-time of the network by
making a balance between utilizing the harvested energy and
emptying the data buffers, which can be formulated using a
quadratic-cost function as explained next.

In the following, we address resource allocation in EH-
WSNs using three different scenarios as follows: First, the
centralized offline resource allocation is addressed assuming
non-causal knowledge of the harvested energy and sensed data.
This scenario will serve as a benchmark for the performance of
the proposed online approaches. Second, an online centralized
resource allocation using MPC framework is addressed assum-
ing causal knowledge of the harvested energy and sensed data.
Third, an online distributed resource allocation is addressed
using DMPC framework assuming causal knowledge of the
harvested energy and sensed data as well as information
exchange between neighboring nodes.

A. Offline Resource Allocation Problem

The offline resource allocation problem is formulated as-
suming that a central unit has access to the non-causal infor-
mation of the energy and data arrivals of all sensor nodes.
The central unit will solve for the optimal power allocation
and data scheduling and disseminate the optimal solution to
all sensor nodes.

To drive sensor nodes to the desired zero-state vector (empty
buffers), the network error can be expressed based on graph
connectivity as:

zk =
∑

(i,j)∈E

wij

( C(i)
k

C
(i)
max

−
C

(j)
k

C
(j)
max

)2
,

which can be written using matrix notation as:

zk = cTkQck, (13)

where ck = [C
(1)
k , . . . , C

(M+1)
k ]T is the buffer state vec-

tor of all sensor nodes at time-slot k, and Q is the
buffer state weighting matrix defined based on the directed
graph of the WSN as: Q = Λ−1DΩDTΛ−1, with Λ =

diag
(
[C

(1)
max, . . . , C

(M+1)
max ]

)
is a diagonal matrix to handle

an agreement on the buffer state when sensor nodes have
different maximum capacities. Assuming sensor nodes Si and
Sj forming an edge (link (i, j)), and sensor node Sj is a
next-hop for sensor node Si, minimizing the difference of
the normalized buffer states of the two nodes can be done
by either balancing the amount of data stored in each buffer
or by emptying the buffers. In dynamical systems, emptying
the buffer will be generally the solution approach. In order to
account for the minimum power used to empty the buffers, a
regularization term based on the control vector is added. This
will balance emptying the buffer and utilizing the harvested
energy. Hence, we can formulate a quadratic objective function
that consists of the two parts as follows:

U(c,p) =

K∑
k=1

cTkQkck +

K−1∑
k=0

M∑
i=1

p
(i)T
k R

(i)
k p

(i)
k , (14)
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where c =[cT0 , . . . , c
T
K ]T is the buffer state vector of all sensor

nodes, and p = [p
(1)T
0 , . . . ,p

(1)T
K−1, . . . ,p

(M)T
0 , . . . ,p

(M)T
K−1 ]T

is the power control vector of all sensor nodes with p
(i)
k =

[P
(i,j)
k |∀j∈Ni ]T is the power control vector of sensor node Si

at time-slot k. The weighting matrices Qk and R
(i)
k are chosen

as positive semi-definite matrices, with Qk = αkQ, where αk
is some regularization factor. Without loss of generality, the
regularization coefficient may be chosen to be constant. Large
values of Qk in comparison to R

(i)
k drives the buffer state

vector to the origin quickly at the expense of large control
(power) action. Penalizing the control action of sensor node
Si through large values of R

(i)
k relative to Qk is the way to

reduce the control action and slow down the rate at which the
buffer state vector approaches the origin.

The offline resource allocation problem can then be formu-
lated taking into consideration the limited battery capacity and
data buffer size of each sensor node as:

min
r, p, c, e

U(c,p), (15a)

subject to:
given e0 & c0, (15b)

(2)-(9), for k = 0, . . . ,K − 1, & i = 1, . . . ,M + 1, (15c)

where r is the transmitted data control vector defined as
r = [r

(1)T
0 , . . . , r

(1)T
K−1, . . . , r

(M)T
0 , . . . , r

(M)T
K−1 ]T , with r

(i)
k =

[r
(i,j)
k |∀j∈Ni ], and the battery state vector e is defined as

e = [E
(1)
0 , . . . , E

(1)
K , . . . , E

(M)
0 , . . . , E

(M)
K ]T , with the initial

energy state vector defined as e0 = [E
(1)
0 , . . . , E

(M)
0 ]T .

