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Multi-Sensor Aboveground Biomass Estimation in the Broadleaved Hyrcanian
Forest of Iran

Estimation multi-capteurs de la biomasse a�erienne de la forêt de feuillus
hyrcanienne d’Iran

Ghasem Ronouda , Parviz Fatehib , Ali A. Darvishsefatb , Erkki Tomppoa,c , Jaan Praksa , and
Michael E. Schaepmand

aDepartment of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Helsinki, 02150, Finland;
bDepartment of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, Iran; cDepartment of Forest
Sciences, University of Helsinki, P.O. Box 27, Helsinki, FI-00014, Finland; dDepartment of Geography, Remote Sensing Laboratories,
University of Zurich, Winterthurerstrasse190, Zurich, 8057, Switzerland

ABSTRACT
In this study, the capability of Landsat-8 (L8), Sentinel-2 (S2), Sentinel-1 (S1), and their combin-
ation was investigated for estimating aboveground biomass (AGB). A pure stand of Fagus
Orientalis located in the Hyrcanian forest of Iran was selected as the study area. The perform-
ance of a parametric approach, i.e., Multiple Linear Regression (MLR) model and non-paramet-
ric approaches, i.e., k-Nearest Neighbor (k-NN), Random Forest (RF), and Support Vector
Regression (SVR), were also evaluated for AGB estimations. Our results indicated that among
S2 metrics, the FAPAR canopy biophysical index and NDVI index based on the red-edge band
(NIR-b8a) have the highest correlation coefficient (r) of 0.420 and 0.417, respectively. The
results of AGB estimation showed that a combination of S2 and S1 datasets using the k-NN
algorithm had the best accuracy (R2 of 0.57 and rRMSE of 14.68%). The best rRMSE using L8, S2,
and S1 datasets was 18.95, 16.99, and 19.17% using k-NN, k-NN, and MLR algorithms, respect-
ively. The combination of L8 with S1 dataset also improved the rRMSE relative to L8 and S1
separately by 0.96 and 1.18%, respectively. We concluded that the combination of optical data
(L8 or S2) with SAR data (S1) improves the broadleaved Hyrcanian AGB estimation.

RÉSUMÉ

Dans cette �etude, la capacit�e de Landsat-8 (L8), Sentinel-2 (S2), Sentinel-1 (S1) et leur combi-
naison ont �et�e �etudi�ees pour estimer la biomasse a�erienne (AGB). Un peuplement pur de
Fagus Orientalis situ�e dans la forêt hyrcanienne d’Iran a �et�e choisi comme zone d’�etude. Le
rendement d’une approche param�etrique, c’est-�a-dire, le mod�ele de r�egression lin�eaire mul-
tiple (MLR) et les approches non param�etriques, c’est-�a-dire, k-Nearest Neighbor (k-NN),
Random Forest (RF) et Support Vector Regression (SVR), ont �et�e �evalu�es pour les estimations de
la biomasse. Nos r�esultats indiquent que parmi les mesures S2, l’indice biophysique de la ca-
nop�ee FAPAR et l’indice NDVI bas�e sur la bande red-edge (NIR-b8a) ont les coefficients de
corr�elation les plus �elev�es (r) soit 0,420 et 0,417 respectivement. Les r�esultats de l’estimation
de l’AGB montrent qu’une combinaison des donn�ees S2 et S1 utilisant l’algorithme k-NN
donne la meilleure pr�ecision (R2 de 0,57 et rRMSE de 14,68%). Le meilleur rRMSE en utilisant
les ensembles de donn�ees L8, S2 et S1 �etait de 18,95%, 16,99% et 19,17% en utilisant respec-
tivement les algorithmes k-NN, k-NN et MLR. La combinaison des ensembles de donn�ees L8
et S1 a �egalement am�elior�e le rRMSE de 0,96% et 1,18% par rapport aux donn�ees L8 et
S1 s�epar�ement. En conclusion, la combinaison des donn�ees optiques (L8 ou S2) avec les
donn�ees SAR (S1) am�eliore l’estimation de l’AGB de la forêt de feuillus hyrcanienne.
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Introduction

Forests contain 80% of carbon stocks in terrestrial
ecosystems (Wani et al. 2015). Forests play a crucial

role in carbon sequestration and mitigating the impact
of climate change (Olson et al. 1983). Forest above-
ground biomass (AGB) is the main pool of total
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biomass in a forested area. It is also used as an indica-
tor to monitor forest health (Su et al. 2020; Pandey
et al. 2019; Chen et al. 2018; Brown et al. 1997). An
accurate AGB estimation at different spatial and tem-
poral scales is essential for reducing uncertainties in
the terrestrial carbon budget; also, it provides critical
information for forest management planning (Pan
et al. 2011). Although field measurement provides the
most accurate AGB information, it is destructive,
costly, and time-consuming. Also, due to limited
accessibility from terrain features, field measurements
may be limited in application (Wu et al. 2016).
Integration of field measurement and remote sensing
data is an alternative approach for AGB estimation
over large areas with a reliable accuracy (Kumar and
Mutanga 2017; Zhao et al. 2016).

