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We propose an optomechanical system to quantify the net force on a strand of cleaved silica optical fiber in situ as
the laser light is being guided through it. Four strands of the fiber were bonded to both sides of a macroscopic
oscillator, whose movements were accurately monitored by a Michelson interferometer. The laser light was
propagating with variable optical powers and frequency modulations. Experimentally, we discovered that the
driving force for the oscillator consisted of not only the optical force of the light exiting from the cleaved facets
but also the tension along the fiber induced by the light guided therewithin. The net driving force was determined
only by the optical power, refractive index of the fiber, and the speed of light, which pinpoints its fundamental
origin. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.433995

1. INTRODUCTION

In optomechanics, the motion of mechanical resonators is typ-
ically controlled by using laser light reflected from a mirror
[1–7]. Therefore, the optical force that drives these mechanical
resonators is the well-known radiation pressure of light incident
from free space. However, light can also exert forces while it is
propagating inside materials, and in particular, when it is cross-
ing material interfaces. Mostly, these forms of optical forces are
studied in liquids by observing the deformation or movement
of liquid surfaces under optical excitation [8–13]. There also
exist measurements of the steady-state radiation pressure on
mirrors immersed in liquids [14,15]. Experiments on the forces
of light in lossless solids have been very scarce and rather quali-
tative or hindered by the lossy nature of solids [16–23]. From
literature, one can conclude that previous works have used nei-
ther mechanical resonators nor optical fibers to quantitatively
measure optical forces inside materials. This is surprising and
calls for a change since optical forces have an important role,
e.g., in whispering gallery mode resonators [24,25] and as a
source of cross talk in multi-core fibers [26].

Among solid dielectric media, silica optical fiber is consid-
ered to be de facto the lowest-loss medium with the highest
uniformity along its length [27], yet the forces of light carried
by the optical fiber have not been quantified in experiments yet.
In this work, we propose a macroscopic oscillator platform to
interferometrically quantify the forces of light, which is being

guided through a silica optical fiber for the first time to the best
knowledge of the authors. We used cleaved optical fiber strands
bonded to a macroscopic oscillator to make the light propagat-
ing through the optical fiber the only driving force of the
oscillator. Our platform is schematically illustrated in Fig. 1.
A 3D printed mass was suspended by a spring at the center
and, on both sides, the cleaved optical fibers were glued. Our
experiment leaves no room for different interpretations of the
origin of the oscillator signal but the forces of light propagating
through the optical fibers. In particular, heating effects, whose
consequences in many prior cases have dominated over the op-
tical momentum transfer, are negligible, because light propagat-
ing inside a commercial multimode optical fiber of less than a
meter experiences a loss less than 0.002 dB. Thermal effects are
also hindered by the large thermal time constant of the macro-
scopic oscillator [4,28].

A 3D printed mass was designed to be held by a spring at
the center and balanced by optical fiber strands glued at both
ends, as illustrated in Fig. 1(a). A laser was split into four
strands of commercial 0.22 NA multimode optical fibers
(Thorlabs, FG105LCA) with equal optical power using a
1 × 4 splitter. The optical fibers, with cross section as in
Fig. 1(b), were cleaved at 90 deg and aligned vertically down-
ward. To confirm the universality of our results, we studied two
oscillators with different masses and damping constants, one
driven at the wavelength of 808 nm and the other at 915 nm.
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The longitudinal displacements of the oscillators were detected
by a Michelson interferometer as in Fig. 1(c) using a He–Ne
laser and a mirror attached at the bottom of the mass. Shifts of
the interference fringes were recorded with a CMOS camera at
a frame rate of 200 frames per second for various incident laser
powers and modulation frequencies. A more complete descrip-
tion of the experiment is presented in Appendix A.