Similarly, the initial data state vector is defined as c0 =

[C
(1)
0 , . . . , C

(M+1)
0 ]T .

Problem (15) is a non-convex optimization problem, since
in NOMA the data transmitted (8) is not a convex func-
tion with respect to the power due to interference. It can
be solved using a global nonlinear solver such as Solving
Constraint Integer Programs (SCIP) [23] with unavoidable
computational complexity. However, convex approximation
can be used to overcome the computational complexity. In
this sense, using the lower bound approximation of the data
rate (log(x) ≤ log(1 + x)), and introducing a new variable
q
(i,j)
k such that P (i,j)

k − 2q
(i,j)
k ≤ y

(i,j)
k , with y

(i,j)
k ≥ 0

will result in a convex problem. Direct transformation of the
power control P (i,j)

k = 2q
(i,j)
k , is sufficient to transform the

rate lower bound to a convex function, but the linear equality
constraints of the energy state becomes non-convex. Hence,
the variable y(i,j)k is introduced in the optimization problem
as a penalty term in the objective function as ‖y‖22, where
y = [y

(1)T
0 , . . . ,y

(1)T
K−1, . . . ,y

(M)T
0 , . . . ,y

(M)T
K−1 ]T , with y

(i)
k =

[y
(i,j)
k |∀j∈Ni ]T . Hence, the convex optimization problem can

be stated as:

min
r, p, c, e y, q

U(c,p) + τ‖y‖2 subject to: (16a)

given e0 & c0, (16b)
(2)-(7), & (9) for i = 1, . . . ,M,

for k = 0, . . . ,K − 1, & i = 1, . . . ,M + 1, (16c)

P
(i,j)
k − 2q

(i,j)
k ≤ y(i,j)k , (16d)

y
(i,j)
k ≥ 0, ∀(i, j) links, (16e)

0 ≤ r(i,jl)k ≤ TW
(

log2 γ
(i,jl) + q

(i,jl)
k −

log2

(
γ(i,jl)

l−1∑
m=1

2q
(i,jm)
k + 1 + I

(jl)
k

))
, (16f)

0 ≤ r(jl,i)k ≤ TW
(

log2 γ
(jl,i) + q

(jl,i)
k −

log2

( Mi∑
m=l+1

γ(jm,i)2q
(jm,i)
k + 1 + I

(i)
k

))
, (16g)

where τ > 0 is a regularization parameter. The constraint (16f)
is relevant if sensor node Si communicates with neighboring
nodes using MUST, and constraint (16g) is relevant when sen-
sor node Si performs SIC. Since (16) is a convex optimization
problem, it can be solved using different techniques such as
the interior-point method [24]. The solution of (16) is usually
used as a benchmark for the online MPC and DMPC solutions
as explained next.

B. MPC Problem

MPC framework is used for the online resource allocation
of EH-WSNs. MPC is explained as follows [9]: Consider a
starting time-slot s and a horizon extending to N time-slots
into the future, with N ≤ K. First, the central unit measures
(or estimates) the buffer and battery states of all sensor nodes
at time-slot s. Second, it computes the optimal control values
of the power and transmitted data of all sensor nodes for all
time slots {s, . . . , s + N − 1} of the system by solving an
optimization problem aiming to drive the buffer state of all
sensor nodes to zero while using minimum energy. The control
actions at time-slot s are then applied to the WSN. The starting
time is shifted to time-slot s + 1, and the same procedure is
repeated again.

The objective (cost) function Us(c,p) fitting the MPC
framework of EH-WSNs starting at time-slot s and extending
over a horizon of N time-slots is expressed as:

Us(c,p) =
s+N∑
k=s

cTkQkck +
s+N−1∑
k=s

M∑
i=1

p
(i)T
k R

(i)
k p

(i)
k . (17)

The EH-WSN control problem for one iteration of the MPC
problem for k = s, . . . , s+N − 1 is expressed as:

min
r, p, c, e, y, q

Us(c,p) + τ‖y‖2, subject to: (18a)

given es & cs, (18b)
(3), (4), (7), (9), & (16d)-(16g), (18c)

E
(i)
k+1 = E

(i)
k − T

∑
j∈Ni

P
(i,j)
k − φ(i)k + Ĥ

(i)
k , (18d)

C
(i)
k+1 = C

(i)
k −

∑
j∈Ni

r
(i,j)
k +

∑
j∈Ni

r
(j,i)
k + d̂

(i)
k . (18e)

At time slot s ≥ 0, the measured (or estimated) battery and
buffer states of all sensor nodes are given. Since the harvested
energy and sensed data are unknown to the sensor nodes in
(18d)-(18e), they are replaced by Ĥ

(i)
k and d̂

(i)
k respectively,

which are either zero, or samples from their models if known.
The measured state vectors of the battery and the buffer at
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Algorithm 1 The MPC Algorithm.