Advances in remote sensing technology offer new
opportunities to quantitatively estimate the forest
attributes, i.e., AGB using Light Detection and
Ranging (LiDAR), Synthetic Aperture Radar (SAR),
and optical remotely sensed data. The sole use of
optical and SAR data or a combination of both data-
sets has been frequently used for forest structural pre-
diction (Lu et al. 2016). In addition, the different
modeling approaches, including parametric and non-
parametric algorithms, have been assessed. The main
findings can be summarized as (1) the combination of
optical and SAR datasets improved the performance
of AGB estimations and, (2) non-parametric
approaches were more accurate for AGB estimation
than parametric approaches (Poorazimy et al. 2020;
Chen et al. 2018; Mura et al. 2018; Ghosh and Behera
2018; Pandit et al. 2018; Castillo et al. 2017; Chrysafis
et al. 2017; Poorazimy et al. 2017; Vafaei et al. 2017;
Fuchs et al. 2009). Although many studies have
addressed forest AGB estimation, accurate estimation
is still challenging (Poorazimy et al. 2020; Astola et al.
2019; Moradi et al. 2018; Motlagh et al. 2018; Ronoud
and Darvishsefat 2018; Korhonen et al. 2017;
Fern�andez-Manso et al. 2016; Immitzer et al. 2016;
Yadav and Nandy 2015; Amini Baneh 2013; Wijaya
et al. 2010; Khorrami et al. 2008; Hall et al. 2006; Lu
2005; Zheng et al. 2004).

The freely available satellite data such as Landsat
and Sentinel have increased the necessity for more
studies on the estimation of forest biophysical attrib-
utes. Landsat-8 (L8), launched in 2013, provides more
accurate radiometric and spectral images than the pre-
vious Landsat TM and ETMþ sensors (Zhu et al.
2019). Sentinel-2A and Sentinel-2B were launched in
2015 and 2017, respectively. Sentinel-2 (S2) acquires
images from the terrestrial ecosystems with a five-day

temporal resolution and a swath width of 290-km
(Drusch et al. 2012). Its Multi-Spectral Imager (MSI)
sensor offers 13 spectral bands with a spatial reso-
lution of 10–60m. In addition to temporal resolution
and the ability in multi-purposes applications, S2 pro-
vides three novel spectral bands in the red-edge region
placed at 705, 740, and 780-nm at 20-m spatial reso-
lution; thus, it may increase the accuracy of forest bio-
physical parameters estimation (Sentinel-2_Team
2015; Delegido et al. 2011). Due to the red-edge spec-
tral bands, S2 data can be compared to other com-
mercial satellites such as Worldview-2 and RapidEye.
Therefore, they are valuable for assessing and moni-
toring of forested areas (Pandit et al. 2018).
Polarimetric acquisitions, wide-area coverage, and
shorter revisit times are among unique SAR data spec-
ifications and play an important role in AGB estima-
tion (Poorazimy et al. 2020; Periasamy 2018; Laurin
et al. 2018; McNairn and Shang 2016). Sentinel-1A
and Sentinel-1B were among SAR satellites launched
in 2014 and 2016. Sentinel-1 (S1) has a C-band
(5.405GHz) and spatial and temporal resolution of
5� 20-m and 12 days, respectively (Sentinel-1_Team
2013). S1 operates with two polarization channels of
VV and VH and has been used for AGB estimation
(Kumar et al. 2019; Navarro et al. 2019; Berninger
et al. 2018; Ghosh and Behera 2018; Huang et al.
2018; Laurin et al. 2018; Periasamy 2018; Omar et al.
2017). It is essential to mention that the long-wave-
length SAR data are more sensitive to AGB (Ouchi
2013). However, these data are not freely available.
Hence, many attempts have been made to predict
AGB based on the short wavelength SAR data, i.e.,
S1 imagery.

In addition to freely remotely sensed datasets that
can be used for AGB estimation, a comparison
scheme on the performance of each parametric and
non-parametric modeling approaches can enroute to
accurate AGB estimation. Because each of the predic-
tion algorithms for example parametric multiple linear
regression (MLR), and non-parametric k-Nearest
Neighbor (k-NN), Random Forest (RF) and Support
Vector Regression (SVR) have their own region of
best performance. So, the results are specific to each
study area.

Hyrcanian forests of Iran are distributed along the
Caspian Sea and the northern slopes of the Alborz
mountains. These forests are remnants of the
Pleistocene period and play an important role in mul-
tiple aspects, including biodiversity, commercial prod-
ucts, and climate change (Marvi Mohadjer 2007).
Much attention has been given to quantify Hyrcanian
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forests using remote sensing data. However, the cap-
ability of SAR data in these forests has not been well
established, and only a few studies exist using optical
data. Besides that, investigating multi-source remotely
sensed data for Hyrcanian forests has emerged in
recent years as a promising scheme to estimate forest
AGB. The objectives of this study are to (1) evaluate
the capability of L8, S2, S1 and their combination for
forest AGB estimation in the Hyrcanian forests, and
(2) compare the performance of different AGB esti-
mation approaches, including a parametric approach
(i.e., MLR), and non-parametric approaches (i.e., k-
NN, RF, and SVR).

Materials and methods

Study area

The study area is the Kheyruod research forest, which
is located in the Hyrcanian forests, North of Iran. The
Kheyruod forest research station was established in
1967 and is managed by the Department of Forest
and Forest Economics, University of Tehran. It has an
8000-ha area and situated between Longitude
51�.320–51�.430 E, and Latitudes 36�.27–36�.400 N. The
kheyruod forest research consist of seven management
districts. Figure 1 shows the distribution of the field
plots over the Gorazbon and Namkhaneh districts.
The elevation of the selected area ranges from 1000-m
to 1500-m a.s.l. According to Nowshahr synoptic sta-
tion, the mean annual precipitation is 1300-mm. The
dominant species include Fagus Orientalis, Carpinus
Betulus, Acer sp., and Alnus Subcordata.

Field data

A nondestructive sampling method was conducted to
estimate AGB in the field. Based on a typology map,
we applied a stratified random sampling approach
across the study area. We measured 65 field sample
plots with an area of 2025-m2 (45m� 45 m) in beech
dominant tree stands (i.e., stands with beech fraction
more than 80%). Field sampling was performed in
August 2014 (Figure 1). On each plot, tree species and
diameter at breast height (DBH) were recorded. All
trees with DBH larger than 7.5-cm were considered.