2. OPTICAL FORCES

The optical forces induced by the light guided in the optical
fiber can be divided into the force at the air–silica interface
of the optical fiber facet and the tension along the fiber strands
as schematically shown by F interface and F tension in Fig. 1(a).
The force F on an object is equal to the temporal change of
its momentum p as F � dp∕dt. We study the momentum
transfer of light at the end facet of optical fibers, where the
light experiences the air–fiber core interface. The momentum
of light in the optical fiber and the air is denoted by p and p0,
respectively. Then, by summing over the four fibers of Fig. 1(a),
we obtain the magnitude of the total interface force from the
conservation law of momentum as

F interface �
�
T −

p
p0

�1� R�
�
P
c
: (1)

Positive and negative values of F interface indicate whether
the force is upward or downward in Fig. 1(a), respectively,
and P � P

4
i�1 Pi is the sum of the incident optical powers

of the four fibers. The power reflection coefficient R and
the power transmission coefficient T � 1 − R are equal in
the four fibers. For the cleaved fiber facet without any thin-
film coating, R and T are given by Fresnel formulas as

R � ��n − 1�∕�n� 1��2 and T � 4n∕�n� 1�2. Here n is the
refractive index of the fiber core, and we set the refractive index
of air to unity.

When light propagates along a bent fiber, the optical force
pushes the fiber walls unequally at different sides, and the net
momentum flux of light changes its direction. This is a direct
consequence of the momentum conservation law. The optical
force on the fiber walls points in the direction of the positive
curvature, which is always normal to the fiber as indicated
by the small arrows in Fig. 1(a). From the elasticity theory
(see Appendix A), it follows that this normal force gives rise
to tension in the longitudinal direction of the fiber. The net
tension of the four fibers is given by

F tension �
X4
i�1

Z
Ai

�T zz,i − T
�0�
zz,i�dxdy �

p
p0

�1� R�P
c
: (2)

Here T zz,i is the diagonal component of the stress tensor of
the fiber i in the vertical direction when the light is guided
through the fiber, T �0�

zz,i is the stress tensor component in the
absence of the light, and Ai is the total cross-sectional area of
the fiber i on the side of the oscillator.

From the optical interface force in Eq. (1) and the tension
along fibers in Eq. (2), the net time-dependent driving force
of the mechanical oscillator is given by

F � F interface � F tension �
TP
c

: (3)

The net force in Eq. (3) is interestingly independent of the
value of the momentum of light inside the fiber since the
dependence on p is canceled out. It is, however, seen that this
net force depends only on the optical power, refractive index of

Fig. 1. (a) Mechanical oscillator was driven by optical interface forces F interface and tensions F tension of the four fibers, where the laser was propa-
gating. These forces, illustrated for one of the fibers, were modulated by varying the laser intensity. The laser generated by a multimode laser diode
was split into the four fibers by a 1 × 4 splitter, and the laser exited from the ends of the four fibers, which were all bonded to the oscillator. The
wavelength was either at 808 nm or 915 nm. (b) The cross section of the 0.22 NA multimode fiber (Thorlabs, FG105LCA). (c) The nanoscale
oscillation was detected by the Michelson interferometer utilizing a separate He–Ne laser. See Appendix A for a more detailed description of the
experimental setup.
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the fiber, and the speed of light, which pinpoints its fundamen-
tal origin.

3. MECHANICAL OSCILLATOR

For the mechanical oscillator used to detect the net laser-
induced force, we write Newton’s equation of motion as [29]

d2z
dt2

� 2ζω0

dz
dt

� ω2
0z �

F
m
, (4)

where m is the effective mass of the oscillator, ω0 is the un-
damped resonance frequency, ζ is the damping coefficient, and
F is the net driving force in Eq. (3). The mechanical Q factor
is defined in terms of the damping coefficient as Q � 1∕�2ζ�.
As the mass of the vertically aligned spring is not negligible,
the effective mass of the oscillator is given by Rayleigh’s value
m � m0 � ms∕3, where m0 is the mass of the oscillator and
ms is the mass of the spring [30].

