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ABSTRACT
Voluntary fire departments have limited human and material re-
sources. Machine learning aided prediction of fire department op-
eration details can benefit their resource planning and distribution.
While there is previous work on predicting certain aspects of op-
erations within a given operation category, operation categories
themselves have not been predicted yet. In this paper we propose
an approach to fire department operation category prediction based
on location, time, and weather information, and compare the perfor-
mance of multiple machine learning models with cross validation.
To evaluate our approach, we use two years of fire department data
from Upper Austria, featuring 16.827 individual operations, and
predict its major three operation categories. Preliminary results
indicate a prediction accuracy of 61%. While this performance is
already noticeably better than uninformed prediction (34% accu-
racy), we intend to further reduce the prediction error utilizing
more sophisticated features and models.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; Visualization; • Computing methodologies→ Machine
learning.
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1 INTRODUCTION
Around 20.000 operations have been carried out by voluntary fire
departments in Upper Austria in 2017 and 2018. Since both human
and material resources of voluntary fire departments are limited,
distribution of their resources is critical. Machine learning has
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been used to assist fire departments by predicting the targets the
departments are concerned with, such as forest fires [2, 25, 28],
the number of fire trucks needed for operations [8, 9], the risk of
building fires happening [19, 20], or the chances a traffic incident
occurs [10, 24, 33].

To further assist fire departments in their resource planning we
extend existing prediction approaches by adding a fire department
operation category prediction. Given that an operation happens
or is predicted to happen, then our system can predict the corre-
sponding operation category. This allows for more precise resource
planning and allocation through prediction cascades: a resource
requirement prediction model could use the operation category
probability as feature. Alternatively, resource prediction could be
done by individual models, where each predicts resources for ex-
actly the assessed operation category.

In this paper we propose an approach to predict the three major
categories of fire department operation categories in Upper Austria.
In our evaluation we utilize a dataset of fire department operations
from 2017-2018, where each operation contains multiple features,
on which we train and compare multiple machine learning models
with cross-validation. Summarizing, the contributions in this paper
are:

• Wepropose an approach to predict the threemajor categories
of fire department operation categories in Upper Austria
based on time, location, and weather data.

• We give insight into the correlation between weather data
features and fire department operation categories.

• We evaluate our approach with a dataset af 16.827 fire de-
partment operations from 2017-2018, and compare the per-
formance of multiple machine learning models with cross-
validation.

2 RELATEDWORK
Previous work on machine learning aided prediction for fire de-
pertment related operations has mainly investigated fire and traffic
incident prediction, as well as incident duration prediction. In this
section we highlight previous approaches in those three areas that
are related to or important for our work. Previous work has also
investigated further areas that are less strongly related to fire depart-
ment operations, which we do not discuss in detail in this section.
Examples include general emergency incident prediction [22, 26]
or thunderstorm incident prediction [14, 16, 23].

2.1 Fire incident prediction
Fire incident prediction has mostly focused on the amount of fire
trucks required for an incident, as well as on predicting risk of
wildfire and building fires. The number of fire trucks required per
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region and firestation on one day in Amsterdam-Amstelland is pre-
dicted in [8]. The authors use historical fire department operation
data combined with weather features, like wind speed, tempera-
ture, rainfall, and visibility. They evaluate four different regression
models where an ensemble averaging (EA) model performs best
with a mean absolute percentage error (MAPE) of 0.1853 A simi-
lar approach is presented in [9], in which the authors predict the
number of firetrucks needed by vehicle type based on demographic
features, like population density, in addition to weather features.
In their evaluation a gradient boosting model performs best with a
mean squared error (MSE) of 0.0953. Firebird [19] is a framework
for predicting building fire risk in Atlanta based on fire incident
data, property fire risk inspection data, and structural data of prop-
erties (e.g. age, number of floors, and condition). A random forest
(RF) model performs best with an area under curve (AUC) value of
0.8246. Building upon the Firebird approach, [20] propose another
framework for building fire risk prediction in Pittsburgh, Pennsyl-
vania. In their evaluation an XGBoost model achieves a Kappa value
of 0.37. [28] uses remote sensing in combination with a support
vector machine (SVM) and artificial neural network (ANN) model
to predict wildfires, achieving an accuracy of 97.84% for the SVM
and 98.32% for the ANN. [25] map wildfires to a 10×10 km grid
and use SVM models to predict wildfire risk for each tile on the
grid based on environmental factors, achieving an accuracy of 96%.
Other wildfire prediction approaches include [27], [7] and [6], using
SVM, RF, and genetic programming models.

