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Abstract
This paper is concerned with a state-space approach to deep Gaussian process (DGP) regression. We construct the DGP by
hierarchically putting transformed Gaussian process (GP) priors on the length scales and magnitudes of the next level of
Gaussian processes in the hierarchy. The idea of the state-space approach is to represent the DGP as a non-linear hierarchical
systemof linear stochastic differential equations (SDEs),where eachSDEcorresponds to a conditionalGP.TheDGP regression
problem then becomes a state estimation problem, and we can estimate the state efficiently with sequential methods by using
the Markov property of the state-space DGP. The computational complexity scales linearly with respect to the number of
measurements. Based on this, we formulate state-space MAP as well as Bayesian filtering and smoothing solutions to the
DGP regression problem. We demonstrate the performance of the proposed models and methods on synthetic non-stationary
signals and apply the state-space DGP to detection of the gravitational waves from LIGO measurements.

Keywords Deep Gaussian process · Maximum a posteriori estimate · Gaussian process regression · State space · Gaussian
filtering and smoothing · Particle filter · Stochastic differential equation · Gravitational wave detection

1 Introduction

Gaussian processes (GP) are popularmodels for probabilistic
non-parametric regression, especially in the machine learn-
ing field (Rasmussen and Williams 2006). As opposed to
parametric models, such as deep neural networks (Goodfel-
low et al. 2016), GPs put prior distributions on the unknown
functions. As themean and covariance functions characterize
a GP entirely, the design of those two functions determines
how well the GP learns the structure of data. However,
GPs by using, for example, radial basis functions (RBFs)
and Matérn class of covariance functions are stationary, and
hence those conventional GPs have limitations on learning
non-stationary structures in data. Heteroscedastic GPs (Le
et al. 2005; Lazaro-Gredilla and Titsias 2011) are designed
to tackle with the non-stationarity in measurement noise.
To model the non-stationary of the unknown process, we
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often need tomanipulate the covariance function to give non-
stationary GPs.

One approach to construct non-stationary GPs is to trans-
form the domain/input space by compositions. For example,
Wilson et al. (2016a, b); Al-Shedivat et al. (2017) transform
the inputs by deterministic deep architectures and then feed
to GPs, where the deep transformations are responsible for
capturing the non-stationarity from data. The resulting GP
posterior distribution is in closed form. Similarly, Calandra
et al. (2016) transform the input space to manifold fea-
ture spaces. Damianou and Lawrence (2013) construct deep
Gaussian processes (DGPs) by feeding the outputs of GPs
to another layer of GPs as (transformed) inputs. However,
the posterior inference requires complicated approximations
and does not scale well with a large number of measure-
ments (Salimbeni and Deisenroth 2017a).

Another commonly used non-stationary GP construc-
tion is to have input-dependent covariance function hyper-
parameters, so that the resulting covariance function is
non-stationary (Sampson and Guttorp 1992; Higdon et al.
1999; Paciorek and Schervish 2004). For example, one can
parametrize the lengthscale as a function of time. This
method grants GPs the capability of changing behaviour
depending on the input. However, one needs to be careful
to ensure that the construction leads to valid (positive defi-
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nite) covariance functions (Paciorek and Schervish 2004). It
is also possible to put GP priors on the covariance parame-
ters (Tolvanen et al. 2014; Lazaro-Gredilla and Titsias 2011;
Heinonen et al. 2016; Roininen et al. 2019; Monterrubio-
Gómez et al. 2020). For example, Salimbeni and Deisenroth
(2017b) model the lengthscale as a GP by using the non-
stationary covariance function of Paciorek and Schervish
(2006), and they approximate the posterior density via the
variational Bayes approach.

The idea of putting GP priors on the hyperpameters of
a GP (Heinonen et al. 2016; Roininen et al. 2019; Salim-
beni and Deisenroth 2017b) can be continued hierarchically,
which leads to one type of deep Gaussian process (DGP)
construction (Dunlop et al. 2018; Emzir et al. 2019, 2020).
Namely, the GP is conditioned on another GP, which again
depends on another GP, and so forth. It is worth emphasizing
that this hyperparameter-based (or covariance-operator) con-
struction of DGP is different from the compositional DGPs
as introduced by Damianou and Lawrence (2013) and Duve-
naud et al. (2014). In these composition-based DGPs, the
output of each GP is fed as an input to another GP. Despite
the differences, these two types of DGP constructions are
similar in many aspects and are often analyzed under the
same framework (Dunlop et al. 2018).

This paper focuses onhyperparameter-based (or covariance-
operator) temporal DGPs. In particular, we introduce the
state-space representations of DGPs by using non-linear
stochastic differential equations (SDEs). The SDEs form a
hierarchical non-linear system of conditionally linear SDEs
which results from the property that a temporal GP can be
constructed as a solution to a linear SDE (Hartikainen and
Särkkä 2010; Särkkä et al. 2013; Särkkä and Solin 2019).
More generally, it is related to the connection of Gaussian
fields and stochastic partial differential equations (SPDEs,
Lindgren et al. 2011). (D)GP regression then becomes
equivalent to the smoothing problem on the corresponding
continuous-discrete state-space model (Särkkä et al. 2013).
Additionally, by using the SDE representations of DGPs we
can avoid to explicitly choose/design the covariance function.

However, the posterior distribution of (state-space) DGPs
does not admit a closed-form solution as a plain GP
does. Hence we need to use approximations such as maxi-
mum a posteriori (MAP) estimates, Laplace approximations,
Markov chain Monte Carlo (MCMC, Heinonen et al. 2016;
Brooks et al. 2011; Luengo et al. 2020), or variational Bayes
methods (Lazaro-Gredilla and Titsias 2011; Salimbeni and
Deisenroth 2017a; Chang et al. 2020). However, those meth-
ods are often computationally heavy. The another benefit of
using state-space DGPs is that we can use the Bayesian fil-
tering and smoothing solvers which are particularly efficient
for solving temporal regression/smoothing problems (Särkkä
2013).

In short, we formulate the (temporal) DGP regression as a
state-estimation problem on a non-linear continuous-discrete
state-space model. For this purpose, various well-established
filters and smoothers are available, for example, the Gaus-
sian (assumed density) filters and smoothers (Särkkä 2013;
Särkkä and Sarmavuori 2013; Zhao et al. 2021). For tempo-
ral data, the computational complexity of using filtering and
smoothing approaches is O(N ), where N is the number of
measurements.

The contributions of the paper are the follows. (1)We con-
struct a general hyperparameter-based deepGaussian process
(DGP) model and formulate a batch MAP solution for it as a
standard reference approach. (2) We convert the DGP into a
state-space form consisting of a system of stochastic differ-
ential equations. (3) For the state-space DGP, we formulate
the MAP and Bayesian filtering and smoothing solutions.
The resulting computational complexity scales linearly with
respect to the number of measurements. (4) We prove that
for a class of DGP constructions and Gaussian approxima-
tions on the DGP posterior, certain nodes of the DGP (e.g.,
the magnitude σ of Matérn GP) will not be asymptotically
updated from measurements. (5) We conduct experiments
on synthetic data and also apply the methods to gravitational
wave detection.

2 Deep Gaussian processes

2.1 Non-stationary Gaussian processes

We start by reviewing the classical Gaussian process (GP)
regression problem (Rasmussen and Williams 2006). We
consider the model

f (t) ∼ GP(0,C(t, t ′)),
yk = f (tk) + rk,

(1)

where f : T → R is a zero-meanGP onT = {t ∈ R : t ≥ t0}
with a covariance function C . The observation yk :=y(tk) of
f (tk) is contaminated by a Gaussian noise rk ∼ N (0, Rk).
We let R = diag(R1, . . . , RN ). Given a set of N measure-
ments y1:N = {y1, . . . , yN }, GP regression aims at obtaining
the posterior distribution

p( f | y1:N ),

which is again Gaussian with closed-form mean and covari-
ance functions (Rasmussen and Williams 2006). In this
model, the choice of covariance function C is crucial to the
GP regression as it determines, for example, the smoothness
and stationarity of the process. Typical choices, such as radial
basis or Matérn covariance functions, give stationary GPs.
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However, it is difficult for a stationary GPs to tackle
with non-stationary data. The main problem arises from the
covariance function (Rasmussen and Williams 2006) as the
value of a stationary covariance function only depends on
the difference of inputs. That is to say, the correlations of
any pairs of two inputs are the same when the differences
are the same. This feature is not beneficial for non-stationary
signals, as the correlation might vary depending on the input.

A solution to this problem is using a non-stationary covari-
ance function (Higdon et al. 1999; Paciorek and Schervish
2004, 2006; Lindgren et al. 2011). That grants GP with
the capability of adaption by learning hyperparameter func-
tions from data. However, one needs to carefully design the
non-stationary covariance function such that it is positive def-
inite. Recent studies by, for example, Heinonen et al. (2016);
Roininen et al. (2019) andMonterrubio-Gómez et al. (2020),
propose to put GP priors on the covariance function hyper-
parameters. In this article, we follow these approaches to
construct hierarchy of GPs which becomes the construction
of the deep GP model.

2.2 Deep Gaussian process construction

We define a deep Gaussian process (DGP) in a general per-
spective as follows. Suppose that the DGP has L layers, and
each layer (i = 1, . . . , L) is composed of Li nodes. Each
node of the DGP is conditionally a GP, denoted by uij,k ,
where k = 1, 2, . . . , Li . We give three indices for the node.
The indices i and k specify the layer and the position of the
GP, respectively. As an example, uij,k is located in the i-th
layer of the DGP and is the k-th node in the i-th layer. The
index j is introduced to indicate the conditional connection
to its unique child node on the previous layer. That is to
say, uij,k is the child of nodes ui+1

k,k′ for all suitable k′. The
terminologies “child” and “parent” follow from the graphi-
cal model conventions (Bishop 2006). To keep the notation
consistent, we also use u11,1:= f for the top layer GP. The

nodes uL+1
j,k outside of the DGP, we treat as degenerate ran-

dom variables (i.e., constants or trainable hyperparameters).
Remark that every node in the DGP is uniquely indexed by
i and k, whereas j only serves the purpose of showing the
dependency instead of indexing.