The net force due to a laser beam harmonically modulated
with angular frequency ω is denoted by F � F 0 cos

2�12ωt� �
1
2 F 0�1� cos�ωt��, where F 0 is the peak-to-peak force ampli-
tude. The steady-state solution of Eq. (4) is given by z�t� �
z�ω� cos�ωt � φ� � F 0∕�2mω2

0�, where the displacement
amplitude is

z�ω� � F 0∕m
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ωω0ζ�2 � �ω2 − ω2

0�2
p (5)

and φ � arctan�2ωω0ζ∕�ω2 − ω2
0�� ∈ �−π; 0�. The resonance

frequency of the underdamped oscillator with ζ < 1∕
ffiffiffi
2

p

is ωr � ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ζ2

p
. At ωr , the displacement amplitude

of the oscillator in Eq. (5) obtains its peak value,
z0 � F 0∕�4mω2

0ζ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
�. By measuring the peak value of

the displacement amplitude, one then obtains the driving
force amplitude as

F 0 � 4mω2
0ζ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
z0: (6)

Here ω0 and ζ can be accurately determined from the
position and width of the mechanical resonance peak, and
m can be obtained from the oscillator, spring, and fiber masses
measured with a digital scale [28]. For our heavier oscillator,
driven with the 808 nm laser, m � �18.363� 0.001� g, while
for the lighter oscillator, driven with the 915 nm laser,
m � �16.485� 0.001� g.

4. RESULTS AND DISCUSSION

The refractive index of the pure silica core of the fiber is
n � 1.453 at 808 nm and n � 1.452 at 915 nm [31]. Then,
at normal incidence, the transmission coefficient for the end
interface of the fiber is T � 0.9659 at 808 nm and T �
0.9660 at 915 nm. For the 0.22 NAmultimode fiber, the maxi-
mum angle of incidence in the fiber is near 8.7 deg for both
wavelengths. The non-normal angles of incidence are ac-
counted for in the analysis, even though their effect is small.

Figure 2 presents the experimental results. In Fig. 2(a), the
measured displacement amplitude of the first oscillator driven
at 808 nm is plotted as a function of the modulation frequency
of the driving laser field. Figure 2(b) presents the same plot for
the second oscillator driven at 915 nm. The net peak-to-peak

power amplitude of the four fibers used in these plots is
P0 � 5.125 W. The measurement time is an integer multiple
of the modulation period close to 1000 s, and the ensemble
averaging is made over 10 or more measurements. As the error
of the displacement amplitude, we use the standard deviation of
the ensemble average.

In Figs. 2(a) and 2(b), one can see that the fitted harmonic
oscillator response function of Eq. (5) accurately describes the
experimental results of both oscillators. One can also observe
the mechanical resonance peak in the noise spectrum that ap-
pears below the fitted response function. In the presence of
photothermal effects, the response function would be modified
from the ideal harmonic oscillator form as described, e.g., in
Refs. [4,32]. In accordance with the results for the free space
laser driven oscillator in Ref. [28], the photothermal effects are
determined to be negligible for our macroscopic oscillator.

The fitting of the harmonic oscillator response function
in the experimental data of the first oscillator in Fig. 2(a) gives
the undamped frequency of the oscillator equal to f 0 �
�1.622411� 0.000088�Hz. The damping constant and the
Q factor are found to be ζ � 0.002485� 0.000063 and
Q � 201.2� 5.1. The errors indicate the 68.27% confidence
intervals of the fitting process correspond to one standard
deviation of normally distributed quantities. The correspond-
ing fitting using the experimental data of the second oscillator
in Fig. 2(b) gives the undamped oscillator frequency equal to
f 0 � �1.851847� 0.000075�Hz and the damping constant
equal to ζ � 0.003690� 0.000051, which corresponds
to Q � 135.5� 1.9.