AGB estimation

The volume of each individual tree was calculated
using a Tariff table. The Tariff table was developed
for Gorazbon and Namkhaneh forest districts to pre-
dict tree volume based on DBH attribute by the
Forestry and Forest Economics Department,
University of Tehran. Tree biomass was calculated
using equation (1) (Enayati 2011; Brown and Lugo
1984).

AGB ¼ V �WCD (1)

where AGB is aboveground tree biomass (Mg.ha�1), V
is the volume of a tree derived from the Tariff table, and
WCD is wood-critical density. The value of 0.56Mg/m3

was used for Fagus Orientalis as wood critical density
(Tarmian et al. 2009). Individual tree biomass was
summed up to calculate plot-level AGB (Mg�ha�1). The
field data were split randomly into a training dataset
(i.e., 70% of the field sample plots) and a validation
dataset (i.e., 30% of the field sample plots). Plot level

Figure 1. Study area in Iran and the distribution of field plots (red dots) in the Gorazbon and Namkhaneh districts.
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AGB for training and validation datasets are summar-
ized in Table 1.

Remote sensing data

Three remote sensing datasets, including L8, S2, and
S1, were used for Hyrcanian forest AGB estimation
(Table 2). The L8 data were downloaded from the
United States Geological Survey (USGS) Earth
Explorer data portal (https://earthexplorer.usgs.gov/).
The sentinel data was obtained from the European
Space Agency (ESA) Copernicus Open Access Hub
(https://scihub.copernicus.eu/dhus/#/home). The
Sentinel Application Platform (SNAP) (version. 6)
(http://step.esa.int/main/toolboxes/snap/) and IDRISI
Selva software packages were used for L8 and Sentinel
data processing. The digital topographic maps pro-
vided by the National Cartographic Center (NCC) of
Iran at 1/25,000 scale were used to check the geomet-
ric accuracy of images. The detailed information on
optical and SAR data processing is presented in the
following sections. The spatial resolution of all images
was resampled to 5-m resolution using Nearest
Neighbor interpolation.

Optical data processing

The radiometric quality of data was assessed. S2
Level-1C data were corrected to obtain a level-2A
dataset using the SEN2COR atmospheric processor
(http://step.esa.int/main/third-party-plugins-2/sen2cor/).
In addition to the spectral bands, previous studies rec-
ommended using the transformed procedures to gen-
erate more spectral metrics sensitive to the forest
structural attributes variation, i.e., vegetation indices,
Tasseled Cap transformation (Greenness component)
(Nedkov 2017; Ali Baig et al. 2014), Principle
Component Analysis (PCA), Fusion of spectral bands
with the panchromatic band (applied only to OLI
data), and canopy biophysical and biochemical indices
such as Leaf Area Index (LAI), Leaf Chlorophyll
Content (Cab), Canopy Water Content (CWC) and
Fraction of Absorbed Photosynthetically Active

Radiation (FAPAR) (applied to MSI data) (Table 2).
These mentioned biophysical indices are computed
using PROSAIL radiative transfer model (For detailed
information, please refer to Weiss and Baret 2016;
Jacquemoud et al. 2009). Many studies have shown
the efficiency of these transformed spectral metrics for
vegetation attributes estimation (Liu et al. 2019;
Putzenlechner et al. 2019; Chen et al. 2018; Castillo
et al. 2017; Frampton et al. 2013).

SAR data processing

The Ground Range Detection (GRD) images were
radiometrically calibrated and the values were con-
verted to the Ƴ� backscatter coefficient according to
the local incidence angle (Poorazimy et al. 2017; Tsui
et al. 2012; Kellndorfer et al. 1998). The Refined Lee
filter was applied to reduce the speckle effect. The ter-
rain correction procedure was implemented on all
images and finally inverted to dB using equation (2).

DN dBð Þ ¼ 10 log 10 Nð Þ (2)

where N is the value extracted from the preprocessed
SAR images. Many studies have shown a direct rela-
tionship between polarization channels and vegetation
AGB (Liu et al. 2019; Chen et al. 2018; Castillo et al.
2017). Therefore, we also used VH

VV , VH � VV , VH �
VV , VHþVV

2 and
ffiffiffiffiffiffiffiffi
VH

p � VV as predictor variables
(Table 2).

Correlation analysis and AGB modeling

We used the Pearson correlation analysis to determine
the strength of relationships between AGB and remote
sensing derived metrics. To predict forest AGB
(dependent variable) from remote sensing metrics
(independent variables), parametric and non-paramet-
ric approaches were applied. We used the stepwise
multiple linear regression (MLR) model as the most
common parametric approach (Poorazimy et al. 2020;
Lu et al. 2016; Kumar et al. 2013). In addition, differ-
ent non-parametric approaches, i.e., k-NN (Tomppo
1990; Tomppo and Halme 2004), RF (Breiman 2001),
and SVR (Cortes and Vapnik 1995; Vapnik 1995)
were also assessed. Before implementing the MLR, the
normality assumption of the dataset was checked
using the Kolmogorov–Smirnov Test (Tojal et al.
2019; Kleinbaum et al. 2013). The collinearity was
assessed using the Variance Inflation Factor (VIF) and
Tolerance Index to ensure that the predictors were
not highly correlated (Tojal et al. 2019; Kleinbaum
et al. 2013). We also used the Durbin-Watson statistic
to investigate the residual’s autocorrelation (Tojal

Table 1. Summarized plot level AGB statistics.

Data

Attributes

Minimum
(Mg�ha�1)

Maximum
(Mg�ha�1)

Mean
(Mg�ha�1)

Standard
deviation
(Mg�ha�1)

Train (n¼ 45) 192.49 467.43 293.9 61.09
Validation (n¼ 20) 204.81 432.44 296.42 63.7
All (N¼ 65) 192.5 467.43 294.67 61.4
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Table 2. Satellite imagery acquisition dates and metrics derived from L8, S2, and S1.