We call the vector process

U : T → R

∑L
i=1 Li ,

the DGP, where each element of U corresponds (one to
one and onto) to the element of the set of all nodes{
uij,k : i = 1, . . . , L, k = 1, 2, . . . , Li

}
. Similarly, each ele-

ment of the vectorUi : T → R
Li corresponds to the element

of the set of all nodes from the i-th layer. We denote by

Fig. 1 Example of a 3-layer DGP regression model, where each (con-
ditional) GP depends on two other GPs. Variable y is the measurement,
and the nodes in U4 are degenerate random variables

Ui
k,· =

{
uik,k′ : for all suitable k′

}
the set of all parent nodes

of ui−1
j,k .

In this tree-like general construction of DGP U , there are∑L
i=1 Li nodes in total. Every uij,k is independent of other

nodes in the same i-th layer, and depends on the nodesUi+1
j,·

on the next (i + 1)-th layer. When there is only one layer, the
DGP reduces to a conventional GP. Figure 1 illustrates the
DGP construction.

The realization of the DGP depends on how each of the
conditionally GP nodes is constructed. In the following sec-
tions, we discuss two realizations of this DGP, by either
constructing the conditional GPs by specifying the mean and
covariance functions, or by stochastic differential equations.
These two constructions lead to DGP regression in batch and
sequential forms, respectively.

3 A batch deep Gaussian process regression
model

In this section, we present a batch DGP construction which
uses the construction of non-stationary GPs presented in
Paciorek and Schervish (2006) to form the DGP. To empha-
size the difference to the SDE construction which is the main
topic of this article, we call this the batch-DGP. Let us assume
that every conditional GP in the DGP has zero mean and we
observe the top GP f with additive Gaussian noise. We write
down the DGP regression model as

f | U 2 ∼ GP(0,C(t, t ′;U 2))

u21,1 | U 3
1,· ∼ GP(0,C2

1 (t, t
′;U 3

1,·))
u21,2 | U 3

2,· ∼ GP(0,C2
2 (t, t

′;U 3
2,·))

...

ui·,k | Ui+1
k,· ∼ GP(0,Ci

k(t, t
′;Ui+1

k,· ))
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...

yk = f (tk) + rk, (2)

where each covariance function Ci
k : T×T → R is parame-

terized by next layer’s (conditional) GPs. That is to say, the
covariance function Ci

k takes the nodes in Ui+1
k,· as parame-

ters.
This DGP construction requires positive covariance func-

tion at each node. One option is the non-stationary exponen-
tial covariance function which has the form (cf. Paciorek and
Schervish 2006)

CNS(t, t
′; �, σ ) = σ(t)σ (t ′)

Γ (ν)2ν−1 �
1
4 (t)�

1
4 (t ′)

× √
2 exp

(
−√

2
∣
∣t − t ′

∣
∣

√
�(t) + �(t ′)

)
(
�(t) + �(t ′)

)− 1
2 .

In the above covariance function CNS , the length scale �(t)
and magnitude σ(t) are functions of input t . Paciorek and
Schervish (2006) also generalize CNS to the Matérn class.

For the DGP construction in (2) we need to ensure the
positivity of the hyperparameter functions. For that purpose
we introduce a wrapping function g : R → (0,∞) which is
positive and smooth, and we put �(t) = g(u�(t)) and σ(t) =
g(uσ (t)) where u� and uσ are the conditionally Gaussian
processes from the next layer. The exponential or squaring
functions are typical options for g. In Example 1, we show a
two-layer DGP by using the covariance function CNS .

Example 1 Consider a two layer exponential (Matérn) DGP

f | u21,1, u21,2 ∼ GP(0,CNS(t, t
′; g(u21,1), g(u21,2))),

u21,1 ∼ GP(0,CNS(t, t
′; g(u31,1), g(u31,2))),

u21,2 ∼ GP(0,CNS(t, t
′; g(u32,3), g(u32,4))).

In this case, we have the so-called length scale �21,1 = g(u21,1)

and magnitude σ 2
1,2 = g(u21,2). Also, U = [

f u21,1 u21,2
]T

and U 2 = U 2
1,· = [

u21,1 u21,2
]T
.

Given a set ofmeasurements y1:N = {y1, y2, . . . , yN }, the
aim of DGP regression is to obtain the posterior density

p(U | y1:N ) = p(y1:N | U ) p(U )

p(y1:N )
, (3)

for any input t ∈ T. Moreover, by the construction of DGP
(conditional independence) we have

p(U ) = p( f | U 2)

L∏

i=2

Li∏

k=1

p
(
uij,k | Ui+1

k,·
)

, (4)

where each uij,k | Ui+1
k,· is a GP as defined in (2). We iso-

late f | U2 out of the above factorization because we are
particularly interested in the observed f . It is important to
remark that the distribution of U is (usually) not Gaussian
because of the non-Gaussianility induced by the conditional
hierarchy of Gaussian processes which depend on each other
non-linearly.

3.1 BatchMAP solution

The maximum a posteriori (MAP) estimate gives a point
estimate of U as the maximum of the posterior distribu-

tion (3). Let us denote f1:N = [
f (t1) f (t2) · · · f (tN )

]T ∈
R

N , U1:N =
{
uij,k|1:N : for all i, k

}
, where uij,k|1:N =

[
uij,k(t1) · · · uij,k(tN )

]T ∈ R
N . We are targeting at the pos-

terior density p(U1:N | y1:N ) evaluated at t1, . . . , tN . The
MAP estimate is then obtained by

UBMAP
1:N = argmin

U1:N
LBMAP(U1:N ; y1:N ), (5)

where LBMAP is the negative logarithm of the unnormalized
posterior distribution given by

LBMAP(U1:N ; y1:N )

= − log
[
p(y1:N | U1:N ) p(U1:N )

]

= 1

2

[
(y1:N − f1:N )T R−1 (y1:N − f1:N ) + log |2π R|

]

+ 1

2

[
f T1:N C−1 f1:N + log |2π C|

]

+ 1

2

L∑

i=2

Li∑

k=1

[
(uij,k|1:N )T(Ci

k)
−1uij,k|1:N + log

∣
∣
∣2π Ci

k

∣
∣
∣
]
.

(6)

In the above Eq. (6), C and Ci
k are the covariance matri-

ces formed by evaluating the corresponding GP covariance
functions at (t1, . . . , tN ) × (t1, . . . , tN ). The computational
complexity for computing (6) is O(N 3 ∑L

i=1 Li ), which
scales cubically with the number of measurements.

It is important to recall from (2) that the covariance matri-
ces also depend on the other GP nodes (i.e., f1:N and U1:N
are in Ci

k). Therefore the objective function LBMAP is non-
quadratic. Additional non-linear terms are also introduced by
the determinants of the covariance matrices. However, quasi-
Newton methods (Nocedal and Wright 2006) can be used to
solve the optimization problem. The required gradients of (6)
are provided in Appendix 1.

There are two major challenges in this MAP solution.
Firstly, the optimization of (5) is not computationally cheap.
It requires to evaluate and store

∑L
i=1 Li inversions of N -

dimensional matrices for every optimization iteration. This
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prevents the use of the DGP on large-scale datasets and
large models. Moreover, Paciorek and Schervish (2006)
state that the optimization of (5) is difficult and prone to
overfitting, which we also confirm in the experiment sec-
tion. Another problem is the uncertainty quantification and
prediction (interpolation) with the MAP estimate which is
degenerate.

4 Deep Gaussian processes in state-space

Stochastic differential equations (SDEs) are commonmodels
to construct stochastic processes (Friedman 1975; Rogers
and Williams 2000a, b; Särkkä and Solin 2019). Instead of
constructing the process by specifying, for example, themean
and covariance functions, an SDEs characterizes a process
by describing the dynamics with respect to aWiener process.
In this section, we show how a DGP as defined in Sect. 2.2
can be realized using a hierarchy of SDEs. To highlight the
difference to the previous batch-DGP realization, we call this
the SS-DGP. The regression problem on this class of DGPs
can be seen as a state estimation problem.

4.1 Gaussian processes as solutions of linear SDEs

Consider a linear time invariant (LTI) SDE

df(t) = A f(t) dt + L dW f (t),

f(t0) ∼ N (0,P∞),
(7)

where coefficients A ∈ R
d×d and Ld×S are constant matri-

ces, W f (t) ∈ R
S is a Wiener process with unit spectral

density, and f(t0) is a Gaussian initial condition with zero
mean and covariance P∞, which is obtained as the solution
to

AP∞ + P∞ AT + LLT = 0. (8)

When the stationary covariance P∞ exists, the vector
process f is a stationary Gaussian process with the (cross-
)covariance function

Cov
[
f(t), f(t ′)

] =
{
P∞ exp

[
(t ′ − t)A

]T
, t < t ′,

exp
[−(t ′ − t)A

]
P∞, t ≥ t ′.

(9)

It now turns out that we can construct matrices A, L,
and H such that f = H f is a Gaussian process with a
given covariance function (Hartikainen and Särkkä 2010;
Särkkä et al. 2013; Särkkä and Solin 2019). The marginal
covariance of f can be extracted by Cov[ f (t), f (t ′)] =
HCov

[
f(t), f(t ′)

]
HT. In order to construct non-stationary

GPs, we can let the SDE coefficients (i.e., A and L) be func-
tions of time.

In particular, if f is a Matérn GP, then we can select the
state

f(t) = [
f (t) Df (t) · · · Dα f (t)

]T ∈ R
d , (10)

and the corresponding H = [
1 0 0 · · ·], where D is the

time derivative, α is the smoothness factor, and dimen-
sion d = α + 1. We can also generalize the results to
spatial-temporal Gaussian processes, and hence the corre-
sponding SDEs will become stochastic partial differential
equations (SPDEs, Särkkä and Hartikainen 2012; Särkkä
et al. 2013).

When constructing a GP using SDEs, we sometimes need
to select the SDE coefficients suitably so that the resulting
covariance function (9) admits a desired form (e.g., Matérn).
One way to proceed is to find the spectral density function of
the GP covariance function (via Wiener–Khinchin theorem)
and translate the resulting transfer function into the state-
space form (Hartikainen and Särkkä 2010). The results are
known for many classes of GPs, for example, theMátern and
periodic GPs (Särkkä and Solin 2019).

As an alternative to the batch-GP construction in Sect. 3,
the SDE approach offers more freedom to certain extent
because the corresponding covariance functions are positive
definite and non-stationary by construction. It is also com-
putationally beneficial in regression, as we can leverage the
Markov properties of the SDEs in the computations.