Figures 2(c) and 2(d) present the measured peak-to-peak
force amplitudes of the two oscillators following Eq. (6)
as a function of the peak-to-peak laser power amplitude.
The slope of the regression line of the first oscillator is dF 0∕
dP0 � �3.28� 0.10� × 10−9 s=m � �0.982� 0.034�∕c. The
relative error is 3.5%, from which 2.1% comes from the deter-
mination of the damping constant and 1.4% from the peak
displacement amplitude. For the second oscillator, dF 0∕dP0 �
�3.21� 0.10� × 10−9 s=m � �0.963� 0.030�∕c. The relative
error is 3.2%, from which 1.2% comes from the determination
of the damping constant and 2.0% from the peak displacement
amplitude. The slope of the theoretical line from Eq. (3) is
T ∕c � 3.22 × 10−9 s=m � 0.966∕c. Thus, the experimental
results of both oscillators agree with the theory within the
experimental accuracy. Figures 2(c) and 2(d) also show that
the results cannot be explained solely in terms of the interface
forces of the conventional Minkowski (p � np0) and Abraham
(p � p0∕n) momentum models with Eq. (1) [33–50]. Thus,
accounting for the tension in Eq. (2) is necessary, in which case
both conventional models give the same net force. The appear-
ance of more than one force component in experimental setups
can partly explain how the Abraham–Minkowski controversy
has continued to this day.

To the best knowledge of the authors, the only previous
measurement of forces of light exiting from a solid medium
is in Ref. [18]. In their measurements, She et al. were able
to detect the recoil of a thin silica filament at the end where
the light exited, but the results were not quantitatively accurate,
and their interpretation has raised subsequent debates [22,23].
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In constrast, the present work can explain the observations
of She et al. independently of the Abraham and Minkowski
momentum models by including the tension in the fiber in-
duced by the light guided therewithin. A small bending of
the filament before its end due to any asymmetry causes the
light to create tension, which results in the net pushing effect
on the end facet of the filament.

For a more detailed investigation of the refractive index
dependence of the total oscillator force, the present experiment
could be carried out by using optical fibers with different re-
fractive indices. The refractive index would need to deviate
from that of fused silica by an amount that would change
the experimental results sufficiently compared to the error bars
of the experiment. Presently, there are no such solid-core opti-
cal fibers available that would also have low loss. The experi-
ment could also be carried out by using a hollow-core photonic
crystal fiber.

5. CONCLUSION

In summary, we have demonstrated that optical forces of light
in an optical fiber can be quantitatively measured in situ while
the fiber guides the light. We proposed an optomechanical sys-
tem where a macroscopic mechanical oscillator was driven only

by the optical force in the fiber and its nanoscopic displace-
ments were monitored interferometrically. The light guided
along an optical fiber provided two forces, the interface force
at the end facet and the tension on a curvature. The theoretical
model agreed with the experimental measurements with an ac-
curacy of 3.5%. Our work can pave the way to more extensive
use of novel mechanical resonator geometries for accurately
detecting optical forces in solids, e.g., by utilizing whispering
gallery modes [25].

APPENDIX A

1. Fabrication and Design of the Mechanical
Oscillator
The mechanical oscillator masses were fabricated by 3D print-
ing using the fused deposition modeling (FDM) technique.
The printing material was polylactic acid, commonly known
as PLA. As illustrated in Fig. 1(a), the designs of the oscillator
masses included a mirror mount, two sidearms to which the
optical fibers were bonded, and a hook connecting the oscillator
mass to the mechanical extension spring, which carried the
weight of the oscillator mass. The total width of the oscillator
between the attachment points of the optical fibers was about
9.0 cm. The rest masses of the first and second mechanical
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Fig. 2. Displacement amplitude of the mechanical oscillator is plotted as a function of the laser modulation frequency (a) for the first oscillator at
the wavelength of 808 nm and (b) for the second oscillator at the wavelength of 915 nm. The net peak-to-peak power amplitude of the driving field
in the four fibers together is P0 � 5.125 W in both cases. The solid line represents the averaged frequency spectrum measured with a single
modulation frequency. The peak at each modulation frequency is marked with a red dot. The oscillator response function is fitted and shown
by the dashed line. The corresponding peak-to-peak force amplitudes of the two oscillators are plotted in (c) and (d) as a function of the
peak-to-peak laser power amplitude of the fibers. The solid lines represent the regression lines and the dashed lines show the net theoretical force
in Eq. (3). The dashed-dotted and dotted lines are the results of the Minkowski (FM ,0) and Abraham (FA,0) momentum models, respectively, using
Eq. (1) with the corresponding momentum of light and excluding the tension in Eq. (2).
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oscillators were 15.561 g and 13.683 g, respectively. These
masses include 6.715 g of the mass of the mirror (Thorlabs,
BB1-E02) that was mounted on the bottom of the oscillator.