Mission
Observation

date Product Predictor variable
Relevant

band/index/channel Description/Resolution

Landsat
8- OLI

August
18, 2014

Multispectral
image Level-1C

Multispectral
Bands

b2 Blue (B) 450–515nm/30m
b3 Green (G) 525–600nm/30m
b4 Red (R) 630–680nm/30m
b5 Near-infrared (NIR) 845–885nm/30m
b6 Shortwave infrared 1 (SWIR1) 1560–1660nm/30m
b7 Shortwave infrared 2 (SWIR2) 2100–2300nm/30m
b8 Panchromatic 500–680nm/15m

Vegetation indices RVI (b5/b4)
NDVI (b5-b4)/(b5þ b4)

Greenness Greenness Greenness
PCA Com1-PCA (b1-b7) First comp. of PCA for all bands

Com1-PCA (b1-b4) First comp. of PCA for bands of 1-4
Com1-PCA (b5-b6) First comp. of PCA for bands of 5-6
Com1-PCA (b6-b7) First comp. of PCA for bands of 6-7

Fusion Fus (b2) Fusion of b2 with b8 bands
Fus (b3) Fusion of b3 with b8 bands
Fus (b4) Fusion of b4 with b8 bands
Fus (b5) Fusion of b5 with b8 bands
Fus (b6) Fusion of b6 with b8 bands
Fus (b7) Fusion of b7 with b8 bands

Sentinel-
2A- MSI

August
26, 2016

Multispectral
image
Level-1C

Multispectral
Bands

b2 Blue (B) 458–523nm/10m
b3 Green (G) 543–578nm/10m
b4 Red (R) 650–680nm/10m
b5 Red-edge 1 (RE1) 698–713nm/20m
b6 Red-edge 2 (RE2) 733–748nm/20m
b7 Red-edge 3 (RE3) 773–793nm/20m
b8 Near infrared (NIR) 785–900nm/10m
b8a Near infrared narrow (NIRn) 855–875nm/20m
b11 Shortwave infrared 1 (SWIR1) 1565–1655nm/20m
b12 Shortwave infrared 2 (SWIR2) 2100–2280nm/20m
LAI Leaf Area Index
Cab Chlorophyll content in the leaf
CWC Canopy water content
FAPAR Fraction of absorbed

photosynthetically active radiation
Vegetation
biophysical variables

FCOVER Fraction of vegetation cover

Vegetation indices DVI (b8-b4)
GEMI (n(1-0.25n)-(b3-0.125/1-b4))
GNDVI (b7-b3)/(b7þ b3)
IPVI (b8/(b8þ b4))
IRECI (b7-b4)/(b5/b6)
MTCI (b6-b5)/(b5-b4)
NDI45 (b5-b4)/(b5þ b4)
PSSRA (b7/b4)
REIP 700þ 40�((((b7þ b4)/2)-b5)/(b6-b5))
RVI (b8/b4)
S2REP 705þ 35�((((b4–b7)/2)- b5)/(b6-b5))
NDVI (b8 and b4) (b8-b4)/(b8þ b4)
NDVI (b8a and b4) (b8a-b4)/(b8aþ b4)
NDVI-b6 (b4-b6)/(b4þ b6)
NDVI-b8a (b4-b8a)/(b4þ b8a)

PCA Com1-PCA (All Bands) First comp. of PCA for all bands
Com1-PCA (All Bands exception of b1,

b9, b10)
First comp. of PCA for all bands

exception of 1,9 and 10 bands
Com1-PCA (b2–b8, b11, b12) First comp. of PCA for bands of 2, 8,

11, and 12)
Greenness Greenness Greenness

Sentinel-1A August
22, 2015

S1A_IW_GRDH Polarization/channel VH Vertical transmit-Horizontal
channel (dB)

VV Vertical transmit-Vertical channel (dB)
Ratiovhvv Cross polarized ratio (VH/VV) (dB)
Diffvhvv Polarisations difference (VH-VV) (dB)
Multvhvv Polarisations multiply (VH�VV) (dB)
Meanvhvv Polarisations mean (VHþ VV)/2 (dB)
Square rootvhvv Polarizations square root

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VH � VVp

) (dB)
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et al. 2019; Kleinbaum et al. 2013). It is important to
mention that only statistically significant predictors
obtained from the Pearson correlation analysis were
used in AGB modeling.

We used four different distance metrics, i.e.,
Euclidean, Euclidean Squared, Mahalanobis, and
Manhattan, for determining the best number of k near-
est neighbors with the k-NN method. In the case of
the RF algorithm, the optimal k predictors were calcu-
lated as a square root of the predictor variables number
±2. Also, the optimal number of decision trees was
determined based on the average squared errors of
training and validation datasets. We considered four
different kernels for the SVR algorithm, including
Linear, Polynomial, Radial Basis Function (RBF), and
Sigmoid. The statistical analysis was implemented using
Statistica (version 10) and SPSS (version 22) software.

Accuracy assessment

The Coefficient of determination (R2), Root Mean
Square Error (RMSE), relative RMSE (rRMSE), and
Akaike Information Criterion (AIC) were used as cri-
teria metrics for selecting the best fitting models for
the validation dataset (Equations 3–6).

r2 ¼
PN

i¼1ðOi � OÞðPi � PÞ
h i2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðOi � O

q
Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðPi � PÞ

q� � (3)

RMSE ¼ N�1
XN
i¼1

ðPi � OiÞ2
" #�0:5

(4)

rRMSE ¼ RMSE

O
� 100 (5)

AIC ¼ Nln RMSEð Þ þ 2t (6)

where N is the number of field data, Oi is the
observed value, Pi is the predicted value, O is the
average of observed values, and t is the number of
predictors in the model. The flowchart of the method-
ology is presented in Figure 2.