4.2 Deep Gaussian processes as hierarchy of SDEs

So far, we have only considered the SDE construction of
a single stationary/non-stationary GP. To realize a DGP as
defined in Sect. 2.2, we need to formulate a hierarchical sys-
tem composed of linear SDEs. Namely, we parametrize the
SDE coefficients as functions of other GPs in a hierarchi-
cal structure. Followed from the SDE expression of GP f in
Eq. (7), let us similarly define the state

uij,k : T → R
d ,

for any GP uij,k in the DGP U . We then construct the DGP

by finding the SDE representation for each uij,k to yield

df = A(U2
1,·) f dt + L(U2

1,·) dW f ,

du21,1 = A2
1(U

3
1,·)u21,1 dt + L2

1(U
3
1,·) dW2

1,

du21,2 = A2
2(U

3
2,·)u21,2 dt + L2

2(U
3
2,·) dW2

2,

...

duij,k = Ai
k(U

i+1
k,· )uij,k dt + Li

k(U
i+1
k,· ) dWi

k,

...

(11)
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where W f ∈ R
S and Wi

k ∈ R
S for all i and k are mutually

independent standard Wiener processes. Note that the above
SDE system (11) is non-linear, and the coefficients are state-
dependent. We denote by Ui+1

k,· the collection states for all

parent states of uij,k . For example, if u21,1 is conditioned on

u31,1 and u31,2, then U3
1,· =

[(
u31,1

)T (
u31,2

)T
]T
. To further

condense the notation, we rearrange the above SDEs (11)
into

dU(t) = Λ(U(t)) dt + β(U(t)) dW(t),

U(t0) ∼ N (0,P0),
(12)

where

U(t) =
[

fT
(
u21,1

)T (
u21,2

)T · · ·
(
uij,k

)T · · ·
]T

∈ R
�,

is the SDE state of the entire DGP, U(t0) is the Gaussian
initial condition, � = d

∑L
i=1 Li is the total dimension of

the state, and

W(t) =
[
WT

f (W2
1)

T · · · (Wi
k)

T · · ·
]T ∈ R

�.

The drift Λ ◦ U : T → R
� and dispersion β ◦ U : T → R

�

functions can be written as

Λ(U(t)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A(U2
1,·)

A2
1(U

3
1,·)

. . .

Ai
k(U

i+1
k,· )

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U(t),

and

β(U(t)) = diag
(
L(U2

1,·),L2
1(U

3
1,·), . . . ,Li

k(U
i+1
k,· ), . . .

)
,

respectively.
The above SDE representation of DGP is general in the

sense that the SDE coefficients of each GP and the num-
ber of layers are free. However, they cannot be completely
arbitrary as we at least need to require that the SDE has a
weakly unique solution. A classical sufficient condition is to
have the coefficients globally Lipschitz continuous and have
at most linear growth (Friedman 1975; Xu et al. 2008; Mao
2008; Øksendal 2003). These restrictive conditions can be
further weakened, for example, to locally Lipschitz (Fried-
man 1975, Ch. 5) and weaker growth condition (Shen et al.
2006, Theorem 2.2). Alternatively, requiring the coefficients
to be Borel measurable and locally bounded is enough for a
unique solution (Rogers and Williams 2000b, Theorem 21.1
and Equation 21.9).

It is also worth remarking that the SDE system (12) and
hence the DGP is a well-defined Itô diffusion, provided
that the coefficients are regular enough (Definition 7.1.1,
Øksendal 2003). This feature is valuable, as being an Itô
diffusion offers many fruitful properties that we can use in
practice, for example, continuity, Markov property, and the
existence of infinitesimal generator (Øksendal 2003). The
Markov property is needed to ensure the existence of transi-
tion density and also enables the use of Bayesian filtering and
smoothing for regression. The infinitesimal generator can be
used to discretize the SDEs as we do in Sect. 5.

It is also possible to extend the SDE representations of
temporal DGPs to stochastic partial differential equation
(SPDE) representations of spatio-temporal DGPs. Särkkä
et al. (2013) given the following result. Suppose v : X×T →
R is a spatio-temporal stationary GP on a suitable domain,
such that v(x, t) ∼ GP(0,C(x, x′, t, t ′)). Then v(x, t) can
be constructed as a solution to an evolution type of SPDE

∂v(x, t)
∂t

= Av(x, t) + Bw(x, t),

where v(x, t) is the state of v,A and B are spatial operators,
and w(x, t) is the spatio-temporal white noise. Emzir et al.
(2020) build a deepGaussian field based on theMatérn SPDE
by Lindgren et al. (2011), which provides another path to the
spatio-temporal case.

4.3 DeepMatérn process

In this section, we present a Matérn construction of SS-
DGP (12). The coefficients are chosen such that each SDE
corresponds to a conditional GP with the Matérn covariance
function. The idea is to find an equivalent SDE representation
for each Matérn GP node, and then parametrize the covari-
ance parameters (i.e., length-scale � and magnitude σ ) with
another layer of Matérn GPs. We are interested in a GP

uij,k | �, σ ∼ GP(0,C(t, t ′; �, σ )), (13)

with the Matérn covariance function

C(t, t ′) = σ 2 21−ν

Γ (ν)

(
κ
∣
∣t − t ′

∣
∣
)ν

Kν

(
κ
∣
∣t − t ′

∣
∣
)
, (14)

where Kν is the modified Bessel function of the second kind
and Γ is the Gamma function. We denote κ = √

2ν/� and
ν = α + 1/2.

As shown by Hartikainen and Särkkä (2010) and Särkkä
et al. (2013), one possible SDE representation of Matérn GP
uij,k in Eq. (13) is

duij,k = Ai
k u

i
j,k dt + Li

k dW
i
k , (15)
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where the state

uij,k(t) =
[
uij,k(t) Duij,k(t) · · · Dαuij,k(t)

]T ∈ R
d ,

and the SDE coefficients Ai
k and Li

k admit the form

Ai
k =

⎡

⎢
⎢
⎢
⎣

0 1
0 1

...
. . .

−(
α
0

)
κα −(

α
1

)
κα−1 · · · −(

α
α−1

)
κ

⎤

⎥
⎥
⎥
⎦

,

and

Li
k =

[
0 0 · · · σ Γ (α+1)√

Γ (2α+1)
(2 κ)(α+ 1

2 )
]T

, (16)

respectively. Above, we denote by
(
α
1

)
a binomial coefficient

and Wi
k ∈ R is a standard Wiener process. Next, to contruct

the deep Matérn process, we need to parametrize the length
scale � andmagnitude σ by the states of parent GPs and build
the system as in Eq. (11). For example, if we want to use u31,1
and u31,2 tomodel the length scale andmagnitude of u21,1, then

�21,1 = g(u31,1) and σ 2
1,1 = g(u31,2). The wrapping function

g : R → (0,∞) is mandatory to ensure the positivity of
Matérn parameters. The minimal requirement for function g
is to be positive and Borel measurable. For instance, we can
let g(u) = exp(u) + c or g(u) = u2 + c for some c > 0.
Another choice is to let g(u) = 1/(u2+c) that is bounded and
Lipschitz on R, which makes the deep Matérn process an Itô
diffusion and we have the SS-DGP well-defined (Øksendal
2003).

Note that the resulting state-spacemodel composedof (15)
has a canonical form from control theory (Glad and Ljung
2000), and the dimensionality is determined by the smooth-
ness parameter α. Moreover, the coefficient Ai

k is Hurwitz,
because all the eigenvalues have strictly negative real part.
The stability of such system is studied, for example, in Khas-
minskii (2012).

Example 2 Corresponding to Example 1, the SDE con-
struction of the two layer (exponential) Matérn process is
formulated as follows:

d f = − 1

g(u21,1)
f dt +

√
2 g(u21,2)
√
g(u21,1)

dW f ,

du21,1 = − 1

g(u31,1)
u21,1 dt +

√
2 g(u31,2)
√
g(u31,1)

dW 2
1,1,

du21,2 = − 1

g(u32,3)
u21,2 dt +

√
2 g(u32,4)
√
g(u32,3)

dW 2
1,2,

where we have states U = [
f u21,1 u21,2

]T
and the SDE coef-

ficient functions

Λ(U) =

⎡

⎢
⎢
⎣

− 1
g(u21,1)

− 1
g(u31,1)

− 1
g(u32,3)

⎤

⎥
⎥
⎦ U,

and β(U) = diag

(√
2 g(u21,2)√
g(u21,1)

,

√
2 g(u31,2)√
g(u31,1)

,

√
2 g(u32,4)√
g(u32,3)

)

. The

length scale �21,1 and magnitude σ 2
1,2 of f are given by

�21,1 = g(u21,1) and σ 2
1,2 = g(u21,2), respectively.

5 State-space deep Gaussian process
regression

In this section, we formulate sequential state-space regres-
sion by DGPs. By using the result in Eq. (12), the state-space
regression model is

dU(t) = Λ(U(t)) dt + β(U(t)) dW(t),

yk = HU(tk) + rk,
(17)

where the initial conditionU(t0) ∼ N (0,P0) is independent
ofW(t) for t ≥ 0, andHU(tk) = f (tk) extracts the topGP f
from the state.We also assume that the functionsΛ and β are
selected suitably such that the SDE (17) has a weakly unique
solution and imply Markov property (Friedman 1975). The
deep Matérn process and Example 2 satisfy the required two
conditions, provided that function g is chosen properly.

Supposewehave a set of observationsy1:N = {y1, y2, . . . , yN },
then the posterior density of interests is

p(U(t) | y1:N ), (18)

for any t1 ≤ t ≤ tN . Since we have discrete-time measure-
ments, let us denote by

Uk :=U(tk),

for k = 1, 2, . . . , N and use U1:N = {U1, . . . ,UN }. Also, it
would be is possible to extend the regression to classification
by using a categorical measurement model (Rasmussen and
Williams 2006; Garcia-Fernández et al. 2019).

5.1 SDE discretization

To obtain the posterior density with discrete-time observa-
tions, we need the transition density of the SDE, such that
Uk+1 ∼ p(Uk+1 | Uk). It is known that the transition den-
sity is the solution to the Fokker–Planck–Kolmogorov (FPK)
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partial differential equation (PDE, Särkkä and Solin 2019).
However, solving a PDE is not computationally cheap, and
does not scale well for large-dimensional state. It is often
more convenient to discretize the SDEs and approximate the
continuous-discrete state-spacemodel (17)with a discretized
version

Uk+1 = a(Uk) + q(Uk),

yk = HUk + rk,
(19)

where a : R� → R
� is a function of state, and q : R� → R

�

is a zero-mean random variable depending on the state. One
of the most commonly used methods to derive functions a
and q is the Euler–Maruyama scheme (Kloeden and Platen
1992). Unfortunately, the Euler–Maruyama is not applicable
for many DGP models, as the covariance q would be sin-
gular. As an example, a smooth Matérn (α ≥ 1) GP’s SDE
representation gives a singular β(Uk)βT(Uk) (see Eq. (16)),
thus the transition density p(Uk+1 | Uk) is ill-defined.

