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Abstract

The effect that advances in voice interface technologies have
on privacy has not yet received the attention it deserves. Sys-
tems in which multiple devices collaborate to provide a unified
user-interface amplify those worries about privacy. We discuss
ethical implications of voice enabled devices on privacy in typ-
ical scenarios at home, office, in a car and in the public. From
our findings, it follows that the reach of voice can be exploited
as a feature to intuitively define the extent of privacy. In partic-
ular, the acoustic reach of speech signals can serve as a feature
for designing privacy-gentle voice user-interfaces which are in-
tuitive to use. We argue that this approach poses reasonable
technological requirements and establishes a natural experience
of privacy which confirms intuitive perception.

Index Terms: voice user interfaces, privacy and security, ethics
in engineering, distributed speech processing

1. Introduction

Voice user interface technology has recently become fashion-
able with the advent of personal digital assistants (PDAs) such
as Siri', Alexa® and Cortana®. They provide an intuitive way
of interacting with devices and services via voice. Traditional
user-interfaces could thereby be improved or replaced with a
voice operated interface [1]. Current solutions are primarily
single-device approaches, often with the support of a cloud
server. However, collaborative multi-device approaches could
improve signal quality and increase flexibility (and thereby us-
ability) in user interface design [2, 3].

Such audio-capable device networks could provide a trans-
parent acoustical front-end for all voice-operated services [2].
We aim to employ the orchestration of all devices with micro-
phones to collaborate for services such as hands-free telephony
and personal digital assistants. A usual objective in distributed
speech recognition is to recognize speech within a distributed
network of audio-capable devices without a modular acoustic
front-end [4]. In contrast, we propose a standardized and modu-
lar acoustic front-end for distributed networks of audio-capable
devices. This enables interoperability between manufacturers
such that 1. any voice-service could use all devices, 2. multi-
ple service-providers could co-exist and collaborate, and 3. in-

Parts of this work have been supported by the SPEAKER project
(FKZ 01MK20011A), funded by the German Federal Ministry for Eco-
nomic Affairs and Energy.

Thttps://www.apple.com/ios/siri/
Zhttps://developer.amazon.com/alexa
3https://www.microsoft.com/en-us/windows/cortana

Confined space
Normal talking

Semi-open space
Quite talking

Living room Private room

Z) (@ &)

Figure 1: Acoustic range of speech implies the extent of privacy.
Semi-public spaces necessitate quiet voice to improve privacy.

teraction between multiple devices of a single service-provider
would be straightforward. With most current solutions, two co-
located devices of the same brand would both respond to a voice
command. Such behavior is undesirable and can be avoided if
the two devices collaborate.

Collaboration between devices demands a open standards,
but also raises questions on security, privacy, and authorization.
Which devices are allowed to collaborate and share acoustic
data? How to verify that devices do not violate privacy? Voice
user-interfaces should be designed such that they are aware of
users’ expectation of privacy and, in particular, should attempt
to provide the desired level of privacy. For example, family
members might regularly share experiences, but they also need
their private domain. Our contributions are:

1. An exploration of use-cases (Sec. 2) which indicates that
people consciously and accurately adjust speaking vol-
ume and content to enforce different privacy levels (cf.
figure 1). We argue that user-interfaces adhering to such
a notion of acoustic reach are intuitive to use.

2. We show that voice user-interfaces for which privacy
and collaboration is defined by the acoustic reach require
only modest extensions to existing technologies (Sec. 3).

3. Our threat analysis (Sec. 4) indicates that acoustic reach
can provide reasonable privacy.

We intend to bring attention to the ethical implications of
speech processing technologies. We argue that it is not feasible
to design objective measurements to determine ethical bound-
aries, because such measurements would, by design, cross those
ethical boundaries. We therefore follow the tradition of the so-
cial sciences and approach the problem through observations
within narratives of four typical use cases and discuss the impli-
cations these scenarios have on technological solutions. Future
work may design systems such that usability studies on their
performance do not pose ethically unsustainable risks.



2. Use Cases

We discuss expectations towards audio privacy with four char-
acteristic use cases: at home, in an office, in a car, and in a
public space. For each use-case we highlight characteristic ex-
pectations and user behavior with regard to privacy.

2.1. Home

Scenario: Consider a typical family of three; parents Jim and
Jane, as well as their teenage daughter Jill. They live together in
relative harmony and share stories about their experiences over
dinner. After dinner, Jill typically retreats to her room, closes
the door behind her and talks to her boyfriend on the phone. In
the meanwhile, Jim and Jane frequently discuss private topics
in hushed voices in the living-room (Fig. 1). When away from
home, all three chat as well as share pictures and videos with
each other on social media.