2.2 Traffic incident prediction
In traffic accident prediction, many approaches focus on predicting
if accidents will happen, or on the amount of accidents that will
happen. A popular approach for data collection for traffic incident
prediction are loop detectors. Loop detectors use induction loops
embedded in the ground to detect vehicles entering or passing
through an area (e.g. a freeway segment or a traffic light). The
prediction models used for these approaches are SVM [17, 32],
ANN [32], RF [1], and k-Nearest-Neighbor (kNN) [18] models. [4]
predict traffic incidents in the state of Iowa based on traffic data,
road information, and weather data using a RF model. They thereby
achieve an accuracy of 65%. Similarly, the approach in [33] predicts
traffic incidents in Iowa based on rainfall data, road network in-
formation, and demographic data. It achieves an AUC of 0.9612
with an ANN and SVM model. [10] proposes a hybrid approach
that combines unsupervised and supervised deep learning with
traffic accident data, road pavement factors, and environmental
characteristics to predict traffic incidents in Tennessee. It achieves
a mean absolute error (MAE) of 0.660. Traffic incidents are mapped
to a 1×1 km grid in [24] to predict incident risks for each tile in the
grid. Their recurrent neural network (RNN) model achieves a root
mean squared error (RMSE) of 0.034.

2.3 Incident duration prediction
To predict traffic incident duration, [31] uses information about
physical traits of incidents, response and traffic measurements
taken, and the types of incidents. Incidents comprise the groups
"stopped vehicle", "lost load", and "accident" since important vari-
ables for predicting the target seem to differ between those groups.

Prediction is done by different partial least squares regression mod-
els with the best model achieving an accuracy of 71.30%. ANN
models are used in [11] to predict traffic incident duration on a
freeway in Guangzhou, China. The authors do not report the re-
gression error directly, but a low correlation of 0.8535 between their
training- and test-set prediction target values. Based on this they
argue that the amount of randomness in their traffic incident data
should disallow improving upon their results. Other approaches to
incident duration prediction include [3], which proposes the use
of hazard-based models for incident duration prediction (MAPE
43.7%) and compares their performance to kNN models (MAPE
41.1%). Futhermore, [5] uses Naïve Bayesian classifiers for incident
duration prediction (56% accuracy) and compares the results to a
linear regression model (45% accuracy). More thorough compar-
isons between multiple incident duration prediction approaches
and different models are given in [30] and [15].

Summarizing, there is numerous previous work to predict if
traffic or fire incidents will happen, to predict the amount of such
incidents, or the resources required for an incident. However, re-
search on predicting fire department operation categories seems
sparse. We are not aware of any approach that – given that an
incident happens or is predicted to happen– would predict the cor-
responding fire department operation category. We argue that such
an approach would allow for subsequently more precisely predict-
ing the required resources for the incident, and consequently aid
fire departments in their resource planning and allocation.

3 DATASET DESCRIPTION
Our dataset has been collected via the publicly available API1 of
the Oberoesterreichischer Landes-Feuerwehrverband (OOELFV),
which is the fire department umbrella organization in Upper Aus-
tria. The API allows for querying fire department operations for
past three months. The complete dataset has been collected over
nearly 2.5 years, from 10/2016 to 02/2019, and contains 25.136 fire
department operations in Upper Austria. To include data from only
fully covered year cycles in our analysis, we chose to limit our
data to the 21.419 samples that are within the years 2017 and 2018.
Each fire department operation in that dataset contains information
about the location, start and end time and date, alarm level, as well
as category and type of the operation. The category is one of five
primary categories (German original categories in brackets): fire
(Brand), technical (Technisch), storm (Unwetter), person (Person),
misc. (Sonstige). The type is one of 9 secondary types and one of 46
secondary subtypes, which specify more fine granular categories
for the operation. Within those categories and types we focus on
predicting the primary category of an operation. Those primary
categories are imbalanced, with fire operations making up about
42% of all samples, while 27% and 14% of operations belong to the
categories technical and storm (Fig. 1(a)). Operations seem to be
more frequent in the morning and evening hours (Fig. 1(c)), on
Mondays and Fridays (Fig. 1(b)), as well as in summer and winter
(Fig. 1(d)).