The Taylor moment expansion (TME) is one way to pro-
ceed instead of Euler–Maruyama (Zhao et al. 2021; Kessler
1997; Florens-Zmirou 1989). This method requires that the
SDE coefficients Λ and β are differentiable and there exists
an infinitesimal generator for the SDE (Zhao et al. 2021).
The deep Matérn process satisfies these conditions provided
that the wrapping function g is chosen suitably.

We remark that at this point that we have formed an
approximation to the SS-DGP in order to use its Markov
property. This is different from the batch-DGP model where
we do not utilize theMarkov property for regression. In sum-
mary, we approximate the transition density

p(Uk+1 | Uk) ≈ N (Uk+1 | a(Uk),Q(Uk)),

Q(Uk) = Cov
[
q(Uk) | Uk

]
,

as a non-linear Gaussian, where a discretization such as
Euler–Maruyama or TME is used.With the transition density
formulated, we can now approximate the posterior den-
sity (18) of SS-DGP using sequential methods in state-space.

5.2 State-space MAP solution

The MAP solution to the SS-DGP model is fairly similar to
the batch-DGP model, except that we factorize the posterior
density with the Markov property. Suppose that we are inter-
ested in the posterior density p(U0:N | y1:N ) at N discrete
observation points, then we factorize the posterior density by

p(U0:N | y1:N )

∝ p(y1:N | U0:N ) p(U0:N )

=
N∏

k=1

N (yk | HUk, Rk) p(U0)

N∏

k=1

p(Uk | Uk−1).

(20)

By taking the negative logarithm on both sides of Eq. (20),
the MAP estimate of SS-DGP is given by

USMAP
0:N = argmin

U0:N
LSMAP(U0:N ; y1:N ), (21)

where

LSMAP(U0:N ; y1:N )

= − log

[

p(y1:N | U1:N ) p(U0)

N∏

k=1

p(Uk | Uk−1)

]

= 1

2

N∑

k=1

[
1

Rk
(yk − HUk)

2 + log det(2π Rk)

]

+
N∑

k=1

[
(Uk − a(Uk−1))

T Q−1(Uk−1) (Uk − a(Uk−1))

+ log det(2π Q(Uk−1))
]

× 1

2

+ 1

2

[
UT
0 P

−1
0 U0 + log det(2π P0)

]
.

(22)

The corresponding gradient of (22) is given inAppendix 2.
The computational complexity of this SS-DGP MAP esti-
mation is O(N (d

∑L
i=1 Li )

3) which is in contrast with
the complexity O(N 3 ∑L

i=1 Li ) of the batch-DGP. We see
that the state-space MAP solution has an advantage with
large dataset, as the computational complexity is linear with
respect to the number of data points N .

The state-space MAP method also has the problem that
it is inherently a point estimate. One way to proceed is to
use a Bayesian filter and smoother instead of the MAP esti-
mates (Särkkä 2013).

5.3 Bayesian filtering and smoothing solution

Recall the original SS-DGP model (17). The estimation
of the state from an observed process is equivalent to
computing the posterior distribution (18) which in turn is
equivalent to a continuous-discrete filtering and smooth-
ing problem (Jazwinski 1970; Särkkä and Solin 2019).
Compared to the MAP solution, the Bayesian smoothing
approaches offer the full posterior distribution instead of a
point estimate.

The core idea of Bayesian smoothing is to utilize the
Markov property of the process and approximate the pos-
terior density recursively at each time step. In particular, we
are interested in the filtering posterior

p(Uk | y1:k), (23)
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and the smoothing posterior

p(Uk | y1:N ), (24)

for any k = 1, 2, . . . , N . There are many well-known
methods to obtain the above posterior densities, such as
the Kalman filter and Rauch–Tung–Striebel smoother for
linear Gaussian state-space models. Typical methods for
non-linear SS-DGP models are the Gaussian filters and
smoothers (Särkkä and Sarmavuori 2013; Kushner 1967;
Itô and Xiong 2000). Some popular examples are the
extended Kalman filter and smoother (EKF/EKS), and
the unscented or cubature Kalman filter and smoothers
(UKF/UKS/CKF/CKS). The significant benefit of Gaussian
filters and smoothers is the computational efficiency, as they
scale linearly with the number of measurements.

Remark 1 Although the Gaussian filters and smoothers are
beneficial choices in terms of computation, there are certain
limitations when applying them to DGP regression. We elu-
cidate this peculiar characteristic in Sect. 6.

Instead of Gaussian filters and smoothers, we can use
a particle filter and smoother on a more general setting of
DGPs (Godsill et al. 2004; Andrieu et al. 2010). Typical
choices are the bootstrap particle filter (PF, Gordon et al.
1993) with resampling procedures (Kitagawa 1996) and the
backward-simulationparticle smoother (PF-BS,Godsill et al.
2004). However, particle filters and smoothers do not usu-
ally scale well with the dimension of state-space, as we need
more particles to represent the probability densities in higher
dimensions. Other non-Gaussian assumed density filters and
smoothers might also apply, for example, the projection filter
and smoother (Brigo et al. 1998; Koyama 2018).

6 Analysis on Gaussian approximated DGP
posterior

Gaussian filters are particularly efficient methods, which
approximate the DGP posterior (23) and the predictive den-
sity p(Uk | y1:k−1) as Gaussian (Itô and Xiong 2000). Under
linear additive Gaussian measurement models, the posterior
density is approximated analytically by applying Gaussian
identities. However, we are going to show that this type of
Gaussian approximation is not useful for all constructions
of DGPs. In particular, we show that the estimated posterior
covariance of the observed GP f (t) and an inner GP σ(t)
approaches to zero as t → ∞. As a consequence, the Gaus-
sian filtering update for σ(t) will not use information from
measurements as t → ∞.

Hereafter, we restrict our analysis to a certain construction
of DGPs and a class of Gaussian approximations (filters)
for which we can prove the covariance vanishing property.

Therefore, in Sect. 6.1 we define a construction of DGPs, and
in Algorithm 1 we formulate a type of Gaussian filters. The
main result is revealed in Theorem 1.

We organize the proofs as follows. First we show that
at every time step the predictions from DGPs give vanish-
ing prior covariance (in Lemma 1). Then we show that the
Gaussian filter update step also shrinks the covariance (in
Theorem 1). Finally we prove the vanishing posterior covari-
ance by mathematical induction over all time steps as in
Theorem 1.

6.1 Preliminaries and assumptions

Let f : T → R and uσ : T → R be the solution to the pair
of SDEs

d f (t) = μ(u�(t)) f (t) dt + θ(u�(t), uσ (t)) dW f (t),

duσ (t) = a(uv(t)) uσ (t) dt + b(uv(t)) dWσ (t),
(25)

for t ≥ t0 starting fromrandom initial conditions f (t0), uσ (t0)
which are independent of the Wiener processes W f (t) ∈ R

andWσ (t) ∈ R. In addition, u� : T → R and uv : T → R are
two independent processes driving the SDEs (25), which are
also independent of W f (t) ∈ R and Wσ (t) ∈ R for t ≥ t0.

Let y(tk) = f (tk)+r(tk) be the noisy observation of f (t)
at time tk , where r(tk) ∼ N (0, Rk) and k = 1, 2, . . .. Also
let y1:k = {y1, . . . , yk} and Δt = tk − tk−1 > 0 for all k. We
make the following assumptions.

Assumption 1 The functions μ : R → (−∞, 0), θ : R ×
R → R, a : R → (−∞, 0), and b : R × R → R and the
initial conditions f (t0), uσ (t0), u�(t0), and uv(t0) are chosen
regular enough so that the solution to SDEs (25) exists.

Assumption 2 E
[
f 2(t0)

]
< ∞, E

[
u2σ (t0)

]
< ∞, and

E
[
( f (t0) uσ (t0))2

]
< ∞.

Assumption 3 There exists constants Cμ < 0 and Ca < 0
such that (μ ◦ u�)(t) ≤ Cμ and (a ◦ uv)(t) ≤ Ca almost
surely.

Assumption 4 E
[
(μ(u�(t)) f (t))2

] ≤ C < ∞ almost
everywhere and E

[
θ2(u�(t), uσ (t))

]
< ∞. Also

E
[
θ2(u�(t), uσ (t))

] ≥ Cθ > 0 almost everywhere.

Assumption 5 There exists a constant CR > 0 such that
Rk ≥ CR for all k = 1, 2, . . . , or there exists a k such
that Rk = 0.

The solution existence in Assumption 1 is the prereq-
uisite for the analysis of SDEs (25) (Kuo 2006; Øksendal
2003). Assumption 2 ensures that the SDEs start from a
reasonable condition which is used in Lemma 1. Assump-
tion 3 postulates negativity on functions μ and a. It implies
that the sub-processes f and uσ stay near zero. Also, the
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negativity guarantees the positivity of lengthscale (e.g., the
lengthscale of f (t) is −μ(u�(t))). Assumption 4 yields a
lower bound on the variance of f as stated in Corollary 1.
Finally, Assumption 5 means that the measurement noise
admits a lower bound uniformly which is used in Theorem 1.
This assumption also allows for perfect measurements (i.e.,
no measurement noises).

The above SDEs (25) and Assumptions 1-5 correspond
to a type of DGP constructions. In particular, f is a condi-
tional GP given uσ and u�. Also, uσ is another conditional
GP given uv . The processes u� and uv are two independent
processes that drive f and uσ . TheMatérnDGP inExample 2
satisfies the above assumptions, if we choose Gaussian initial
conditions and a regular wrapping function by, for example,
g(u) = u2 + c and c > 0.

6.2 Theoretical results

The following Lemma 1 shows that the covariance of f (t)
and uσ (t) approaches to zero as t → ∞.