2. Driving Laser and the Optical Fiber
The driving laser beam at 808 nmwas generated by a multimode
laser diode module (Box Optronics, BLD-F808-06-22N0), and
the laser beam at 915 nm was generated by a multimode laser
diode module (Box Optronics, BLD-F915-10-22N0). The laser
beams were coupled to a commercial low-loss 0.22 NA silica core
multimode fiber (Thorlabs, FG105LCA). The core diameter
of the fiber was �105� 2� μm, the cladding diameter was
�125� 1� μm, and the coating diameter was �250� 10� μm.
The intensity of the driving laser beamwas modulated by a wave-
form generator (Agilent, 33120A) connected to a laser driver
(Arroyo Instruments, LaserPak 485-08-05). The temperature
of the laser was controlled with a temperature controller
(Arroyo Instruments, TECPak 585-04-08). Before the mechani-
cal oscillator, the laser beam was split into four beams by a fiber
optic 1 × 4 splitter (Lfiber, IRBC-105-1-4-L1-N). Above the
mechanical oscillator, the four fibers were mounted on an iron
bar so that there was 3.0 mm loose in the fibers above the points
where they were attached to the oscillator. This is described
in more detail below. Due to the smallness of the absorption
coefficient of the optical fiber and the large time constant of
the macroscopic oscillator, photothermal effects had negligible
influence on our experimental results.

3. Measurement of the Laser Power
The laser power was measured at the ends of the optical fibers
by using an optical power meter (Thorlabs, PM400) with an
integrating sphere sensor (Thorlabs, S145C). The nonzero re-
flectivity (R � 0.0341 at 808 nm and R � 0.0340 at 915 nm)
and the corresponding nonunity transmissivity (T � 0.9659 at
808 nm and T � 0.9660 at 915 nm) of the fiber ends were
accounted for in the analysis. The optical powers propagating
through all four fibers after the fiber optic splitter were mea-
sured to be equal within 1.0%. Thus, the laser-induced forces
on the two sides of the oscillator were well balanced. The used
peak-to-peak amplitude of the sinusoidal modulation was 1.0%
smaller in comparison with the otherwise stationary laser beam.
Thus, for example, for a stationary beam with a power of
5.000 W, after adding the modulation and accounting for
the nonunity transmissivity of the fiber ends, the peak-to-peak
power incident to the fiber ends becomes 5.125 W. This is
the value used in the analysis corresponding to the results in
Figs. 2(a) and 2(b).

4. Mechanical Extension Springs
In the experimental setup, the mechanical oscillator was hang-
ing on three hard extension springs used in series to obtain a
relatively small total spring constant. The springs were made
of music wire, and they had crossover-type hooks at their ends.
The upper and lower springs were of equal type (Acxess Spring,
PE016-312-129000-MW-2500-MH-N-IN) having a mass of
ms,1 � 3.025 g and a reported extension rate of ks,1 � 5 N=m.
The middle spring (Acxess Spring, PE016-312-90250-MW-
1880-MH-N-IN) had a mass of ms,2 � 2.221 g and a reported
extension rate of ks,2 � 7 N=m. The total mass of the four op-
tical fibers parallel to the springs between the holder and the

oscillator was 0.136 g, and the total mass of the springs and the
fibers was equal to ms � 8.407 g. Both the extension rates
above and the masses of the vertically aligned springs and fibers
contribute to the total spring constant of the oscillator. In the
analysis of our experimental results, we used the effective mass,
undamped angular frequency, and damping constant as the
only oscillator parameters. The total spring constant of the
system can be determined from the experimental results as
k � mω2