Analysis: This family home features several layers of privacy.
At dinner, they talk about their experiences more openly than
they would if outsiders were present. They also have a desire to
share with each other. However, when Jill closes the door of her
room, it is not just a sign that she wants to be left in private, but
it is also an acoustic barrier.

In the living-room, the parents have a private discussion, but
since it does not have doors, they speak with lowered volume.
The reduced volume makes it harder to eavesdrop and concur-
rently advertises to a possible passer-by (Jill) that the conversa-
tion is private.

In both cases, the acoustical barriers thus impede eaves-
dropping and concurrently communicate the desire for privacy.
The three however also have a joint desire to share certain
things. When they are not together they compensate for the
absence by chatting as well as sharing photos and videos.

2.2. Office

Scenario: Colleagues Jake and Jonathan are about to meet their
customer Julia, all three under a non-disclosure agreement. Be-
fore the meeting, Jake and Jonathan have a talk to agree on their
position on some key questions about their project with Julia.
In the meeting, after the sales-pitch of Jake and Jonathan, Julia
realizes that she needs additional information from her assistant
Jester, so they set up a teleconference. After the teleconference,
Julia signs the contract with Jake and Jonathan.

Analysis: Different layers of privacy are involved in this use
case. Prior to the meeting, Jake and Jonathan discuss company
secrets and tactics which cannot be revealed to Julia. Still, the
three have mutual interests to discuss. Jester is, in the meet-
ing, an outsider who receives opt-in permission to join through
a teleconference, but he is dismissed as soon as the necessary
information is received.

We have explicit legal boundaries on privacy based on
a non-disclosure agreement. Even colleagues of Jake and
Jonathan, would be contractually excluded from accessing the
conversation records. Still, it could be useful to have shared
voice records of the meeting for legal purposes. For the guest,
Julia, to set up a teleconference with her assistant Jester, is of-
ten an awkward experience. Julia does not generally have ac-
cess rights to the meeting room teleconference equipment, nor
would she have experience in using it, whereby she has no op-
tion but to share her assistant’s private contact information with
Jake and Jonathan for them to set up the connection.
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Figure 2: Illustration of the extent of privacy as defined by the
acoustic reach of a speech signal.

2.3. Car

Scenario: For meetings with his clients, Jeremy has to drive
several hours a week, and for efficient use of time, he often talks
with colleagues and clients on the hands-free while driving.
Twice a week, he drives his daughter Josephine to her hobbies.
Occasionally, he also drives with his friend Jacob. When his
wife Jessica calls him in the car, he has the habit of starting the
conversation as “Hey honey, I'm here with Jacob/Josephine. ..”
depending on who is in the car. Sometimes Jessica also borrows
Jeremy’s car to run some errands.

Analysis: The car setting introduces novel features of privacy:
1. It is a flexible environment where a range of people can travel
in it. 2. those present in the car will (and potentially people out-
side the car can) overhear any conversation. When Jeremy re-
ceives a call, social conventions require him to make clear who
can overhear the conversation. When using a hands-free device
utilizing the car loudspeakers, everyone in the car can overhear
both sides of the conversation. In contrast to the car, in an office
or at home one would often move to a private location if others
are present when receiving a call. The driver has arguably lit-
tle control over the level of privacy, except for controlling the
content of the conversation itself.

2.4. Public Space

Scenario: Jennifer, Jasmine and Jordan are childhood friends,
who like to meet in a cafeteria. They know each other well,
which leads to them sharing secrets with each other that they
would not reveal otherwise When sharing such secrets they tend
to huddle together and reduce their voices to a whisper.

Analysis: Jennifer, Jasmine and Jordan share certain private in-
formation which even their corresponding life partners would
not hear. Still, they would be unlikely to share all their secrets
amongst each other. It is this exact combination of persons and
the context that determines which secrets can be revealed. If
with others, the level of privacy would be different.

The cafeteria is a public space that might not have any clear,
physical boundaries to the acoustic reach of speech. A person
might inadvertently overhear parts of a conversation ongoing
at the next table. This is why the three come closer and only
whisper certain secrets in an effort to avoid accidental eaves-
droppers. A cafeteria with plenty of background noises, includ-
ing competing talkers and generic music, might thereby come
to be a benefit to private discussions by masking speech from
eavesdroppers.
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Figure 3: Devices in proximity achieve higher similarity in au-
dio fingerprints than devices which are outside audio reach.