Lemma 1 Under Assumptions 1 to 3,

lim
t→∞Cov[ f (t), uσ (t)] = 0. (26)

Proof Let m f (t):=E[ f (t)], mσ (t):=E[uσ (t)]. By Itô’s
lemma (see, e.g., Theorem 4.2 of Särkkä and Solin 2019),

d ( f (t) uσ (t))

= [uσ (t) μ(u�(t)) f (t) + f (t) a(uv(t)) uσ (t)] dt

+ 1

2
[uσ (t) θ(u�(t), uσ (t)) dW f (t)

+ f (t) b(uv(t)) dWσ (t)].
(27)

To analyze the relation between f and uσ , we need to fix the
information from uv and u�. Hence, let Fv

t and F�
t be the

generated filtrations of uv(t) and u�(t), respectively. Taking
conditional expectations on the above Eq. (27) gives

dE
[
f (t) uσ (t) | Fv

t ,F�
t

]

= E

[
(μ(u�(t)) + a(uv(t))) f (t) uσ (t) | Fv

t ,F�
t

]
dt

= (μ(u�(t)) + a(uv(t)))E
[
f (t) uσ (t) | Fv

t ,F�
t

]
dt .

Thus

E

[
f (t) uσ (t) | Fv

t ,F�
t

]

= E[ f (t0) uσ (t0) | uv(t0), u�(t0)] e
∫ t
t0

μ(u�(s))+a(uv(s)) ds .

Using the same approach, we derive

E

[
f (t) | F�

t

]
= E[ f (t0) | u�(t0)] e

∫ t
t0

μ(u�(s)) ds,

E
[
uσ (t) | Fv

t

] = E[uσ (t0) | uv(t0)] e
∫ t
t0
a(uv(s)) ds .

(28)

Then by law of total expectation, we recover

Cov[ f (t), uσ (t)]
= E

[
E[ f (t0) uσ (t0) | u�(t0), uv(t0)]

× e
∫ t
t0

μ(u�(s))+a(uv(s)) ds
]

− E

[

E[ f (t0) | u�(t0)] e
∫ t
t0

μ(u�(s)) ds
]

× E

[

E[uσ (t0) | uv(t0)] e
∫ t
t0
a(uv(s)) ds

]

.

(29)

Taking the limit of Eq. (29) gives

lim
t→∞Cov[ f (t), uσ (t)]
= lim

t→∞E

[
E[ f (t0) uσ (t0) | u�(t0), uv(t0)]

× e
∫ t
t0

μ(u�(s))+a(uv(s)) ds
]

− lim
t→∞E

[

E[ f (t0) | u�(t0)] e
∫ t
t0

μ(u�(s)) ds
]

× lim
t→∞E

[

E[uσ (t0) | uv(t0)] e
∫ t
t0
a(uv(s)) ds

]

,

(30)

where all the three limits on the right side turn out to be zero.

Let us first focus on E

[

E[ f (t0) | u�(t0)] e
∫ t
t0

μ(u�(s)) ds
]

. By

Jensen’s inequality ([see, e.g., Theorem 7.9 of Klenke 2014)

∣
∣
∣
∣E

[

E[ f (t0) | u�(t0)] e
∫ t
t0

μ(u�(s)) ds
]∣
∣
∣
∣

≤ E

[∣
∣
∣
∣E[ f (t0) | u�(t0)] e

∫ t
t0

μ(u�(s)) ds
∣
∣
∣
∣

]

,

for t ∈ T. Then by Hölder’s inequality (see, e.g., Theorem
7.16 of Klenke 2014), the above inequality continues as

E

[∣
∣
∣
∣E[ f (t0) | u�(t0)] e

∫ t
t0

μ(u�(s)) ds
∣
∣
∣
∣

]

≤
√
E
[
E2[ f (t0) | u�(t0)]

]
√

E

[

e
2
∫ t
t0

μ(u�(s)) ds
]

.
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Now by using Assumption 3, we know that there exists a
constant Cμ < 0 such that (μ ◦ u�)(t) ≤ Cμ almost surely.
Hence

E

[

e
∫ t
t0

μ(u�(s)) ds
]

≤ E

[
eCμ (t−t0)

]
= eCμ (t−t0),

for all t > t0. Therefore

lim
t→∞E

[

E[ f (t0) | u�(t0)] e
∫ t
t0

μ(u�(s)) ds
]

=
√
E
[
E2[ f (t0) | u�(t0)]

]
lim
t→∞ e2Cμ (t−t0) = 0.

Assumption 2 ensures that E
[
E
2[ f (t0) | u�(t0)]

]
is finite.

Similarly, we obtain the zero limits for the rest of the terms
in Eq. (30). Thus limit (26) holds. 
�

The almost sure negativity (i.e., Assumption 3) on func-
tions μ(·) and a(·) is the key condition we need to have for
the covariance to vanish to zero in infinite time. These con-
ditions are often true in an SDE representation of a DGP
because μ(·) and a(·) ensure the positivity of lengthscales.

Before analyzing the posterior covariance,we need to con-
struct a positive lower bound on the variance of f (t), which
is given in Lemma 2 and Corollary 1.

Lemma 2 Under Assumption 1, for any ε > 0, there is ζ > 0
such that

Var[ f (t)] ≥ 1

z(t)

∫ t

t0
z(s)

(
E

[
θ2(u�(s), uσ (s))

]

− 2 ε

√
E
[
(μ(u�(s)) f (s))2

])
ds,

(31)

where z(t) = exp
∫ t
t0
2 ζ

√
E[(μ(u�(s)) f (s))2] ds.

Proof Denote by P(t):=Var[ f (t)] = E[( f (t)−E[ f (t)])2].
By applying Itô’s lemma on ( f (t) − E[ f (t)])2 and taking
expectation, we obtain

P(t) = P(t0) + 2
∫ t

t0
E[μ(u�(s)) f (s)( f (s) − E[ f (s)])] ds

+
∫ t

t0
E

[
θ2(u�(s), uσ (s))

]
ds,

(32)

where the initial P(t0) > 0. By Jensen’s and Hölder’s
inequalities (Klenke 2014),

|E[μ(u�(t)) f (t)( f (t) − E[ f (t)])]|
≤
√

E[(μ(u�(t)) f (t))2]√P(t).

We now form a linear bound on
√
P(t) such that for any

ε > 0, there is ζ > 0 such that
√
P(t) ≤ ε + ζ P(t). Next,

to prove the bound (31), we use the differential form of (32)
and get

dP(t)

dt

≥ −2
√

E[(μ(u�(t)) f (t))2]√P(t) + E[θ2(u�(t), uσ (t))]
≥ −2 ζ

√

E[(μ(u�(t)) f (t))2] P(t)

+
(

E

[
θ2(u�(t), uσ (t))

]
− 2 ε

√

E[(μ(u�(t)) f (t))2]
)

,

Now, we introduce z(t) = exp
∫ t
t0
2 ζ

√
E[(μ(u�(s)) f (s))2]

ds, and then by integrating factor method on d
dt (z(t) P(t)),

we recover the bound (31). 
�
Corollary 1 Under Assumptions 1 and 4 , there exists ε > 0
and CF (Δt) > 0 such that

Var[ f (t)] ≥ CF (Δt). (33)

Proof From Lemma 2, we know that for any ε > 0,
there is ζ > 0 such that Eq. (31) holds. By Assump-
tion 4, we have 1 ≤ z(t) ≤ exp(2 ζ Δt

√
C). Also, we

have E
[
θ2(u�(t), uσ (t))

] − 2 ε

√
E
[
(μ(u�(t)) f (t))2

] ≥
Cθ − 2 ε

√
C almost everywhere. Thus let us choose any

small enough ε < Cθ

2
√
C

so that Cθ − 2 ε
√
C > 0. Now

let CF =
(
Cθ−2 ε

√
C
)
Δt

exp(2 ζ Δt
√
C)

hence Eq. (33) holds. Note that the

inequality (33) only depends on Δt and some fixed parame-
ters of the SDEs. 
�

The following Algorithm 1 formulates a partial procedure
for estimating the posterior density using a Gaussian approx-
imation. In particular, Algorithm 1 gives an approximation

P f ,σ
k ≈ Cov[ f (tk), uσ (tk) | y1:k],

to the posterior covariance for k = 1, 2, . . .. In order to do
so, we need to make predictions through SDEs (25) based on
different starting conditions at each time step. Hence let us
introduce two notations as following. We denote by

Cov[ f (t), uσ (t)](c0),

and

Var[ f (t)](s0),

the functions of t in Eqs. (29) and (32) starting from initial
values c0 ∈ R and s0 ∈ (0,+∞) at t0, respectively.
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Algorithm 1 (Gaussian posterior approximation for P f ,σ
k )

Let us approximate the posterior densities p( f (tk), uσ (tk) |
y1:k) by Gaussian densities for k = 1, 2, . . .. Suppose that
the initial condition is known and particularly P f ,σ

0 :=Cov

[ f (t0), uσ (t0)] and P f , f
0 :=Var[ f (t0)]. Then starting from

k = 1 we calculate

P̄ f ,σ
k = Cov[ f (tk), uσ (tk)](P f ,σ

k−1 ), (34)

and

P̄ f , f
k = Var[ f (tk)](P f , f

k−1 ), (35)

through the SDEs (25) and update

P f ,σ
k = P̄ f ,σ

k − P̄ f , f
k P̄ f ,σ

k

P̄ f , f
k + Rk

, (36)

for k = 1, 2, . . ..

Remark 2 TheaboveAlgorithm1 is a abstractionof continuous-
discrete Gaussian filters (Itô and Xiong 2000; Särkkä and
Solin 2019), except that the predictions through SDEs (25)
are done exactly in Eqs. (34) and (35). The derivation of
Eq. (36) is shown in Appendix 3. Note that in practice the
predictions might also involve various types of Gaussian
approximations and even numerical integrations (e.g., sigma-
point methods).

Theorem 1 Suppose that Assumptions 1 to 5 hold. Further
assume that |Cov[ f (t), uσ (t)](c0)| ≤ |c0| for all c0 ∈ R,
then Algorithm 1 gives

lim
k→∞ P f ,σ

k = 0. (37)

Proof We are going to use induction to prove that the claim

∣
∣
∣P

f ,σ
k

∣
∣
∣ ≤

∣
∣
∣P

f ,σ
0

∣
∣
∣

k∏

i=1

Mi (38)

holds for all k = 1, 2, . . ., where Mi = Ri
P̄ f , f
i +Ri

. To do so,

we expand
∣
∣
∣P

f ,σ
k

∣
∣
∣ by

∣
∣
∣P

f ,σ
k

∣
∣
∣ =

∣
∣
∣
∣
∣
P̄ f ,σ
k − P̄ f , f

k P̄ f ,σ
k

P̄ f , f
k + Rk

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

P̄ f ,σ
k Rk

P̄ f , f
k + Rk

∣
∣
∣
∣
∣
= Mk

∣
∣
∣P̄

f ,σ
k

∣
∣
∣ ≤ Mk

∣
∣
∣P

f ,σ
k−1

∣
∣
∣ .