Results

Correlation analysis

The applied normality test showed that the data are
normally distributed (p¼ 0.85). The Pearson correl-
ation coefficients computed for AGB and remote sens-
ing derived metrics are provided in Table 3. The most
important metrics to estimate forest AGB were the
first component of Principle Component Analysis
(PCA) using the spectral bands for L8 (r¼ 0.367),
FAPAR for S2 (r¼ 0.42), and VH Ƴ� backscatter

coefficient (r¼-0.351) for S1. It can be seen from
Table 3 that S2 metrics showed the highest correlation
for AGB estimates, and as we will explain in the next
section, S2 was the best dataset in both individual and
combination forms.

AGB modeling using MLR algorithm

The best models obtained from remotely sensed
derived metrics and stepwise MLR are shown in
Table 4. A combination of S2 and S1 datasets, i.e.,
FAPAR canopy biophysical index and VH Ƴ� back-
scatter coefficient as predictors, explained more vari-
ability in forest AGB (R2¼0.34 and rRMSE ¼ 17%).
Figure 3 shows that the residual graph is normally
distributed. A combination of L8 and S1, and S2 data-
sets were in the second and third order of accuracy
with rRMSE 53.33 and 54.54%, respectively.

AGB modeling using non-parametric approaches

The results of k-NN for five sources of remote sensing
datasets are summarized in Table 5. S2 dataset with
rRMSE 16.99% showed higher potential for AGB esti-
mation than S1 dataset with rRMSE 19.37%. The
incorporation of S2 and S1 datasets performed better
than other datasets. Among distance metrics,
Manhattan produced more accurate results (i.e., R2 of
0.57 and an rRMSE of 14.68%).

The RF algorithm gained better results again for a
combination of the S2 and S1 datasets (Table 6). The
final RF model consists of 8 predictors with 500 trees
that showed the highest predictive accuracy (R2¼0.5
and rRMSE ¼ 18.6%). Unlike our expectations, the S1
dataset had lower performance in comparison with
other datasets for AGB estimation with R2¼0.126 and
rRMSE 20.02%.

The SVR models showed that a combination of S2
and S1 datasets had better performance than other
datasets (Table 7). The selected SVR model with a sig-
moid kernel explained 17.307% of forest AGB vari-
ation. The low R2¼0.052 for L8 showed no
meaningful relationship for AGB estimates, while the
S2 dataset had a second order of accuracy with
rRMSE 17.93% among other datasets.

In general, the integration of the S2 and S1 datasets
with the k-NN algorithm produced the best results for
AGB estimation in our study area. As expected, S2
was more complementary with S1 rather than L8. The
scatter plot of predicted versus measured AGB using
the best combination dataset has been reported in
Figure 4. As it is observed, the fitted model had more
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Figure 2. The flowchart of applied methodology to predict forest AGB.

Table 3. Correlation analysis between AGB and remote sensing derived metrics.

Satellite Variable
Correlation

coefficient Sig. (r) Satellite Variable
Correlation coefficient Sig.

(r)

Landsat-8 b2 0.001 ns Sentinel-2 Cab 0.388��
b3 0.276� CWC 0.231 ns

b4 0.197 ns FAPAR 0.42��
b5 0.361�� FCOVER 0.403��
b6 0.349�� DVI 0.388��
b7 0.298� GEMI 0.395��
b8 0.183 ns GNDVI 0.366��
VI 0.328�� IPVI 0.336��
NDVI 0.34�� IRECI 0.374��
Greenness 0.345�� MTCI 0.217 ns

Com1-PCA(b1-b7) 0.367�� NDI45 0.067 ns

Com1-PCA(b1-b4) 0.125 ns PSSRA 0.294�
Com1-PCA(b5-b6) 0.365�� REIP 0.259�
Com1-PCA(b6-b7) 0.342�� RVI 0.322��
Fus (b2) �0.087 ns S2REP 0.259�
Fus (b3) 0.021 ns NDVI (b8 and b4) 0.336��
Fus (b4) �0.018 ns NDVI (b8a and b4) 0.328��
Fus (b5) 0.329� Com1-PCA (All Bands) 0.38��
Fus (b6) 0.148 ns Com1-PCA (All Bands except b1, b9, b10) 0.381��
Fus (b7) 0.055 ns Com1-PCA (b2-b8, b11, b12) 0.38��

Sentinel-2 b2 0.156 ns NDVI-b6 0.38��
b3 0.22 ns NDVI-b8a 0.417��
b4 0.283� Greenness 0.394��
b5 0.194 ns Sentinel-1 VH �0.351��
b6 0.334�� VV �0.295�
b7 0.382�� Ratvhvv �0.157 ns

b8 0.395�� Diffvhvv 0.009 ns

b8a 0.395�� Multvhvv 0.341��
b11 0.275� Meanvhvv �0.345��
b12 0.182 ns Square rootvhvv �0.336��
LAI 0.384��

ns: non-significant correlation; �significant at 95% confidence interval; ��significant at 99% confidence interval.
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ability to predict AGB until 200 trees/ha. The gener-
ated AGB map using the best model has shown in
Figure 5.