1: Given the network parameters: T , W , σ2, h(i,j), C(i)
max,

E
(i)
max, τ , Qk, R(i)

k , i = 1, . . . ,M , and N .
2: At time-slot s,
3: Sensor node Si measures E(i)

s and C(i)
s and transmits

4: them to a central unit.
5: The initial state vectors es and cs are constructed.
6: Solve (18).
7: Each sensor node Si is informed of its control vectors
8: at time-slot s.
9: Sensor node Si applies its control vector to the

10: network at time-slot s only.
11: Recede the horizon s← s+ 1,
12: Go to step 2

time-slot s + 1 take care of the harvested energy and the
sensed data until time-slot s. The convex optimization problem
(18) can be solved using different techniques such as the
interior point-method. Many efficient algorithms for solving
constrained-linear-quadratic MPC problems are developed in
[25]. The MPC algorithm for the online operation of EH-
WSNs is summarized in Algorithm 1.

C. DMPC Problem

In large-scale systems such as EH-WSNs, distributed re-
source allocation algorithms play an important role, in which
the original large-size resource allocation problem is replaced
by a number of smaller and easily tractable ones that work
iteratively and cooperatively towards achieving the system ob-
jective. These smaller problems can be solved simultaneously
with much reduced complexity compared to the online central
solution. Several distributed resource allocation algorithms
have been proposed in literature based on DMPC framework
such as [26], [27]. DMPC algorithms are based on solving
several MPC sub-problems at each time-slot, where each
controller (sensor node or a set of nodes) locally solves an
MPC sub-problem. In NOMA, multiple nodes will be involved
in SIC and MUST, which means their decisions are coupled.
Therefore, in the EH-WSN, a sub-graph of the main graph is
formed of these decision nodes, and their next-hop nodes. For
a sub-problem m, let Tm be the set of decision nodes, and Jm
be the set of next-hop nodes, i.e. Jm =

⋃
i∈Tm Ni. A con-

nected sub-graph is formed of the sensor nodes Vm = Tm∪Jm
and the corresponding connected edges.

In general, the local MPC sub-problem is of a much reduced
computational complexity compared to the centralized MPC
problem. In addition, DMPC framework reduces the commu-
nication overhead, since information exchange is limited to
neighboring sensor nodes within the sub-graph. The local MPC
sub-problems are designed to approximate the centralized
MPC problem.

The resource allocation in EH-WSNs based on DMPC
framework is explained as follows: consider a starting time-
slot s and a horizon extending to N time-slots in the future.
First, sensor node Si for i = 1, . . . ,M measures/estimates
its battery and buffer states and exchanges information with

neighboring sensor nodes. Second, a sub-graph is formed
of decision nodes and their neighboring sensor nodes. The
RHC problem is solved for this sub-graph and the optimal
power values are communicated to the sensor nodes in the
same sub-graph. The power control at the current time-slot is
applied, then the horizon is shifted and the same procedure is
repeated again at the next time-slot. The basics of DMPC for
a constrained linear-quadratic dynamic system are reviewed in
[26].

For an EH-WSN, similar to MPC and offline approaches,
the proposed DMPC formulation aims to empty the buffers
of all sensor nodes using minimum amount of energy in a
cooperative fashion. The objective and the constraints of each
MPC sub-problem are selected to capture the information
structure of the network. The buffer state of each sensor node
is affected by its control and the controls of its neighboring
nodes. For a sub-graph m defined as the graph that involves
the decision nodes in sub-problem m and their next-hop
neighbors. The objective function U (m)

s (·) of sub-graph m for
m = 1, . . . , G, where G is the total number of sub-graphs in
the EH-WSN, can be expressed as:

U (m)
s (c(m), p(m)) =

s+N∑
k=s

c
(m)T
k Q

(m)
k c

(m)
k

+

s+N−1∑
k=s

p
(m)T
k R

(m)
k p

(m)
k , (19)

where c
(m)
k = [C

(j)
k |j∈Vm ]T , then c(m) =

[c
(m)T
s , . . . , c

(m)T
s+N ]T , and p(m) = [p

(m)T
s , . . . ,p

(m)T
s+N−1]T

with p
(m)
k = [p

(j,l)
k |j∈Tm,l∈Jm ]T . The buffer state vector

weighting matrix Q
(m)
k is defined as Q(m)

k = Π(m)Q̃kΠ
(m)T ,

where Π(m) is a selection matrix that selects the nodes within
the sub-graph m, i.e., a sub-matrix of the identity matrix
with the rows selected corresponding to the nodes within
the sub-graph, Q̃k is defined as Λ−1DΩ̃

(m)

k DTΛ−1, where
Ω̃

(m)

k is the same as Ωk with the edges not in the sub-graph
are assigned zero weight. The weight of the control action of
sub-problem m at time-slot k is selected such that R

(m)
k is

positive definite matrix.
The local MPC sub-problem m for k = s, · · · , s+N − 1,

is expressed as:

min
x(m)
U (m)
s (c(m),p(m)) + τ‖y(m)‖2, (20a)

subject to:

given c(m)
s , e(m)

s , (20b)
(3), (4) ∀i ∈ Tm, (20c)
(7), (9), (18d) ∀i ∈ Vm, (20d)

C
(i)
k+1 = C

(i)
k −

∑
j∈Ni

r
(i,j)
k + d̂

(i)
k , ∀i ∈ Tm, (20e)

C
(l)
k+1 = C

(l)
k +

∑
i∈Tm

r
(i,l)
k + d̂

(l)
k , ∀l ∈ Jm, (20f)

where x(m) = [r(m)T , c(m)T ,p(m)T , q(m)T , e(m)T ,y(m)T ]T

with r(m), q(m) and y(m) are similarly defined as p(m),
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Algorithm 2 The DMPC Algorithm for Sub-problem m.

1: Given the network parameters: T , W , σ2, τ , N , Qk, R(i)
k ,

C
(i)
max, for E(i)

max, for i ∈ Vm, γ(l,j), for l ∈ Tm and j ∈
Jm.

2: At time-slot s,
3: Exchange of buffer and battery status of sub-graph m.
4: Solve (20).
5: Communicate the control vector to decision nodes of
6: sub-graph m.
7: Decision nodes take the action at time-slot s only.
8: Recede the horizon s← s+ 1.
9: Go to step 2,

and e(m) is defined as c(m). Each sub-graph solves its lo-
cal MPC problem (20) and only applies the control vector
[p

(m)T
s , r

(m)T
s ]T . The buffer and battery states are then

measured at sensor node Si for i = 1, · · · ,M and exchanged
with neighboring nodes. The horizon is shifted one time-slot
and the process is repeated again.

Note that constraints (20c) and (20d) approximate the orig-
inal constraints in the centralized MPC problem, i.e., problem
(20) takes into consideration that sensor node Si knows its
next-hop neighbors but does not know the neighbors of its
neighbor. Similar to MPC, causal information of the harvested
energy and sensed data at each sensor node is either set to zero,
or randomly generated according to its model if known.

The DMPC algorithm is summarized in Algorithm 2. For
the sub-problem m with sub-graph m, the sensor nodes within
the sub-graph exchange their buffer and battery status. Given
the current status of the sub-graph, (20) is solved locally for
the sub-graph for a horizon of length N , the solution (control
vector) is communicated to the decision nodes to take the
action at time-slot s only. The horizon recedes to time-slot
s + 1, and the same algorithm is repeated. All sub-problems
in the network are solved simultaneously.

IV. SIMULATION RESULTS AND DISCUSSION

Fig. 2. The investigated scenario.

The EH-WSN under investigation consists of 7 sensor nodes
as shown in Figure 2. Sensor nodes {S1, · · · , S6} are aiming

to transmit their data to the sink node S7. The channel
gains are computed based on the distance between the sensor

nodes as: γ(i,j) =
d−αi,j
σ2 , where di,j is the separating distance

between sensor nodes Si and sensor node Sj , α = 4 is the
propagation loss factor, and the noise power σ2 = −70 dBm.
The xy-coordinates (xi, yi) in meters of sensor node Si for
i = 1, · · · , 7 are as shown in Figure 2. The incidence matrix
D of the EH-WSN in Figure 2 is given as:

D =



1 1 0 0 0 0 0 0 0
−1 0 1 1 0 0 0 0 0
0 −1 0 0 1 1 0 0 0
0 0 −1 0 −1 0 1 0 0
0 0 0 −1 0 0 0 1 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 −1 −1 −1


.