(39)

Now we can verify that
∣
∣
∣P

f ,σ
1

∣
∣
∣ ≤

∣
∣
∣P

f ,σ
0

∣
∣
∣ M1 when k =

1, which satisfies the induction claim (38). Suppose that

Eq. (38) holds for a given k > 1, then we can calculate
Eq. (39) at k + 1 giving

∣
∣
∣P

f ,σ
k+1

∣
∣
∣ = Mk+1

∣
∣
∣P̄

f ,σ
k+1

∣
∣
∣ ≤ Mk+1

∣
∣
∣P

f ,σ
k

∣
∣
∣

≤ Mk+1

∣
∣
∣P

f ,σ
0

∣
∣
∣

k∏

i=1

Mi =
∣
∣
∣P

f ,σ
0

∣
∣
∣

k+1∏

i=1

Mi ,
(40)

which satisfies the induction claim (38). Thus Eq. (38) holds.
Above, we used the assumption |Cov[ f (t), uσ (t)](c0)| ≤
|c0| for all c0 ∈ R to get

∣
∣
∣P̄

f ,σ
k+1

∣
∣
∣ ≤

∣
∣
∣P

f ,σ
k

∣
∣
∣ for any k.

By Corollary 1, Assumption 5, and a fixed non-zero Δt ,
we know that P̄ f , f

k are lower bounded uniformly over all k,

thus limk→∞
∏k

i=1 Mi = 0. Hence, by taking the limit on
Eq. (38), the Eq. (37) holds. Also, this theorem trivially holds
if Rk = 0 for some k or P f ,σ

0 = 0 because Mk = 0 for all
k = 1, 2, . . .. 
�
Remark 3 Note that in Theorem 1, the initial bounding
assumption |Cov[ f (t), uσ (t)](c0)| ≤ |c0| for all c0 ∈ R

is needed because it is not always followed from Lemma 1.
On the other hand, for any choice of c0 ∈ R, there always
exists a threshold η > 0 such that for all t > η we have
|Cov[ f (t), uσ (t)](c0)| ≤ |c0| because of Lemma 1.

Under the result of bounded Var [ f (t)] in Corollary 1, the
consequence of the vanishing posterior covariance in Theo-
rem 1 is that the so-called Kalman gain for uσ (t) approaches
zero asymptotically. It entails that the Kalman update for
uσ (t) will use no information from measurements when
t → ∞. In the later experiment as shown in Fig. 8 we
see that the corresponding estimated uσ (t) and covariance
rapidly stabilizes to zero.

The previous Theorem 1 is formulated in a general sense
which applies to DGP methods that use Algorithm 1 and
satisfy Assumptions 1 to 5. A concrete example is shown in
the following Example 3.

Example 3 Consider a system of SDEs,

d f (t) = μ f (t) dt + uσ (t) dW f (t),

duσ (t) = a uσ (t) dt + b dWu(t),

(41)

starting from a Gaussian initial condition f (t0), uσ (t0),
where constants μ < 0, a < 0, and b > 0. The conditions of
Theorem 1 are now satisfied, and thus limk→∞ P f ,σ

k = 0.

7 Experiments

In this section we numerically evaluate the proposed meth-
ods. The specific objectives of the experiments are as follows.
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fyr

(a) GP

fyr

�21,1 σ2
1,2

(b) NS-GP

fyr

�21,1 σ2
1,2

(c) DGP-2

fyr

�21,1 σ2
1,2

�31,1 σ3
1,2 �32,3 σ3

2,4

(d) DGP-3

Fig. 2 Graphs of four regression models. We denote by y as the mea-
surement of function f contaminated by noise r . In (b), the processes
�21,1 and σ 2

1,2 in dashed circles are degenerate (learnable hyperparame-
ters)

First, we show the advantages of using DGPs over con-
ventional GPs or non-stationary GPs (one-layer DGPs) in
non-stationary regression. Then, we compare the batch and
state-space constructions of DGPs. Finally, we examine the
efficiencies of different DGP regression methods.

We prepare four regression models as shown in Fig. 2.
These models are the conventional GP (Rasmussen and
Williams 2006), non-stationary GP (NS-GP, Paciorek and
Schervish 2006), two-layer DGP (DGP-2), and three-layer
DGP (DGP-3). The DGP-2 and DGP-3 are constructed using
both the batch and state-space approaches as formulated in
Sects. 3 and 4 , respectively. In particular, we consider a
Matérn type of GP construction, which only has two hyper-
parameters (i.e., the length scale � and magnitude σ ). That is
to say, we use the non-stationaryMatérn covariance function
(Paciorek andSchervish 2006) for theNS-GPandbatch-DGP
models, and the deep Matérn process for SS-DGP model.
For the wrapping function g, we choose g(u) = exp(u).
For the discretization of SS-DGP, we use the 3rd-order TME
method (Zhao et al. 2021). We control the smoothness of f
and hyperparameter processes by using α = 1 and 0, respec-
tively (see Eq. (14)). In addition, we draw samples from the
DGP priors in Appendix 4.

There are unknown model hyperparameters. We use the
maximum likelihood estimation (MLE) routine to optimize
the hyperparameters for the GP and NS-GP models which
have closed-form likelihood functions and gradients. For the
DGP models, we find them by grid searches because the
gradients are non-trivial to derive.We detail the found hyper-
parameters in Appendix 5.

As for the batch-DGP models, we use the proposed
batch maximum a posteriori (B-MAP) method in Sect. 3.1.

Fig. 3 Demonstration of the magnitude-varying rectangle signal in
Eq. (42) with 500 samples

Similarly for theSS-DGP,weapply the state-spaceMAP(SS-
MAP), Gaussian filters and smoothers (Särkkä 2013), and a
bootstrap particle filter (PF, Andrieu et al. 2010; Doucet et al.
2000) and a backward-simulation particle smoother (PF-BS,
Godsill et al. 2004).

Weuse the limited-memoryBroyden–Fletcher–Goldfarb–
Shanno (l-BFGS, Nocedal and Wright 2006) optimizer for
MLE and MAP optimizations. For the Gaussian filters and
smoothers, we exploit the commonly used linearization
(EKFS) and spherical cubature method (CKFS) (Särkkä
2013). As for the PF and PF-BS, we use 200,000 particles
and 1600 backward simulations.

The following experiments except the real application are
computed with the Triton computing cluster at Aalto Uni-
versity, Finland.1 We uniformly allocate 4 CPU cores and 4
gigabyte of memory for each of the individual experiment. In
addition, the PF-BSmethod is implemented with CPU-based
parallelization.All programs are implemented inMATLAB®

2019b.

7.1 Regression on rectangle signal

In this section, we conduct regression on a magnitude-
varying rectangle wave, as shown in Fig. 3. The regression
model is formulated by

f (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t ∈ [0, 1
6 ) ∪ [ 26 , 3

6 ) ∪ [ 46 , 5
6 ),

1, t ∈ [ 16 , 2
6 ),

0.6, t ∈ [ 36 , 4
6 ),

0.4, t ∈ [ 56 , 1],
y(t) = f (t) + r(t),

(42)

where f is the true function, y is themeasurement, and r(t) ∼
N (0, 0.002). We evenly generate samples y(t1), . . . , y(tT ),

1 The code is available at https://github.com/zgbkdlm/ssdgp.
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Fig. 4 GP and NS-GP regressions on model (42). The shaded area
stands for 95% confidence interval

where T = 100. The challenge of this type of signal is that
the rectangle wave is continuous and flat almost everywhere
while it is only right-continuous at a finite number of isolated
points. Moreover, the jumps have different heights.

We formulate the commonly used root mean square error
(RMSE)

(
1

T

T∑

k=1

(
f (tk) − f̃ (tk)

)2
)1/2

, (43)

as well as the negative log predictive density (NLPD)

− log
∫

p(y� | f�) p̃(f� | y1:T ) df�, (44)

to numerically demonstrate the methods’ effectiveness,
where f̃ is the regression estimate, y� are the test data, and
p̃(f� | y1:T ) is the estimated posterior density. Note that the
NLPD metric is not applied to the MAP results. We run 100
independent Monte Carlo trials to average the RMSE and
NLPD as well as the computational time. For visualization,
we uniformly choose the results under the same random seed.

Figure 4 shows the results of GP and NS-GP regres-
sion. Both of GP and NS-GP experience overfitting problem
on this rectangle signal, while the estimated posterior vari-
ance of NS-GP is significantly smaller than that of GP. The
outcome of GP is expected, as the covariance function is
stationary. Because there are no constraints (e.g., being time-
continuous) on the parameters of NS-GP, the learnt �21,1 and

σ 2
1,2 overfit to the likelihood function individually at each

time instant (cf. Paciorek and Schervish 2006). From Table 1
we can see that the RMSE and NLPD of GP and NS-GP are
very close.

The results of B-MAP on batch-DGPs are shown in Fig. 5.
We can see a slight improvement in overfitting compared to
GP and NS-GP. However, the learnt function f (t) of B-MAP
is not smooth enough and is jittering. For B-MAP on DGP-
2, the estimated �21,1 and σ 2

1,2 change abruptly on the jump

points, and do not stay at flat levels, especially �21,1. On the

contrary, the estimated �31,1 and σ 3
1,2 on the last layer of DGP-

3 stay mostly flat while changing sharply on the jump points.
From Fig. 5 and the RMSEs of Table 1 we can see that the
results of B-MAP on DGP-2 and DGP-3 are almost identical
with subtle differences.