Discussion

The relationships between AGB and remote
sensing derived metrics

L8 dataset showed that the first component of PCA
applied to spectral bands (b1–b7) is most relevant to
forest AGB estimation than other L8 variables with
r¼ 0.367. Then, the first PCA component using bands
5-6, band-5 (NIR), band-6 (SWIR1), and Greenness
component were highly correlated with AGB, respect-
ively. Data fusion between band-5 (NIR) and panchro-
matic band significantly improved AGB estimation,
but other fused bands did not show a high correl-
ation. For the S2 dataset, the highest correlation

observed for FAPAR biophysical index (r¼ 0.42), fol-
lowing by NDVI (based on the red-edge spectral band
(NIR-b8a) and FCOVER canopy biophysical index
with the correlation of 0.417 and 0.403, respectively.
In several studies, the efficiency of canopy biophysical
indices derived from the S2 dataset to predict vegeta-
tion attributes has been proved (Liu et al. 2019; Chen
et al. 2018; Castillo et al. 2017). Also, we found that
S2 spectral bands are positively correlated with AGB.
Among them, a high correlation was obtained for
band-8 (785–900-nm) and Band-8a (855–875-nm)
with a correlation of 0.395. Three red-edge spectral
bands acquired by S2 seem promising data to estimate
vegetation properties. The first red-edge band (b5) did
not show any significant correlation with AGB. This
is in accordance with Korhonen et al. (2017) for LAI
estimation and in contrast to Chrysafis et al. (2017)
for AGB estimation. Red band (b4, r¼0.283) and

Table 4. Selected models to estimate forest AGB based on stepwise MLR algorithm and multi-sensor datasets.

Dataset Model
Durbin–Watson

statistic VIF statistic
Tolerance
statistic

RMSE
(Mg.ha�1) rRMSE (%) R2 AIC

Landsat-8 AGB ¼ 0.152 b7-924.819 1.578 1 1 64.77 21.85 0.009 85.4
(AdjR2¼0.137)

Sentinel-2 AGB ¼ 903.607 FAPAR � 288.152 1.715 1 1 54.54 18.4 0.28 81.9
(AdjR2¼0.126)

Sentinel-1 AGB¼-15.802VH þ 52.138 1.556 1 1 56.83 19.17 0.17 82.8
(AdjR2¼0.082)

Landsat-8 and Sentinel-1 AGB ¼ 0.052 Com1-PCA (b6–b7) 1.747 1 1 53.33 17.99 0.28 81.5
�14.434 VH � 681.647
(AdjR2¼0.199)

Sentinel-2 and Sentinel-1 AGB ¼ 926.213 FAPAR-16.356VH � 552.956 1.998 1 1 50.4 17 0.34 80.4
(AdjR2¼0.221)

Figure 3. Histogram and normal P–P plot of residuals for normality assessment.
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second and third red-edge bands (b6, r¼ 0.334 and
b7, r¼ 0.382) had positive correlation with AGB.
According to obtained results, there is a need for
more investigation about this phenomenon. The sensi-
tivity of vegetation indices to AGB changes was
observed in our study (Table 3), which is in line with
the results of other studies (Liu et al. 2019; Pham and
Brabyn 2017; Sousa et al. 2015; Zhu and Liu 2015).
Also, Vafaei et al. (2017) reported a lower RMSE for
AGB estimation using vegetation indices than ALOS-2
data in the Hyrcanian forest.

Most of the metrics derived from optical remotely
sensed datasets showed significantly correlation with

forest AGB in these broadleaved temperature forests.
This means that with increasing forest AGB value, the
reflectance is also increased. Because of the high can-
opy density and multi-storied Fagetum community in
our study area, there was not any reflectance from the
ground and floor vegetation. So, this can be a reason
for our significant results. Our results were in the
range of some other studies (Yadav and Nandy 2015;
Amini Baneh 2013; Lu 2005).

The correlation analysis for the S1 dataset also
showed a significant negative correlation between AGB
and VH and VV Ƴ� backscatter coefficients (i.e., with
the correlation of �0.351 and �0.295, respectively).

Table 5. The results of the k-NN algorithm for AGB estimation using multi-sources remote sens-
ing datasets.
Dataset Metrics RMSE(Mg.ha�1) rRMSE (%) (R2) (AIC)

Landsat-8 Euclidean 58.84 19.85 0.109 83.5
Euclidean Squared 59.46 20.06 0.083 83.7
Chebychev 59.24 19.98 0.104 83.6
Manhatan 56.18 18.95 0.184 82.5

Sentinel-2 Euclidean 54.84 18.5 0.356 82
Euclidean Squared 53.29 17.98 0.353 81.5
Chebychev 56.93 19.21 0.287 82.8
Manhatan 50.37 16.99 0.361 80.3

Sentinel-1 Euclidean 57.78 19.49 0.184 83.1
Euclidean Squared 57.75 19.48 0.182 83.1
Chebychev 57.42 19.37 0.192 83
Manhatan 57.84 19.51 0.184 83.1

Landsat-8 and Sentinel-1 Euclidean 55.64 18.77 0.312 82.4
Euclidean Squared 55.73 18.81 0.274 82.4
Chebychev 60.41 20.38 0.06 84
Manhatan 54.14 18.26 0.258 81.8

Sentinel-2 and Sentinel-1 Euclidean 52.46 17.5 0.468 81.2
Euclidean Squared 48.93 16.5 0.51 79.8
Chebychev 57.66 19.45 0.221 83.1
Manhatan 43.5 14.68 0.57 77.5

Table 6. RF algorithm performance to estimate AGB using multi-sources remote sensing datasets.
Dataset Optimal number of trees Number of predictor (k) RMSE(Mg.hafl1) rRMSE (%) (R2) (AIC)

Landsat-8 500 3 58.8 19.86 0.139 83.5
500 4 58.7 19.8 0.135 83.4
500 5 58.03 19.57 0.159 83.2
500 6 58.03 19.58 0.186 83.2
500 7 59.73 20.15 0.083 83.7

Sentinel-2 450 4 56.72 19.13 0.406 82.76
450 5 56.95 19.21 0.424 82.8
450 6 56.06 18.91 0.46 82.5
450 7 56.42 19.03 0.418 82.6
450 8 56.44 19.03 0.417 82.6