3. Privacy Defined by Acoustic Reach

People have an intuitive understanding of the level of privacy
in their interactions. Certain situations might become uncom-
fortable when the normal sphere of privacy is not available, for
example, when there is no background noise in a cafeteria, or
when receiving a hands-free phone call in a car with passengers
on board. This intuition of audio privacy should be taken into
account when designing voice interfaces [5].

People have a good guess of who can hear their voice, and
adjust the volume of speech and their message accordingly. The
acoustic reach of a signal is thus an indicator for sufficient ac-
cess authorization. In terms of a voice-interface, this concept
points to a design where the acoustic reach of a signal defines
which entities are allowed access to that signal. For example, in
Fig. 2, device A may observe and analyze speech. It may not,
however, transmit that speech signal to a device C outside the
room, without prior consent (opt-in) [6].

For multiple devices .A and B co-present in a room it would
be reasonable to collaborate. Technically, audio-based implicit
access rules can be implemented based on ad-hoc spontaneous
encrypted communication using fuzzy cryptography based pro-
tocols exploiting audio fingerprints [7-10] (Fig. 3).

In this regard, acoustic reach should be defined according
to human performance. If a human in the same location as
the device would be able to overhear a speech signal, then the
device should be allowed to access that speech signal as well.
The technological requirement for preserving privacy is thus a
method which determines whether two devices are within the
same acoustic space. This task has been addressed prior works,
e.g. by acoustic handshake and audio watermarking [11-13].

4. Threat Model

In an environment with collaborating speech interface devices,
all devices shall gain access to all sensed speech, independently
of which device sensed it. Such environments are not neces-
sarily limited in an intuitive way, e.g. by an implicitly assumed
acoustic space of households or company rooms. Hence, if no
limit is imposed on when, what, and how those devices share
information, they necessarily share all sensed speech indepen-
dently on whether they are in the same acoustic space or not.
Attackers would thereby only need to inject a single de-
vice into the environment, which would then share and receive
speech from other devices. Possible attackers include people
owning devices connected to such an environment. They also
include any party being able to illegitimately gain access to such

devices [14,15]. They further include device manufacturers, re-
sellers, and maintainers.

Regarding the impact of attacks, note that devices trans-
mitting speech sensed in the environment to external services
should be considered a privacy breach, irrespective whether the
transmission is legitimate or not [16—18]. Examples range from
family members who overhear conversations, over cybercrimi-
nals, to government players. A mitigation to the above threats
could be to impose limits on when, how, and what speech de-
vices share in such environments. Utilizing the acoustic reach to
impose such limits could be one way of creating feasible and at
the same time intuitive limits. When devices only share sensed
speech if they are in the same acoustic space, eavesdropping
with a single device is limited to audio that is sensed in the cor-
responding acoustic space.

5. Applications

Privacy has received little attention with respect to voice user
interfaces so far. However, it is an important aspect of those [5].
In contrast to voice user interfaces, with many modern con-
sumer products (e.g. messaging services) privacy has already
become a central selling point. Furthermore, the European
Union has adopted the General Data Protection Regulation
(GDPR), which has impacted and will continue to have an im-
pact on voice user interfaces [19]. In fact, the European Data
Protection Board has recently published guidelines for handling
privacy in virtual voice assistants [20]. Similarly, conventional
phones have well-defined legal frameworks which specify the
extent of privacy required [21]. Privacy is also well-studied in
the different other fields, including e.g. law, robotics, and psy-
chology [22-24].

The main observation of our current work is that people
have an intuitive understanding of who can hear their speech,
whereby they adjust their message and volume of speech ac-
cordingly. Voice user interfaces should thus allow collaboration
between devices only when they are within the same acoustic
space, or when the user specifically enabled further collabora-
tion between devices in an opt-in manner.

The technical requirements for this are well manageable.
Firstly, there is a need for methods to determine whether two
devices are in the same acoustic space, hence can hear the same
signal — without revealing sensitive information in the process,
such as previous approaches comprising audio fingerprinting
and fuzzy cryptography [7]. Secondly, to access information
about conversations afterwards, keeping a log of access rights
would be beneficial. For instance, decentralized consensus via
blockchain or central server-based solutions would be feasible.
With these system features, seamless device collaboration over
wireless systems could be enabled, while at the same time main-
taining a reasonable level of privacy.