Compared to the batch-DGP, the SS-DGP method gives a
better fit to the true function. This result is demonstrated in
Fig. 7, where SS-MAP is used. There is no noticeable overfit-
ting problem in the SS-MAP estimates. The learnt function

Table 1 Averaged RMSEs
(×10−2), NLPD, and
computational time (in seconds)
over different regression models
and methods

Methods RMSE (0−2) NLPD Time (s)

GP (MLE) 4.36 ± 0.3 −136.6 ± 8 2.0 ± 0.5

NS-GP (MLE) 4.28 ± 0.3 −135.9 ± 12 3.3 ± 0.2

B-MAP (DGP-2) 3.89 ± 0.3 N/A 454.9 ± 67

B-MAP (DGP-3) 3.80 ± 0.3 N/A 897.7 ± 37

SS-MAP (DGP-2) 2.04 ± 0.4 N/A 205.4 ± 26

SS-MAP (DGP-3) 1.69 ± 0.3 N/A 479.5 ± 70

CKFS (DGP-2) 4.50 ± 0.3 −136.2 ± 7 0.2 ± 0.03

CKFS (DGP-3) N/A N/A N/A

EKFS (DGP-2) 5.32 ± 0.2 −135.4 ± 8 0.1 ± 0.02

EKFS (DGP-3) 7.77 ± 0.1 −119.6 ± 9 0.2 ± 0.01

PF (DGP-2) 4.25 ± 2.3 −135.5 ± 17 929.6 ± 200

PF (DGP-3) 3.73 ± 0.9 −145.1 ± 12 1460.8 ± 170

PF-BS (DGP-2) 4.08 ± 2.7 −140.6 ± 25 4-7 hrs

PF-BS (DGP-3) 3.35 ± 0.9 −149.2 ± 11 17-20 hrs

Bold represent the best values in each of their columns
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Fig. 5 B-MAP regression results on model (42) using DGP-2 (first row) and DGP-3 (second and third rows)

Fig. 6 CKFS and EKFS regression results on model (42) using DGP-2 (first row) and EKFS on DGP-3 (first and second rows). The shaded area
stands for 95% confidence interval
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Fig. 7 SS-MAP regression results on model (42) using DGP-2 (first row) and DGP-3 (second and third rows)

f is smooth and fits to the actual function to a reasonable
extent. For SS-MAP on DGP-2, the estimated �21,1 and σ 2

1,2
mostly stay at a constant level and change rapidly on the leap
points. From the second and third rows of Fig. 7 and Table 1,
we see that the SS-MAP achieves better result on DGP-3
compared to on DGP-2. We also find that the learnt param-
eters �21,1 and σ 2

1,2 of DGP-3 appear to be smoother than of
DGP-2.

Apart from the SS-MAP solution to the SS-DGP, we also
demonstrate the Bayesian filtering and smoothing solutions
in Figs. 8, 6, and 9 . Figure 8 shows the results of CKFS
on DGP-2. We find that the regression result on DGP-2 is
acceptable though the estimate is overly smooth on the jump
points. The learnt parameters �21,1 also change significantly
on the jump points and stay flat elsewhere. Moreover, we
find that the estimated log(σ 2

1,2) and Cov[ f , σ 2
1,2 | y1:k] con-

verge to zero in very fast speeds, especially the covariance
estimate. This phenomenon resembles the vanishing covari-
ance in Theorem 1. In this case, the estimated log(σ 2

1,2)

converges to the prior mean of SS-DGP which is zero, due
to the vanishing covariance. Therefore for this experiment
and all the following experiments, we treat all the magnitude
parameters of Matérn (e.g., σ 2

1,2) as trainable hyperparam-

eters learnt from grid searches. The results are illustrated
in Fig. 6. However, we identify that there is a numerical
difficultywhen applyingCKFSonDGP-3.Withmany hyper-
parameter settings, theCKFS fails due to numerical problems
(e.g., singular matrix). The EKFS still works on DGP-3, thus
we plot the results in the second row of Fig. 6. The esti-
mated f of EKFS appears to be over-smooth, especially on
the jump points. Also, the estimated variances of �21,1 and

σ 2
1,2 are significantly large.
Figure 9 illustrates the result of PF-BS. We find that the

regression results are reasonably close to the ground truth.
Also, the estimated f is smooth. The estimated parameters
�21,1 and σ 2

1,2 for PF-BS on DGP-2 have a similar pattern
as the results of SS-MAP, CKFS, and EKFS, which only
change abruptly on the jump points. However, the �21,1 of

DGP-3 does not stay flat generally, and σ 2
1,2 does not change

significantly on the jump points. In Table 1, the RMSEs of
PF-BS on DGP-3 are better than on DGP-2. Also, PF-BS is
slightly better than PF.

We now summarize the numerical results in terms of
the RMSEs, NLPD, and computational time from Table 1.
Table 1 demonstrates that the DGP methods using MAP, PF,
and PF-BS outperformGP andNS-GP on this non-stationary
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Fig. 8 CKFS regression on model (42) using DGP-2

signal regression. Moreover, the RMSEs and NLPDs are
improved by using DGP-3 over DGP-2, except for Gaus-
sian filters and smoothers. Among all regression methods,
the SS-MAP is the best in terms of RMSE, followed by B-
MAPandPF-BS. In terms ofNLPD,PF-BSadmits the lowest

Fig. 10 Demonstration of the composite sinusoidal signal (45)

value. However, the NLPD and RMSE results of PF and PF-
BS have very large deviations which are improved by using
DGP-3 over DGP-2. We found that the Gaussian filters and
smoothers (CKFS and EKFS) are the fastest, followed by
GP and NS-GP. We also notice that for all methods, DGP-
3 is more time-consuming than DGP-2. Even though we
implemented PF-BS in CPU-based parallelization the time

Fig. 9 PF-BS regression results on model DGP-2 (first row) and DGP-3 (second and third rows). The shaded area stands for 95% confidence
interval
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Fig. 11 Regression results of GP, Sparse GP, WGP, and HGP on model (45). The shaded area stands for 95% confidence interval

consumption is still significantly higher than of the others
because of the large number of particles and backward sim-
ulations.

7.2 Regression on composite sinusoidal signal

In this section, we conduct another experiment on a non-
stationary composite sinusoidal signal formulated by

f (t) = sin2
(
7π cos

(
2π t2

)
t
)

cos (5π t) + 2
, t ∈ [0, 1],

y(t) = f (t) + r(t),

(45)

where f is the true function, and r(t) ∼ N (0, 0.01).
This type of signal has been used by, for example, Rudner
et al. (2020); Vannucci and Corradi (1999) andMonterrubio-
Gómez et al. (2020). A demonstration is plotted in Fig. 10.
In contrast to the discontinuous rectangle wave in Eq. (42),
this composite sinusoidal is smooth. Thus it is appropriate to
postulate a smoothMatérn prior. This non-stationary signal is
challenging in the sense that the frequencies and magnitudes
are changing rapidly over time.

The settings of this experiment are the same with the rect-
angle wave regression in Sect. 7.1, except that we generate
the signal with 2, 000 samples.With this number ofmeasure-
ments, the NS-GP and MAP-based solvers fail because they
do not converge in a reasonable amount of time. Also, we
select three other GP models from the literature for com-

parison, that are, the fully independent conditional (FIC,
Quinonero-Candela and Rasmussen 2005) sparse GP with
500 pseudo-inputs, the warped GP (WGP, Snelson et al.
2004), and a non-stationary GP (HGP) by Heinonen et al.
(2016).

The results for GP, Sparse GP, WGP, and HGP are shown
in Fig. 11. We find that the estimate of GP is overfitted to
the measurements, and it is not smooth. On the contrary, the
estimate of sparse GP is underfitted. The result of WGP is
similar to GP, but the estimated variance of WGP is large.
The HGP works well except for the part after t > 0.8 s. The
learnt �21,1 and σ 2

1,2 from HGP are smooth.
Figures 12 and 13 plot the results of EKFS and CKFS,

respectively. From visual inspection, the Gaussian filters and
smoothers based DGPs outperformGP, sparse GP,WGP, and
HGP. We also find that the estimates from EKFS and CKFS
are quite similar, whereas EKFS gives smoother estimate of
f compared to CKFS. The learnt �21,1 and σ 2

1,2 also adapt to
the frequency changes of the signal. It is worth noticing that
the estimated �31,1 in the third layer of DGP-3 is almost flat
for both CKFS and EKFS.

The RMSE, NLPD, and computational time are listed in
Table 2. This table verifies that the DGPs using Gaussian fil-
ters and smoothers (i.e., CKFS and EKFS) outperform other
methods in terms of RMSE, NLPD, and computational time.
Also, CKFS gives slightly better RMSE and NLPD than
EKFS. For this signal, using DGP-3 yields no better RMSE
and NLPD compared to DGP-2.
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Fig. 12 EKFS regression results on model (45) using DGP-2 (first row) and DGP-3 (second row). The shaded area stands for 95% confidence
interval

Fig. 13 CKFS regression results on model (45) using DGP-2 (first row) and DGP-3 (second row). The shaded area stands for 95% confidence
interval
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Table 2 AveragedRMSEs,NLPD, and computational time (in seconds)
on model (45) over different regression models and solvers

Methods RMSE (0−2) NLPD (03) Time (s)

GP (MLE) 3.08 ± 0.1 −1.69 ± 0.03 1.4 ± 0.5

Sparse GP (FIC) 17.52 ± 1.9 1.24 ± 0.71 0.3 ± 0.1

WGP 3.21 ± 2.6 N/A 2.6 ± 1.0

HGP 9.35 ± 1.7 −0.93 ± 0.36 765.5 ± 109

CKFS (DGP-2) 2.52 ± 0.2 −1.71 ± 0.03 0.3 ± 0.1

CKFS (DGP-3) 2.54 ± 0.2 −1.70 ± 0.03 0.9 ± 0.2

EKFS (DGP-2) 2.61 ± 0.2 −1.70 ± 0.03 0.1 ± 0.03

EKFS (DGP-3) 2.73 ± 0.2 −1.70 ± 0.03 0.2 ± 0.02

Bold represent the best values in each of their columns

7.3 Real data application on LIGO gravitational
wave detection

The theoretical existence of gravitational waves was pre-
dicted by Albert Einstein in 1916 from a linearized field
equation of general relativity (Hill et al. 2017; Einstein and
Rosen 1937). In 2015, the laser interferometer gravitational-
wave observatory (LIGO) team made the first observation
of gravitational waves from a collision of two black holes,
known as the event GW150914 (Abbott et al. 2016). The
detection was originally done by using a matched-filter
approach. It is of our interests to test if the GP and DGP
approaches can detect the gravitational waves from the LIGO
measurements. We now formulate the detection as a regres-
sion task.

We use the observation data provided by LIGO scientific
collaboration and the Virgo collaboration.2 As shown in the
first picture of Fig. 14, the data contains 3,441 measurements
sampled in frequency of 16,384 Hz. We use time interval
10−5 s to interpolate the data, which results in 10, 499 time
steps. The reference gravitational wave calculated numeri-
cally from the general relativity theory is shown in Fig. 14,
and we use it as the ground truth for comparison.