Sentinel-1 250 1 59.38 20.03 0.146 83.6
250 2 59.35 20.02 0.126 83.6
250 3 59.41 20.04 0.117 83.6
250 4 59.54 20.08 0.109 83.7
250 5 59.6 20.1 0.115 83.7

Landsat-8 and Sentinel-1 500 3 56.84 19.17 0.349 82.8
500 4 57.47 19.39 0.23 83
500 5 57.36 19.35 0.27 82.9
500 6 56.97 19.22 0.3 82.8
500 7 57.28 19.32 0.253 82.9

Sentinel-2 and Sentinel-1 500 4 56.16 18.94 0.51 52.5
500 5 55.94 18.87 0.54 82.4
500 6 56.31 19 0.51 82.6
500 7 55.74 18.8 0.47 82.4
500 8 55.12 18.6 0.5 89.19
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Such significant relationships between the polarimetric
channels (i.e., VH and VV) and AGB have been
reported in other studies (Kumar et al. 2019; Omar
et al. 2017; Suzuki et al. 2013). Van Pham et al. (2019)
showed that metrics computed by mathematical oper-
ation on different polarization channels were important
for AGB estimation. We also found that multiplication,

average, and root of multiplied polarimetric channels
with the correlation of 0.341, �0.345, and �0.336,
respectively produced more relevant metrics than VV
Ƴ� backscatter coefficient for AGB estimation. In con-
trast, we did not observe any significant relationships
between forest AGB and two metrics of ratio and differ-
ence between two polarimetric channels.

Table 7. SVR algorithm performance to estimate AGB using multi-sources remote sensing datasets.
Dataset Kernel RMSE(Mg.ha�1) rRMSE (%) (R2) (AIC)

Landsat-8 Linear 72.05 24.03 0.0002 81.3
Polynomial 64.59 21.79 0.052 85.3
Radial basis Function kernel (RBF) 65.89 22.23 0.0001 85.7
Sigmoid 74.59 25.16 0.00001 88.2

Sentinel-2 Linear 59.43 20.05 0.17 83.7
Polynomial 57.45 19.38 0.34 83
Radial basis function kernel (RBF) 53.15 17.93 0.31 81.4
Sigmoid 89.51 30.2 0.025 91.8

Sentinel-1 Linear – – – –
Polynomial 60.26 20.33 0.061 83.9
Radial basis function kernel (RBF) 58.34 19.64 0.128 83.3
Sigmoid 59.2 19.97 0.106 83.6

Landsat-8 and Sentinel-1 Linear 62.02 20.93 0.063 84.5
Polynomial 59.52 20.08 0.095 83.7
Radial basis function kernel (RBF) 56.14 18.94 0.228 82.5
Sigmoid 55.96 18.88 0.249 82.5

Sentinel-2 and Sentinel-1 Linear 52.22 17.62 0.306 81.1
Polynomial 54.37 18.342 0.348 81.9
Radial basis function kernel (RBF) 53.41 18.02 0.27 81.5
Sigmoid 51.3 17.307 0.368 80.7

Figure 4. The estimated versus measured AGB based on S2 and S1 dataset (k-NN algorithm).
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The performance of MLR and non-parametric
approaches for AGB estimation

The best MLR model with rRMSE ¼ 17% was based
on a combination of S2 and S1 datasets, in which the

FAPAR canopy biophysical index and VH Ƴ� back-
scatter coefficient were selected as predictors. In terms
of accuracy for AGB estimation, the second and third
models were a combination of L8 and S1, and S2

Figure 6. The performance of each dataset with different modeling algorithm for AGB estimation.

Figure 5. Predicted AGB over the study area using S2 and S1 dataset and k-NN algorithm.
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datasets, respectively. For L8 and S1 combination, the
first component of PCA transformation applied to
bands of 5–6 and VH Ƴ� backscatter coefficient were
selected as predictors and yielded an rRMSE of 18%.
For the S2 dataset, the metric of FAPAR was the most
effective variable for AGB estimation and achieved an
rRMSE of 18.4%. Parametric models might fail to pro-
vide good performance for estimating forest structural
attributes because of their restricted assumptions. In
practice, the relationships between AGB and remote
sensing metrics are very complex, which resulted in
low accuracy for parametric models. In contrast, non-
parametric approaches have a predefined simple data
structure and, with their flexibility, showed more
potential for AGB estimation (Lu et al. 2016). We
found a better performance for non-parametric
approaches compared to the parametric MLR
approach. Our results showed that the k-NN algo-
rithm using a combination of S2 and S1 datasets pro-
duced the most accurate results than the other
datasets and algorithms. The observed R2 and rRMSE
were 0.57 and 14.68%, respectively. Our results
showed that the k-NN method improved the AGB
rRMSE relative to SVR, RF, and MLR by 2.62, 3.92,
and 2.32%. Chirici et al. (2016) summarized the
results of 148 studies from 26 different countries in
which forest structure attributes have been estimated
using remote sensing datasets. They showed that the
k-NN algorithm was a reliable approach for predicting
forest structural attributes at different scales (i.e., local
to global). Our k-NN related results are in accordance
with findings of previous studies (Persson et al. 2021;
Poorazimy et al. 2020; Mura et al. 2018; Bilous et al.
2017; Chirici et al. 2016; McRoberts et al. 2015; Yadav
and Nandy 2015; Beaudoin et al. 2014; Gagliasso et al.
2014; Jung et al. 2013; Tian et al. 2014; Tomppo et al.
2008; McRoberts et al. 2007; Maselli et al. 2005;
Tomppo and Halme 2004). Application of RF algo-
rithm for AGB estimation had a better result for the
combination of S2 and S1 dataset with R2 ¼ 0.5 while
it was worst for S1 dataset. However, there are many
successful reports that show the performance of the
RF algorithm for AGB estimation within different bio-
physical conditions (Liu et al. 2019; Ghosh and
Behera 2018; Pandit et al. 2018; Chrysafis et al. 2017;
Pflugmacher et al. 2014; Tanase et al. 2014; Latifi
et al. 2010). Also, we found an rRMSE of 17.93% for
AGB estimation using the S2 dataset and SVR algo-
rithms. Similar results have been reported by Navarro
et al. (2019), Chen et al. (2018), L�opez-Serrano et al.
(2016), Mountrakis et al. (2011), and Camps-Valls
(2009). One of the advantages of the SVR algorithm is