0. This gives for the first oscillator the total spring
constant of k � 1.908 N=m, and for the second oscillator we
obtain k � 2.232 N=m.

5. Acoustic and Seismic Isolation
The experimental setup was mounted on an actively damped
optical table for isolating it against acoustic and seismic vibra-
tions. The mechanical oscillator part of the setup was also pro-
tected against air flows by covering it with plastic walls. To
minimize any disturbances in the surroundings of the labora-
tory, the measurements were carried out at nighttime.

6. Michelson Interferometer
The motion of the mechanical oscillator was detected by a
Michelson interferometer. The interferometer was used to
monitor the motion of the oscillator by setting the oscillator
mirror in one of the two interferometer arms. The arm length
of the interferometer was about 10 cm. One of the interferom-
eter arm mirrors was motorized, and it could be used for tuning
the interference fringe spacing remotely. However, the fringe
spacing was adjusted only before each measurement, and it
was not actively changed during the experiments. All mirrors
in the interferometer arms (Thorlabs, BB1-E02) had a reflec-
tivity of more than 99%. The interferometer laser was a 5 mW
continuous-wave TEM00 He–Ne laser (JDSU, 1125P) operat-
ing at 632.8 nm. Before the beam splitter, the interferometer
laser power was reduced by a factor of 1/10 by a neutral density
filter (Thorlabs, NE10A). The motion of the interference
fringes during the experiment was recorded by a CMOS camera
(Edmund Optics, EO-0413C) that was connected to a com-
puter. The frame size recorded was 600 × 30 pixels, and the
recording was made with a frame rate of 200 frames per second.

7. Tracking the Motion of Interference Fringes
The horizontal movement of the interference fringes was
tracked from the recorded video files by monitoring the posi-
tions of the intensity maxima and minima in each frame. The
fringes are illustrated in the computer screen of Fig. 1(c). When
the fringes move a distance that is equal to the distance between
two intensity maxima, the mechanical oscillator moves half
a wavelength in the vertical direction. For efficient analysis
of millions of frames in total, we used a C�� code using
the Open Computer Vision Library (OpenCV). The analysis
followed the same approach as in Ref. [28]. The mechanical
oscillator, which was hanging on a spring, could move in all
three dimensions, but the interferometer was the most sensitive
for the vertical motion of the oscillator that was of our interest.
If the oscillator was disturbed by a large amount, the scale of the
interference fringes could vary, and the fringes could also rotate.
These effects were, however, negligibly small when external
noise sources were minimized during measurement conditions.

2020 Vol. 9, No. 10 / October 2021 / Photonics Research Research Article



8. Calculation of the Tension along the Fiber
This section describes how the elasticity theory calculations are
used to verify the accuracy of the analytic result in Eq. (2). The
optical force on the fiber walls due to the small bending of the
fiber follows directly from the conservation law of momentum.
It depends on the local curvature of the fiber and can be used in
the elasticity theory simulations of the behavior of the fiber.
When x � g�z� is the curve of the fiber, the optical force
density due to the bending of the fiber averaged over the
cross-sectional area of the fiber is equal to f �z� � �p∕p0�P∕
�cA�g 0 0�z�∕�g 0�z�2 � 1�2�g 0�z�ẑ − x̂�, where p is the momen-
tum of light in the fiber, p0 is the momentum of light in vac-
uum, c is the speed of light in vacuum, A is the cross-sectional
area of the fiber, and x̂ and ẑ are unit vectors along the x and
z axes, respectively. The optical power P in the force density
formula above accounts for both the incident and reflected
powers. At the end points of the fiber, z1 � 0 and z2 � h,
the curve of the fiber satisfies g 0�z1� � g 0�z2� � 0, which
means that the ends of the fiber between the mechanical oscil-
lator and the fiber mount above it are vertically aligned.
We have parameterized the physical path of the fiber as
g�z�� a

