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Abstract: Given a geometrical model of a space, the problem of opti-
mally placing absorption in a space to match a desired impulse response
is in general nonlinear. This has led some to use costly optimization pro-
cedures. This letter reformulates absorption assignment as a constrained
linear least-squares problem. Regularized solutions result in direct dis-
tribution of absorption in the room and can accommodate multiple fre-
quency bands, multiple sources and receivers, and constraints on
geometrical placement of absorption. The method is demonstrated
using a beam tracing model, resulting in the optimal absorption place-
ment on the walls and ceiling of a classroom.
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1. Introduction

The computation of the impulse response of a space with specific materials at specific
surfaces is a well studied topic. When one considers the inverse problem—placing and
specifying the materials to obtain a specific response—the problem quickly becomes
very complex. Ideally, the optimal placement of materials should be objectively com-
putable, with given target conditions and constraints.

The problem of placing and specifying the materials to obtain a specific
response is a nonlinear optimization problem. In this letter, we propose a method for
formulating the nonlinear optimization problem as a linear least squares problem.
Instead of specifying the target impulse response, we define a target echogram that rep-
resents the target energies of all the reflection paths at the receiver location(s). The
least squares solution will minimize the deviation of the logarithm of the target energy
for each reflection in the echogram by giving optimal absorption coefficients for a set
of discretized surfaces in the geometrical model. By using regularization and con-
straints, we can adapt the solution to real world problems, as discussed later on.

The proposed method will allow us to find a global minimum for the optimi-
zation problem. It will also allow us to consider multiple source-listener combinations
at the same time. Multiple frequency bands can be considered simultaneously.
Different parts of the echogram can be weighted, making errors in the solution at
some parts of the echogram more significant than others. Surfaces can also be assigned
predefined absorption values.

2. Background

Previously, optimization methods have been used to solve the nonlinear optimization
problem, and while they are capable of finding a global maximum, they cannot be
guaranteed to do so. Monks et al.1 optimize the material placement and geometry of a
concert hall using a combination of simulated annealing and steepest descent. D€uhring
et al.2 seek to minimize sound pressure level at a target frequency using the method of

a)Author to whom correspondence should be addressed.
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moving asymptotes. Genetic algorithms are additionally used to optimize the geometry
of a space.3,4 Genetic algorithms, simulated annealing, and other heuristic optimization
or sampling methods are based on random walks and scale badly in high dimen-
sions—i.e., the number of discretized surfaces in the simulated space.

If we assume the geometry of a space to be fixed, the problem of finding ideal
material properties can be formulated as a linear optimization problem. Our optimiza-
tion problem will be convex, by which it follows that a global minimum can always be
found. The optimizable parameters can be varied freely, as any theoretically possible
echogram can be defined as the optimization target.

We assume that the early response will be the most important part of the
response with respect to the placement of materials, and specular reflections are most
prevalent here. We also assume that the surfaces have been divided into small enough
segments to represent realistic surfaces to which absorption can be assigned. We use a
beam tracing model5 to calculate specular reflections.

3. Least squares assignment of absorption

In geometrical acoustic models, the total attenuation associated with a single reflection
path arriving at a listener can be calculated from the product of reflection coefficients
of individual surfaces, along with the distance the sound has traveled. Energies of the
arrivals are scaled initially by (ct)�2 to account for the geometrical spreading of wave
fronts, with c denoting the speed of sound and t the propagation time. Additional
attenuation is determined by the reflection coefficients at all reflecting surfaces that a
ray or beam encounters.

The sound power reflection coefficient for a surface can be calculated accord-
ing to Rj¼ 1 – aj, where aj is the absorption coefficient describing the absorption of
sound energy. Assume an initial energy E0(cti)

�2 for a single arrival i, first taking only
geometrical spreading as a function of time ti into account. The final energy of the
arrival Ê i can be expressed

Ê i ¼
Y

j

1� ajð Þ
E0

ctið Þ2
¼ Rtot;i

E0

ctið Þ2
; (1)

where aj is the absorption coefficient associated with the surface given by index j and
Rtot,i is the total energy absorbed by all surfaces interacting with arrival i. Taking the
logarithm of both sides, we can write the equation as a linear sum, giving

logðÊ iÞ ¼
X

j

logð1� ajÞ þ catt;i ¼
X

j

rj þ catt;i; (2)

where

catt;i ¼ logðE0Þ � 2 logðctiÞ: (3)

Now the logarithm of the echogram is expressed as a linear combination of
variables related to the absorption coefficients of surfaces in the room as opposed to
the nonlinear combination in Eq. (1). Let the entries of b be defined by bi¼ log(Ê i),
where Ê1, Ê2,…, Êk are energies of arrivals in the target echogram. We wish to solve
for the vector r, defined by rj¼ log(1 – aj), the logarithm of sound power reflection
coefficients for each surface. Given a connectivity matrix G, the system may be written

Gr ¼ b� c � d; (4)

where the entries of c are catt,i and d is the target vector. The dimensions of G are
M�N where M is the number of arrivals in the echogram and N is the number of
surfaces in the model.