Collaboration between devices, in turn, is useful in many
ways. For example, distributed sensor network methods can be
used to improve signal quality to obtain high-fidelity even with
a number of low-quality sensors [25]. Moreover, by enabling
hardware of different manufacturers to collaborate in a secure
and privacy-adhering way, dedicated hardware for every service
is not required and resources can be used more efficiently. This
could potentially make vendor lock-in more difficult, facilitate a
lively competition, and allow users to better control and monitor
the level of privacy with their voice interfaces.
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Figure 4: Layout of devices in the experimental settings as well as observed fingerprint similarity.

6. Ethics

Similarly to the outlined privacy concerns, engineering ethics
has not yet received much attention within the speech process-
ing community. A central challenge is that the publication
tradition in engineering fields requires quantifiable and objec-
tive measurements. Ethics, however, can not be measured ob-
jectively. Moreover, experiments for measuring ethical issues
would likely also be unethical by design.

Consequently, in this paper we utilize considerations of
probable scenarios in the form of use-cases as the publication
format for ethical discussions. We thereby outline potential con-
sequences of using this technology if the corresponding privacy
and ethical problems are not addressed, and propose design-
concepts which might facilitate resolving those.

The fact that ethical discussions are typically not explicitly
discussed, when proposing design-concepts in our community,
is undoubtedly evident also in our humble contribution. With
this work we thus want to encourage other researchers and en-
gineers to challenge our approach as well as to point out im-
provements and challenges. We especially encourage readers to
propose improvements not only to technology, but also to the
format of publication within the ethical realm.

7. Experimental Evaluation

We demonstrate the effect of distance between audio sources
and audio interfaces on the privacy defined by acoustic reach
with the experiments. Further experiments are presented in [9].

In the first experiment, we simulate multiple mobile devices
overhearing a meeting in a small office with an arrangement
of mobile devices acting as audio sources and audio interfaces
(see Figure 4a). We put the mobile device that acts as the audio
source on a fixed position on a table in the small office, where
it continuously broadcasts an audio recording. The device act-
ing as the first audio interface is positioned on the same table
in 0.5 m distance to the audio source. The device acting as the
second audio interface is also positioned on the same table, but
in distance d to the audio source, with d = {1m, 1.5m,2m}.
We control the sound level of the audio source in the range of
35 — 45, 45 — 55, and 55 — 65 dB, which corresponds to the
range of verbal conversation loudness. For processing the audio
sensed on the audio interfaces we apply the techniques of [7],
which aims to derive a similar audio fingerprint on both devices
based on the sensed audio (see Figure 4a). The Hamming-
distance-based similarity of those extracted audio fingerprints
is shown in Figure 4b. We thereby observe that the similarity of

the audio fingerprints consistently decreases with an increasing
inter-device distance, independently of the level of verbal con-
versation loudness. We thus conclude that it is feasible to use
audio fingerprinting (e.g. fuzzy cryptography schemes) to allow
shared communication only between devices that are within a
certain audio proximity, hence within a certain acoustic reach.

In the second experiment, we address the problem of pair-
ing two smart devices for allowing secure connection between
them using only verbal commands. An application scenario of
this would be to establish a secure connection between a mo-
bile phone and a smart television for holding a presentation in
a meeting room. We also consider an attacker which is outside
the room in which the devices get paired, with either an opened
or closed door (see Figure 4c). In the experimental setup we
use one mobile device in the room to continuously broadcast
an audio recording, and two more devices in the room to ob-
serve the audio and derive audio fingerprints. The audio broad-
cast and the extraction of audio fingerprints from audio sensed
on both devices are the same as in experiment 1. When both
audio interfaces are within 1 m distance of each other in the
room we observe the corresponding audio fingerprint to be in
the range of 68.2%. In contrast, the device of the attacker out-
side the room senses audio of which the extracted fingerprint
only shows a similarity of 52.3% in case the door is openend,
and 45.7% when the door is closed. In both cases, the similarity
is lower than with the devices intended to be paired in the room.
From this we can conclude that the fingerprint similarity can be
utilized to distinguishing benign and malicious devices during
pairing, given that the acoustic distance is higher for malicious
devices than for benign ones — hence, that malicious devices are
further away.

8. Conclusion

In this paper, we explored several use-cases in which users
enforce different privacy levels through adjusting their speak-
ing volume. We proposed that designing voice user-interfaces
based on the acoustic reach requires only modest modification
to existing technologies. Specifically, such functionality can be
implemented through a comparison of microphone signals be-
tween devices, where the comparison is implemented in a way
which does not reveal the content of sounds, but only allows es-
timation of proximity. Our threat analysis indicates that acous-
tic proximity can provide acceptable security and privacy. We
performed two experiments to verify our proposed approach in
realistic scenarios.
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