2s f�1� sin�2πh z − π
2��� s�1� sin�πh z − π

2��g, where a and
h are physical distance parameters illustrated in Fig. 3, and
s is a parameter that controls the amount of loose in the
fiber. The length of the fiber is L � R

h
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 0�z�2 � 1

p
dz, and

the loose in the fiber is d � L − L0, where L0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � h2

p
is the direct distance between the fiber end points. The exper-
imental horizontal and vertical distance parameters are
a � 2.54 cm and h � 31.0 cm. The parameter s is determined
so that the loose in the fiber is d � 3.0 mm, which gives
s � 1.35.

We used the force density above in the elasticity theory sim-
ulations performed by using COMSOL Multiphysics simula-
tion tool with realistic dimensions and material parameters of
the silica fiber. The material parameters used in the simulations
include the mass density of ρ � 2200 kg=m3 [51], Young’s
modulus of Y � 70 GPa, Poisson’s ratio of ν � 0.15 [52], and
the refractive indices of the pure silica core of n � 1.453 at
808 nm and n � 1.452 at 915 nm [31]. The power reflection
and transmission coefficients corresponding to these refractive
indices are R � 0.0341 and T � 0.9659 at 808 nm and
R � 0.0340 and T � 0.9660 at 915 nm.

The simulation results of the total tension force of all four
fibers above the oscillator as a function of the total incident
optical power propagating through the fibers at the wavelength
of 808 nm are illustrated in Fig. 4. The tension is calculated
at the fiber end attached to the oscillator, i.e., at the origin
of Fig. 3. In the simulations, we have used the Minkowski
momentum in the optical force density with p∕p0 � n, but
it only scales both the simulation result and the theoretical line,
so the conclusions on the equality of Eq. (2) also apply to other
values of p∕p0. It is seen that the simulation results hit the theo-
retical line on the right-hand side of Eq. (2) within the 0.1%
numerical accuracy of the simulations. Thus, the tension force
is accurately linearly proportional to the optical power in agree-
ment with Eq. (2). Equally accurate results are obtained for
the second experimental wavelength of 915 nm, but they are
not illustrated here. In the simulations, the steady-state tension
force for the constant optical power used in the simulations is

obtained in a time scale that is short compared to the time scale
of the harmonic modulation of the optical force. Therefore, the
same linear proportionality between the optical power and the
tension force can be assumed for the harmonically modulated
laser beam used in the experiment.

We have also made simulations for several values of loose in
the fiber in the range d < 2 cm. These calculations show that
the resulting tension along the fiber is insensitive to small
amounts of loose in the fiber provided that the ends of the fiber
are vertically aligned as described above (i.e., the results corre-
spond to those illustrated in Fig. 4 within the 0.1% numerical
accuracy of the simulations). Therefore, the equality in Eq. (2)
can be assumed to be accurate in the theoretical analysis of the
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Fig. 3. Illustration of the fiber path and the related horizontal and
vertical distance parameters a and h.
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Fig. 4. Elasticity theory simulation of the total tension force of four
fibers on the oscillator as a function of the total incident optical power
propagating through the fibers. The dots represent the simulation re-
sults obtained by using the expression on the left-hand side of Eq. (2),
and the dashed line is the theoretical line, given on the right-hand side
of Eq. (2).
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results. Even though the tension force is independent of the
amount of loose in the fiber, the loose in the fiber affects
the time-dependent dynamics of the oscillator by modifying
the damping constant and the resonance frequency of the os-
cillator. These are parameters that are determined experimen-
tally as described above.
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