The matrix entries Gi,j are integer values that describe the number of times the
path of reflection i hits surface j. For instance, if arrival i¼ 3 hits surface j¼ 4 once
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and surface j¼ 12 twice, the matrix would have zeros in row 3 except for 1 in column
4 and 2 in column 12.

3.1 Regularized least squares

The most straightforward way to solve Eq. (4) is using the ordinary least squares solu-
tion, given by the normal equations,

r ¼ ðGT GÞ�1GT d: (5)

The system will often be overdetermined as the number of arrivals easily exceeds the
number of surfaces, M>N. Overfitting is commonly avoided using ridge regression,
which also allows for solutions of the underdetermined case. Ridge regression tends
toward an even distribution of low absorption values. According to our studies, bet-
ter results were obtained with the so-called LASSO6 method, which in this case is
defined by

kGr–dk2 þ bkrk1: (6)

The free parameter b determines the tradeoff between the fit of the model to
the data and the penalty caused by the L1 norm of the logarithm of the surface sound
power reflection coefficients. In practice, the tuning parameter directly affects the maxi-
mum absorption area.

3.2 Constrained least squares

For the surfaces to be passive, the coefficients are also subject to hard inequality con-
straints. First, the sound power reflection coefficients cannot be negative, i.e., a surface
cannot remove more energy from the room than is incident upon it. Second, the coeffi-
cient must be less than one, as the energy cannot increase due to a reflection.

The first constraint is fulfilled due to the fact that we are solving for the loga-
rithm of the coefficients. As the solution giving the logarithm of the coefficients is real,
the sound power reflection coefficients will be positive.

For the second constraint, we need to impose a constraint on the logarithm of
the sound power reflection coefficient, rj� 0—a non-positive least squares problem. To
cast it as a non-negative least squares (NNLS) problem, and thus a commonly encoun-
tered quadratic programming problem, we instead solve

ð�GÞð�rÞ � ~G~r ¼ d; (7)

and ~r� 0, or r� 0 for the original problem, resulting in aj� 0.
The absorption coefficients may be expressed as a solution to the NNLS

problem,

aj ¼ 1� 10�~rj ; (8)

assuming base-10 logarithms.

3.3 Multiple source-listener paths

To avoid solutions only valid for very specific locations, multiple source-listener paths
can be combined into a single problem. As all the source-listener paths share the same
surfaces and reflection coefficients, the vector we are solving for, r, remains the same.
The target vector d and the connectivity matrix G is specified for each of the s source-
listener combinations:

G ¼
G1

� � �
Gs

2
4

3
5 d ¼

d1

� � �
ds

2
4

3
5: (9)
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The following example does not describe any realistic case, but it has been
included to demonstrate the effectiveness of using multiple source-receiver combina-
tions. Figure 1 shows a 2D space with discretized boundaries. The square represents a
source, and circles represent receivers. Assigned absorption coefficients are indicated
by gray-scale values from 0 (white) to 1 (black). The reflection paths marked with thick
lines, representing the earliest reflections, are to be damped; the target echogram is
defined as having all reflections arriving before 8 ms damped by 20 dB, while the rest
of the reflections are left undamped. Specular reflection paths up to the fifth order are
calculated.

In Fig. 1, the result for a single source-receiver combination can be seen, with
darker wall segments linearly representing higher absorption values. By placing multi-
ple receivers in the model, the absorption is placed in a way that is optimal on average
for multiple positions.