its capacity to deal with a low number of field sample
plots (Lu et al. 2016). Also, SVR can predict the non-
linear relationships between dependent and independ-
ent variables. Vafaei et al. (2017) have reported an R2

of 0.61 for AGB estimation using the SVR algorithm
in a small part of the Hyrcanian forest. They used the
S2 dataset, and their reported accuracy is similar to
our results. The performance of different approaches
and datasets for AGB modeling is shown in Figure 6.
It demonstrates that the k-NN algorithm is well suited
for forest AGB prediction compared to other algo-
rithms. The lowest rRMSE was obtained using a com-
bination of S2 and S1 datasets. Our results provide
supporting evidence that a combination of active and
passive datasets offers the optimal capability and sen-
sitivity to model structural attributes, particularly over
complex forest ecosystems (Fatehi et al. 2015). It is
worth mentioning that there was a two-year time lag
between S2 data and field sample plot collection while
the S2 dataset showed its notable performance. In
addition, significant revisit time of the S2 dataset may
have a great potential for monitoring structural devel-
opments. As Mura et al. (2018) reported a better per-
formance for S2 compared to the Landsat-8 and
RapidEye. Chrysafis et al. (2017) and Astola et al.
(2019) also confirmed that S2 was more successful
than L8 for predicting structural attributes.

S1 dataset has been used more in the sparse forests
with low biomass and pastures (Castillo et al. 2017;
Sinha et al. 2015). In our study area, the forest has a
complex structure and high density of biomass, which
may negatively affect SAR data’s sensitivity. One of
the reasons for weak results obtained from SAR data
is the saturation of the C-band in high biomass levels.
Our minimum value of AGB is close to 200Mg.ha�1.
Although the non-parametric approaches performed
better than MLR for the S1 dataset, the uncertainty is
still high.

In our study, some uncertainties have been
included in the AGB estimation procedure. First, the
limited penetration into forest vertical structure
caused some errors because most of the AGB concen-
tration is in the trunk of trees (Lu et al. 2016). The
temporal distance between remote sensing images and
field data collection is the second influencing factor in
our results. There was a two-year time lag between S2
data and field measurement sample plots. Third, we
did not have access to the species-specific allometric
equations for our study area. Therefore, there are
uncertainties with using the general equation.
Furthermore, the possible errors in the volume table
could affect the results. Moreover, the GPS positional
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errors have a substantial impact on the results
obtained from remote sensing studies. Finally, all met-
rics derived from spectral reflectance are affected by
the atmosphere, soil moisture, phenology, and vegeta-
tion growth (Lu et al. 2016). All metrics place
emphasis on the necessity of uncertainty analyses
before formulating any final conclusion.

According to previous studies and our results, the
L8, S2, and S1 datasets individually are not good
enough for estimating forest AGB over the pure Fagus
Orientalis at the plot level. The results support Moradi
et al. (2018), which also stated that Landsat-8 datasets
for AGB estimating in Carpinus Betulus stands in
Hyrcanian forests have limitations. However, some
studies have reported an acceptable performance of
these datasets in the mixed forest stands (Amini
Baneh 2013; Rostami Andargoli 2008). The results
present the differences in the type of sensors, sam-
pling method, size and number of field sample plots,
tree species, and structure of forest stands play
important roles in the comparison of results.
Therefore, there is a need for more research over the
temperate broad-leaved forests. In accordance with
past literature, the integration of different remote
sensing datasets can improve the precision of results
(Zhang et al. 2019; Vafaei et al. 2017; Chang and
Shoshany 2016; Sinha et al. 2016; Shen et al. 2016;
Laurin et al. 2013) and this strategy is recommended
for future studies in Hyrcanian mixed forests of Iran.

Conclusion

Forest ecosystems play a crucial role in mitigating and
adapting to climate change as they are the largest ter-
restrial carbon sink. Conversely, climate change can
drive forest ecosystem loss and therefore there is a
need for accurate and timely forest ecosystems moni-
toring. In this study, we evaluated the capability of
spectral and transformed bands of L8, S2, and S1 for
AGB estimation. The limited ability of optical and
short-wavelength SAR data to penetrate the vertical
structure of forests resulted in low sensitivity for for-
est AGB estimation. In comparison, the combination
of optical and SAR datasets improved the forest AGB
estimation accuracy when they were used individually.
In this regard, S2 was more complementary than L8
when used in combination with S1. Very likely, it is
because of a higher spatial resolution of S2 and the
presence of red-edge bands and derived canopy bio-
physical indices. By combining remotely sensed data-
sets, the selected algorithm should be able to
accommodate the different characteristics of multi-

source data for AGB estimation. In addition, the
relationship between AGB and remote sensing-based
metrics is often complex, so comparative analyses to
select the most accurate prediction technique is a
common and necessary approach. We found that the
k-NN algorithm has better performance than MLR,
RF, and SVR algorithms. It is worth mentioning that
each of the prediction algorithms has its own region
of best performance, and the results are specific to
each study area. Still, any generalization should be
performed with caution and not without local valid-
ation. The use of LiDAR data and long-wavelength
SAR data is recommended for future studies because
they penetrate the vertical structure of the forest,
which includes the most relevant component for AGB
estimation. Also, providing species-specific allometric
equations for AGB estimating is essential to predict
accurate forest AGB.
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