In the considered WSN, sensor node S1 performs super-
position transmission, similarly sensor nodes S2 and S3.
Sensor node S2 decodes the information of sensor node S3

before decoding its own information, whereas sensor node S3

only decodes its information in the presence of interference
from information transmitted to sensor node S2. Sensor node
S4 performs partial interference cancellation from sensor node
S3, while considering information sent to sensor node S5 as
interference. The sink node S7, performs SIC as ordered by
the corresponding channel gains from sensor nodes S4, S5,
and S6. We assume time-independent weighting matrices, i.e.,
Qk =Q and R

(i)
k = 0.1I2 for i = 1, 2, 3 and R

(i)
k = 0.1 for

i = 4, 5, 6, where In is the n×n identity matrix. The energy
processing cost for transmission equals the energy processing
cost for reception and is identical at all sensor nodes, i.e.,
ε
(i)
t = ε

(i)
r = ε, for i = 1, . . . , 7. The regularization coefficient

is chosen as τ = 0.01

The harvested energy of sensor node Si in time-slot k is
modeled as a uniform random variable over [0, Hmax], where
Hmax = 0.01 Joules [28]. The data arrival at each sensor
node is modeled as a Poisson random variable with arrival
packet rate λ = 1 and packet size of 100 bits. Note that the
harvested energy and sensed data models will not affect the
solution approach. The solution at each step is affected only
by the battery and data buffer status at each time-slot. The
maximum buffer capacity is C(i)

max =10 kbits for sensor nodes
Si for i = 1, · · · , 6, and C(7)

max = 10 Mbits for the sink node.
The maximum battery capacity is E(i)

max =1 Joules for sensor
nodes Si for i = 1, · · · , 7. Transmission is organized in time-
slots with duration T = 1 ms, and the transmission bandwidth
W = 100 kHz.

In this paper, first we compare the offline solution of the
approximated convex problem (16) with that of the original
non-convex optimization problem (15) using the global solver
Solving Constraint Integer Programs (SCIP). Second, we com-
pare the performance of the EH-WSN considering OMA and
NOMA multiple access techniques. In this comparison, we
consider the offline, MPC and DMPC solutions. In NOMA,
the solutions are obtained by solving the approximated convex
problems. The comparison is also considered under zero
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processing cost, and non-zero processing cost assumptions. In
OMA, the non-zero processing is modeled as:

φ
(i)
k = εc + εt

∑
j∈Ni

r
(i,j)
k + εr

∑
j∈Ni

r
(j,i)
k . (21)

The non-zero processing cost coefficients for OMA and
NOMA are assumed as follows: εc = 1 µJoules, and εr = εt =
10 µJoules/bit. OMA is implemented using frequency-division
multiplexing (FDM), the optimization problem is formulated
as a power-allocation problem and the frequency bands are
equally divided. For fair comparison, the resource blocks in
NOMA are assumed to be the same as those in OMA. In the
simulation setup, three frequency resource blocks are assumed.
The problems are solved using the CVX toolbox [29].

In the resource allocation problem formulations, we opti-
mize over the transmitted data bits, and transmission power.
Hence, in the following we use the energy efficiency as a
metric for performance comparison measured at the sink node
and/or across the network as a function of time-slot k. The
energy efficiency in [bits/sec/Hz]/Joule at the sink node is
defined as:

EEsink
k =

∑k
l=0

∑
j∈NM+1

r
(j,M+1)
l

TW
∑k
l=0

∑M+1
i=1

(
φ
(i)
l + τ

∑
j∈Ni p

(i,j)
l

) , (22)

and the global energy efficiency in [bits/sec/Hz]/Joule for the
whole network is defined as:

EEglobal
k =

∑k
l=0

∑M
i=1

∑
j∈Ni r

(i,j)
l

TW
∑k
l=0

∑M+1
i=1

(
φ
(i)
l + τ

∑
j∈Ni p

(i,j)
l

) .
(23)

In addition to this, we compare the performance of the network
in terms of the total data arrived at the sink node, and/or the
total data transmitted across the network.