1OOELFV intranet: https://intranet.ooelfv.at/.
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Figure 1: Fire department operation frequencies over different features in our dataset.

Final
model

Final Cross
Validation

Data with 
weather features

Weather Data
Adding

Data with 
49 features

Feature 
Adding

Normalized 
data

Data
Normalization

PCA trans-
formed data

PCA
Dimenstionality

Reduction

Best hyperparameters
for models

Hyperparameter
Gridseach

Important 
Features

Feature
Selection

Input
Data

Figure 2: Overview of the processing chain employed in our fire department operation category prediction.

4 APPROACH
Our approach to predict the fire department operation category
consists of preprocessing, including adding weather data, feature
selection, adding further features, and data normalization, as well
as dimensionality reduction and a model tuning with hyperpa-
rameter grid-search (Fig. 2). In this section we describe the details
of those steps. The analysis and evaluation is done with Python-
based Jupyter [12] and Scikit-learn [21] for model training and
pre-processing.

4.1 Weather Data Addition
For our approach we focus on the three major fire department op-
eration categories in the dataset, namely fire, technical, and storm,
which have a combined total of 18.055 operation samples. For each
sample we try to acquire weather data via DarkSky2, based on its
start time and geolocation. We add the following weather infor-
mation: precipitation probability, precipitation intensity, tempera-
ture, apparent temperature, dew point, humidity, pressure, wind
speed, wind bearing, wind gust, cloud cover, UV index, and visibil-
ity. Weather data was fully unavailable for 1.228 samples (6.8% of
the dataset), which we exclude from our analysis as a consequence.
The remaining 16.827 operation samples form the basis for our
evaluation. For parts of those samples, weather information was
only partially available. We use kNN feature imputation [29] to
approximate the missing features for those samples (number of im-
puted samples in brackets): precipitation intensity and probability
(both 5458), pressure (5462), wind speed and bearing (both 294),
wind gust (5324), cloud cover (2440), UV index (1529), and visibility
(2461).

4.2 Feature Selection
To get insight to which features might be important for our clas-
sification task we perform data visualization and a visual feature
analysis. We thereby observe a slight difference in the spread of
2DarkSky: https://darksky.net/dev.

(a) Over pressure and dew point (b) Over temperature and humidity

Figure 3: Distribution of operation category in weather data
feature space.

samples of our categorical target variable with multiple features.
Those include, for example, pressure and dew point, where storm
operation frequency seems to be higher with lower air pressure
and higher dew point (Fig. 3(a)). They also include temperature and
humidity, where the share of technical operations is higher with
lower temperature (Fig. 3(b)). While the visible differences in the
distribution patterns seem small, they are supported by intuition,
and the accumulated differences over all feature space dimensions
might indicate predictive power for our target variable.

On top of the obtained features we apply four different feature
selection methods [13]. Those include selectKbest, which removes
all but the best k features, measured by their ANOVA-f values,
as well as wrapper methods [13], which determine feature impor-
tance based on model coefficients. Additionally we train a decision
tree and random forest model with our data, then use the resulting
model structure to determine the corresponding feature importance.
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After comparing the results of the four feature selection approaches,
we decide to use the 8 most important numerical weather features:
temperature in degree Celsius and Kelvin, the apparent temper-
ature in Kelvin, pressure, dew point, wind speed, wind gust, and
precipitation intensity.

4.3 Feature Addition
Based on the selected 8 features we add further feature representa-
tions to the dataset. Those include their squared, logarithmic, and
square-rooted forms as suggested in [13]. Furthermore, since our
features also comprise cyclic features like hour-of-day, month-of-
year, or day-of-week, we also add a sine and cosine representation
of those to the dataset. We thereby map one full feature cycle to
orthogonal numeric sine and cosine representations with the sin
and cos trigonometric functions in their corresponding unit circle.
At the example of hour-of-day, midnight would map to a sine and
cosine representation of (0,1), 6 am to a represenation of (1,0), 12 am
to (0,-1), and 6 pm to (-1,0). This transformation preserves the un-
derlying information of the cyclic feature and represents them in
two numeric values, while avoiding a huge value change when one
cycle ends and the next cycle begins, e.g. hour 23 to hour 0 in the
hour-of-day example.