4. Further constraints

4.1 Fixing surfaces

A specific surface Sk can be defined as having a fixed sound power reflection coeffi-
cient, rk¼ log(Rk,fixed). The kth column of the G-matrix will thus be multiplied by the
constant value rk and can be moved to the right side of Eq. (4). For each surface k
with a fixed coefficient, the respective column ak is similarly removed from the connec-
tivity matrix G and added to the target vector dfixed according to

dfixed ¼ bþ cþ
X

k

rkak: (10)

4.2 Weighting

Discretized wall segments with different sized areas do not need to be weighted sepa-
rately, as the importance of the area is taken into account automatically; a larger area
will often contribute to more reflections than a smaller one. Instead, we might want to
emphasize the importance of specific parts of the echogram, or specific source-listener
combinations. If the vector w contains arbitrary weighting factors wi for each single ar-
rival i, we can incorporate the weighting factors into the model by multiplying each
row i in the connection matrix G, and each element i in the target vector d, by respec-
tive weighting factor wi.

Fig. 1. This is a 2D room with a source (square) and receivers (circles). Lines indicate reflection paths, and rec-
tangles on the boundaries indicate the amount of absorption that is assigned; white indicates no absorption, and
black indicates total absorption. The left figure shows the case with one source-receiver combination, while the
right figure shows the case with multiple source-receiver combinations.

Saksela et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4915063] Published Online 23 March 2015

J. Acoust. Soc. Am. 137 (4), April 2015 Saksela et al.: Optimal absorption placement EL277

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  47.19.107.202 On: Tue, 09 Jun 2015 12:51:56 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  130.233.216.227 On: Wed, 10 Aug 2016 05:39:09

http://dx.doi.org/10.1121/1.4915063


5. Example

An example is presented illustrating the result of the method when applied to the case
of a large rectangular classroom. The target echogram is roughly defined so as to leave
all the reflections contributing to the increased speech intelligibility, e.g., the important
early reflections7 or the “useful energy,”8 unattenuated, while attenuating the rest of
the reflections as much as possible.

Reflections are calculated up to the 6th degree. Nine source-receiver combina-
tions are used. All the sources (shown by squares in Fig. 2) emit an impulse at t0¼ 0 s,
with a sound pressure level of 80 dB at 1 m from each respective sound source. In this
example, all the reflections are shown summed together into a single echogram. The
summed echogram, without any absorption, is shown as the first plot in Fig. 3. The
second plot of Fig. 3 shows the target echogram, where all the reflections arriving after
t1¼ 60 ms are to be damped for each source-receiver combination. The floor is defined
as fixed with an absorption coefficient of 0.

The least squares problem was solved using the scikit-learn package9 in
Python, which includes a solver for LASSO-type problems. The value b¼ 0.01 was
used for the regularization penalty b krk1.

The resulting echogram is shown in Fig. 3, while the result for the absorption
values is shown in Fig. 4. Black represents an absorption coefficient of 1, while white
represents an absorption coefficient of 0. The absorption coefficients for the discrete
surfaces are very nearly perfectly symmetric with respect to the symmetry of the room.

A speech sample was auralized in the room, for the source-receiver combina-
tion marked by the respective first letters in Fig. 2. Air absorption was not taken into
account. The sample in Mm. 1 demonstrates the result of shuffling the discretized
absorption surfaces in Fig. 4 along the ceiling and walls, as a comparison.

Mm. 1. Shuffled absorption. This is a file of type “wav” (2.5 MB).

Fig. 2. Top and side view of the symmetric setup of the classroom; squares represent sound sources and circles
represent receivers.

Fig. 3. (Color online) The summed echogram for all the source-receiver combinations. Echograms are shown
for the shuffled case together with the target echogram and the result of the calculation. The thick lines in the be-
ginning indicate direct sound.
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The optimized result, with the absorption placed according to Fig. 4, can be
heard in Mm. 2.

Mm. 2. Absorption placed using least squares. This is a file of type “wav” (2.5 MB).

6. Future work

In our current system, each surface can have separate sound power reflection coeffi-
cients for different frequency bands, allowing for multiple target echograms on a range
of frequency bands

G � ½ rf;0 rf;1 � � � rfN � ¼ ½ df;0 df;1 � � � dfN �: (11)

Without additional constraints, Eq. (11) defines a range of separate problems
with independent least squares solutions for each frequency band. This is problematic,
since free variations between adjacent frequency bands result in unrealistic material
properties. One possible solution to this problem is to tie the separate frequency bands
together, by penalizing variations between adjacent frequency bands on a single
surface.10

7. Conclusions

This letter presents a method for optimally assigning absorption values for a discrete
set of surfaces, given a target echogram. In contrast with previous room optimization
literature, we formulate the problem as linear least squares. While the procedure is
able fit an arbitrary target response in the least-squares sense, an example related to
speech intelligibility is given. The result implies that the method is plausible for real
world scenarios, especially in cases where the optimal placement of materials with
broad-band absorption properties is to be chosen.
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