In the comparison of the solution of the offline original
non-convex problem (15) with the solution of the offline
approximated convex problem (16) using the global solver
SCIP, we consider simulation over 50 time-slots due to the
run-time complexity and heavy memory requirement of the
global solver. The comparison is carried out in terms of the
energy efficiency and the data transmitted across the network,
with zero processing and non-zero processing costs. As shown
in Figure 3, the energy efficiency of the original problem
is higher than that of the approximated convex problem.
However, we observe that both solutions exhibit similar trends
of the energy efficiency as a function of time-slot k. The
energy efficiency obtained by the SCIP solver, peaks at the
beginning and then smooths out as time progresses. Similarly,
the data transmitted across the network of both problems
exhibit similar trend as a function of time-slot k, with a slight
increase for the approximated problem.

The average energy efficiency of OMA and NOMA based
EH-WSN is shown in Figure 4 for the offline, MPC and DMPC
resource allocation algorithms computed at the sink node, and
across the network. The simulations are conducted over 100
time-slots, and averaged over 100 runs. The receding horizon
for MPC and DMPC based resource allocation techniques
is chosen as N = 5 time-slots. The results are shown for
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Fig. 3. Top: energy efficiency across the network EEglobal
k . Bottom: data

transmitted across the network.

zero and non-zero processing costs. As clear from the figure,
the average energy efficiency of NOMA outperforms the
average energy efficiency of OMA in all resource allocation
techniques, when zero-processing cost is considered. For non-
zero processing cost, the average energy efficiency of OMA
slightly outperforms that of NOMA. As expected, the offline
based resource allocation outperforms MPC and DMPC based
resource allocation for OMA and NOMA techniques. Nonethe-
less, MPC and DMPC resource allocation follows the same
trend as of that of the offline. The performance gap is due
to the fact that offline relies on non-causal information of the
EH-WSN.

To give a complete picture, we examine the average trans-
mitted data reached the sink node, and the average transmitted
data across the network as shown in Figure 5. It is clear from
the figure that the processing cost has no effect on the average
amount of data transmitted across the network or that arrived
at the sink. The average amount of data transmitted across the
network or that arrived at the sink node, constantly larger for
NOMA compared to OMA. We observe identical performance
for NOMA offline and NOMA MPC. The performance of
NOMA DMPC is slightly below that of NOMA offline and
MPC, and still outperforms OMA DMPC.

The empirical cumulative distribution function (CDF) of the
transmitted data across the network and the empirical CDF of
the transmitted power are shown in Figure 6. The empirical
CDFs are only shown for zero processing cost. For non-zero
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Fig. 4. Top: the average energy efficiency computed at the sink EEsink
k .

Bottom: the average energy efficiency across the network EEglobal
k .

processing cost we observe exactly the same empirical CDF
for the transmitted data and for the transmission power. As
clear from this figure, the transmission power empirical CDF
of the resource allocation techniques are almost similar for
NOMA/OMA. At high probability NOMA, is more conser-
vative in using power than that of OMA. For the transmitted
data, the CDF of the offline NOMA and OMA techniques are
almost similar. NOMA MPC and DMPC are more conservative
in data transmission compared to OMA and/or offline NOMA
at high probability. This explains the small average energy
efficiency with processing cost compared to zero-processing
cost.

V. CONCLUSION

In this paper, we considered optimal power management for
multi-hop EH-WSN using NOMA. The power control problem
aiming to transmit the data of all sensor nodes using minimum
energy was approximated as a convex finite horizon dynamic
programming problem. We considered the non-causal offline
and the causal online problems. The online optimal power
control was obtained based on MPC framework. A distributed
MPC was proposed to solve smaller local MPC sub-problems
that can be solved simultaneously at a much lower computa-
tional complexity. The performance of the proposed algorithms
were measured in terms of the average energy efficiency
and average data transmitted under zero-processing and non-
zero-processing costs assumptions. The processing cost was
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Fig. 5. Top: the average data received at the sink. Bottom: the average data
transmitted across the network.

modeled as an affine function in the transmitted and decoded
data. The average energy efficiency is significantly affected
by the processing cost, while the average data transmitted is
not. The average data transmitted (throughput) of NOMA is
generally higher than that of OMA. From the empirical CDF of
the transmission power, NOMA is more conservative in using
the available power compared to OMA. This motivates further
investigations of resource management in dynamic systems
using NOMA. Considering parametric MPC/DMPC model
is also an interesting direction to reduce the computational
complexity of the solution using a look up table and avoiding
to solve an optimization problem at each time-slot.
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