4.4 Feature Normalization and Reduction
For normalization we use a simple center-scale method that nor-
malizes features to mean = 0 and σ = 1. We further utilize PCA for
dimensionality reduction The number of extracted PC components
to be used is determined by the hyperparameter grid-search of the
model evaluation, which in our evaluation was determined to be 49.
Since many machine learning algorithms cannot handle categorical
variables, like the operation category in our case, we encode it with
a label encoder [13] that assigns an integer value [0,n − 1] to each
of the n categories. After feature extraction and preprocessing, our
dataset consists of 16.827 fire department operation samples, each
comprising a total of 49 features.

4.5 Recognition and Results
We use the resulting 16.827 fire department operation samples, each
containing 49 features, to train and evaluate our operation cate-
gory prediction. We utilize and compare different machine learning
algorithms, including kNN, Linear Discriminant Analysis (LDA),
DT, RF, and SVM with an Radial Basis Function (RBF) kernel. We
compare those to multiple uninformed baseline models, including
a stratified model (predictions based on target class distribution), a
most-frequent model (always predicts the most frequently occur-
ring class), a uniform model (predicts uniformly random), and a
prior model (predictions based on prior distribution of classes). The
baseline model that performs best is the stratified model, which in
cross-validation achieves a mean prediction performance of 34%
accuracy. In comparison, our models achieve noticeably better cross-
validation results (Fig. 4), where the SVM and RF models perform
nearly twice as well, both with a mean accuracy of 61% (σ = 2.2%).

4.6 Discussion
While the models evaluated in our approach noticeably outperform
the corresponding baseline models, overall performance still seems
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Figure 4: Grid-search cross-validation results for all models.
Error bars depict the standard deviation.

improvable. The current prediction errors could be due to several
reasons. First, it might be that the employed features and models are
not yet powerful enough. That our models outperform uninformed
prediction indicates that the data contains information about our
prediction target, the operation category. Still, we deem it likely
that the information contained in the current features still is limited.
In this case, the performance will likely improve by adding further
information with relation to our prediction target to the dataset, like
traffic data features, demographic features, or by transforming the
contained information with further and more sophisticated feature
engineering. It might also be that the relations between features and
our prediction target are too complex for our currently employed
modes. In this case, employing more complex models, like Deep
Neural Networks, might also improve the prediction performance.
We assume that the current result is caused less by this than by
the previous point. Second, data imputation for missing features
might also have negative influence on prediction performance. This
could be improved by utilizing a complete dataset without missing
values, which might be available from official government sources
like the Zentralanstalt für Meteorologie und Geodynamik (ZAMG)
in Austria.

To summarize, we deem the current performance of our approach
to be too low to be employed for fire department operation category
prediction in production environments. However, our first results
seem promising, and we argue that our approach serves as basis
for further research towards this goal. Moreover, we are confident
that by increasing the information contained in the dataset (both
in features as well as in completeness), and by employing more
sophisticated predictionmodels, future research can improve results
towards an applicable fire department category prediction.

5 CONCLUSION
In this paper we have presented an approach to predict fire depart-
ment operation categories in Upper Austria, based on location, time,
and weather data. Our processing chain comprises data and feature
addition, data normalization, dimensionality reduction with PCA,
as well as model training and selection with a hyper-parameter
grid-search and cross-validation. For our evaluation we utilize two
years of fire department operations data from Upper Austria. After
processing, we use 16.827 operation samples with 49 features each
in our evaluation. There we consider multiple machine learning
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models, including kNN, LDA, DT, RF, and SVM, and compare their
prediction performance with multiple uninformed baseline models.

Data visualization shows relations between weather data and
operation categories, indicating potential in their predictive power.
Our models outperform the baseline models. Our SVM and RF
models achieve an accuracy of 61%, which is nearly twice the per-
formance of the best baseline model (34% accuracy). Still, we deem
the current performance to be insufficient for reliable operation
category prediction in a production environment. We attribute the
current prediction performance to multiple factors and shortcom-
ings, including improvable amount of information contained in the
dataset, insufficiently strong prediction models, as well as informa-
tion loss due to data imputation for missing values. However, we
also argue that those first results seem promising for improving
the fire department operation category prediction in future work,
among others by addressing the mentioned shortcomings. For fu-
ture work based on our approach and results we would suggest
more sophisticated features in the dataset as well as feature engi-
neering, including, for example, traffic data, demographic data, and
alike. We further suggest to consider stronger machine learning
models, such as DNNs, to model the more complex relationships of
those features for prediction.
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