We use the previously formulated regression models GP
andDGP-2, as shown inFig. 2.Unfortunately, theNS-GPand
MAP-based solvers are not applicable due to a large number
of observations and interpolation steps. Hence, we choose
the Gaussian filters and smoothers (i.e., CKFS and EKFS)
for DGP regression.

The detection results are shown in the second and third
rows of Fig. 14. We find that the DGP-2 model gives a bet-
ter fit to the gravitational wave compared to GP. The DGP-2
estimate is almost identical to the numerical relativity result.
GP however, fails because the estimate overfits to the mea-
surements. Also, the outcomes of DGP-2 are explainable by

2 The data is available at https://doi.org/10.7935/K5MW2F23 or
https://doi.org/10.7935/82H3-HH23.

reviewing the learnt parameter �21,1. We see that the length

scale �21,1 adapts to the frequency changes of the gravitational
wave, which is an expected feature by using the DGP model.
The results ofCKFS andEKFS are similar, while EKFSgives
smoother results.

Moreover, the Gaussian filters and smoothers on DGP-2
have significantly smaller time consumption compared toGP.
In one single run of the program, CKFS and EKFS take 1.5 s
and 0.4 s, respectively, while GP takes 202.2 s (including
hyperparameter optimization).

7.4 Summary of experimental results

In this section, we summarize the results of the state-space
methods presented in the sections above. In the rectangular
signal regression experiment, the state-space MAP and par-
ticle smoothing methods are better than Gaussian smoothers
(e.g., EKFS and CKFS) in terms of RMSE and NLPD. Based
on the results of the composite sinusoidal signal regression
experiment, Gaussian smoothers are particularly efficient in
computation. However, Gaussian smoothers may not be suit-
able solvers for SS-DGP models that have both lengthscale
and magnitude parameters included in the DGP hierarchy.
This is proved in Sect. 6, and it is also numerically shown in
Fig. 8.

8 Conclusion

In this paper, we have proposed a state-space approach to
deep Gaussian process (DGP) regression. The DGP is for-
mulated as a cascaded collection of conditional Gaussian
processes (GPs). By using the state-space representation, we
cast the DGP into a non-linear hierarchical system of lin-
ear stochastic differential equations (SDEs). Meanwhile, we
propose the maximum a posteriori and Bayesian filtering and
smoothing solutions to the DGP regression task. The exper-
iment shows significant benefits when applying the DGP
methods to simulated non-stationary regression problems as
well as to a real data application in gravitational wave detec-
tion.

The proposed state-space DGPs (SS-DGPs) have the fol-
lowing major strengths. The DGP priors are capable of
modeling larger classes of functions compared to the con-
ventional and non-stationary GPs. In the construction of
state-space DGP, one does not need to choose/design valid
covariance functionsmanually like inPaciorek andSchervish
(2006) or Salimbeni and Deisenroth (2017b). In DGP regres-
sion in state-space form we do not need to evaluate the (full)
covariance function either. Moreover, state-space methods
are particularly efficient for temporal data as they have linear
computational complexity with respect to time.

123

https://doi.org/10.7935/K5MW2F23
https://doi.org/10.7935/82H3-HH23


Statistics and Computing            (2021) 31:75 Page 21 of 26    75 

Fig. 14 LIGO gravitational wave detection (event GW150914, Hanford, Washington) using (Matérn, α = 1) GP and DGP-2. The shaded area
stands for 95% confidence interval

In addition, we have identified a wide class of SS-DGPs
that are not suitable for Gaussian smothers to solve. More
specifically, these SS-DGP models are the ones that have
both their lengthscale and magnitude parameters modeled as
GPnodes under the assumptions in Section 6.When applying
Gaussian smoothers on these SS-DGPs, their Kalman gains
converge to zero as time goes to infinity, which makes Gaus-
sian smoothers use no information from data to update their
posterior distributions. This is one limitation of SS-DGPs.
Although one can use theMAP and particle smoothingmeth-
ods in place of Gaussian smoothers, these methods can be
computationally demanding.

For future investigation, enabling automatic differentia-
tions is of interests. In this paper we have only applied grid
search on a large number of trainable hyperparameters which

results in a very crude optimization. By using libraries like
TensorFlow or JAX we can also obtain Hessians which we
can use to quantify the uncertainty in MAP.

Another useful future extension is to exploit data-scalable
inference methods, such as sparse variational methods. For
example, Chang et al. (2020) solve state-space GP regression
problems (possibly with non-Gaussian likelihoods) by using
a conjugate variational inference method while still retain-
ing a linear computational complexity in time. Their work
is extended by Wilkinson et al. (2021) who introduce sparse
inducing points to the said variational state-space GP infer-
ence, resulting in a computational complexity that is linear
in the number of inducing points. Although these works are
mainly concerned with standard state-space GPs (i.e., lin-
ear state-space models), it would be possible to apply these
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methods on SS-DGPs as well, for example, by linearizing
the state-space models of SS-DGPs.

Generalizing the temporal SS-DGPs to spatio-temporal
SS-DGPs (see, the end of Section 4.2) would be worth
studying as well, by extending the methodologies introduced
in Särkkä et al. (2013); Emzir et al. (2020).
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Appendix A Derivatives of Loss Function (6)

We define the derivatives in a set

∂LBMAP

∂U1:N
=

{
∂L

∂uij,k|1:N
: i = 1, . . . , L, k = 1, 2, . . . , Li

}

for all nodes, where each element is a column vector. For the
top GP f :=u11,1, the derivative is

∂LBMAP

∂ f1:N
= −R−1 (y1:N − f1:N ) + C−1 f1:N .

The derivatives of other GP nodes are given by

∂LBMAP

∂uij,k|1:N
= ∂ − log p(uij,k|1:N | Ui+1

k,·|1:N )

∂uij,k|1:N

+ ∂ − log p(ui−1
j,k|1:N | Ui

k,·|1:N )

∂uij,k|1:N

=
(
Ci
k

)−1
uij,k|1:N + 1

2
gik .

Above, the m-th element of gik ∈ R
N is

[
gik
]

m
= ∂LBMAP

∂uij,k|m

=
∂ − log

∣
∣
∣2π Ci−1

k

∣
∣
∣

∂uij,k|m

+ ∂ − (ui−1
j,k|1:N )T (Ci−1

k )−1 ui−1
j,k|1:N

∂uij,k|m

= tr

[((
Ci−1
k

)−1 − τ τ T
)

∂Ci−1
k

∂uij,k|m

]

,

where uij,k|m is the m-th element of uij,k|1:N and τ =
(
Ci−1
k

)−1
ui−1
j,k|1:N .

Appendix B Derivatives of Loss Function (22)

We collect the derivates of the state in a set

∂LSMAP

∂U1:N
=

{
∂LSMAP

∂Uk
, k = 0, . . . , N

}

,

for all time step, where each element is a column vector. For
the initial condition, its derivative is

∂LSMAP

∂U0
= P−1

0 U0 + 1

2
z0.

For k = 1, 2, . . . , N − 1, the derivative is

∂LSMAP

∂Uk
= 1

Rk
HT (HUk − yk)

+ Q−1(Uk−1) (Uk − a(Uk−1)) + 1

2
zk .

Above, zk ∈ R
� is a vector for k = 0, 1, . . . , N − 1. Now

let us temporarily use umk as them-th component of stateUk ,
then the m-th element of zk is

zk tm = −UT
k+1Q

−1(Uk)
∂Q(Uk)

∂umk
Q−1(Uk)Uk+1

+ 2
∂aT(Uk)

∂umk
Q−1(Uk) (a(Uk) − Uk+1)

+ aT(Uk)Q−1(Uk)
∂Q(Uk)

∂umk
Q−1(Uk)

× (2Uk+1 − a(Uk))

+ tr

(

Q−1(Uk)
∂Q(Uk)

∂umk

)

.

(46)
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Fig. 15 Samples of DGP-2 models defined in Example 2 (first row) and Fig. 2c (second row)

Finally, for the derivative on the last time step

∂LSMAP

∂UN
= 1

RN
HT (HUN − yN )

+ Q−1(UN−1) (UN − a(UN−1)) .

(47)

Appendix C Derivation of Eq. (36)

Let us denote by

P̄k =
[
P̄ f , f
k P̄ f ,σ

k

P̄ f ,σ
k P̄σ,σ

k

]

.

Then by the update step of Gaussian filters (see, e.g., Algo-
rithm 6.3 of Särkkä 2013), we have

Sk = H P̄k H
T + Rk,

Kk = P̄k H
T/Sk,

Pk = P̄k − Kk K
T
k /Sk,

where H = [
1 0

]
. Substituting Kk and Sk into Pk gives

Pk = P̄k −
⎡

⎣

(
P̄ f , f
k

)2
P̄ f , f
k P̄ f ,σ

k

P̄ f , f
k P̄ f ,σ

k

(
P̄σ,σ
k

)2

⎤

⎦ /
(
P̄ f , f
k + Rk

)

Hence, the P f ,σ
k of Pk is

P f ,σ
k = P̄ f ,σ

k − P̄ f , f
k P̄ f ,σ

k

P̄ f , f
k + Rk

.

Appendix D Samples fromDGP Priors and
Predictions fromDGP Posterior Distributions

To demonstrate the non-stationarity of the DGP models, we
draw samples from the DGPs priors defined in Example 2
and Fig. 2c. The samples are drawn by using the TME-3
discretization approach (Zhao et al. 2021) on t ∈ [0, 10]with
time interval Δt = 0.01 s. We show the samples in Figs. 15,
16 where we can clearly see the non-stationary features of
process f (t). The samples also switch the stationary and
non-stationary behaviour randomly.

It is also of interests to see how does a fitted DGP model
behave in the future (i.e., when extrapolated). For this pur-
pose, we select the fitted CKFS DGP-2 on the sinusoidal
experiments as the example. We draw prediction samples
starting from the end of the smoothing posterior distribu-
tion, and predict until t = 4 s. We see that at the beginning
(t = 1 s) the samples of f retain similar features as the fitted
f . As t reaches the end, f (t) is gradually becoming smoother
because its lengthscale approach the stationary state.
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Fig. 16 Prediction samples drawn from the CKFS DGP-2 model (i.e., continuation of Fig. 13). Only two samples are shown for the sake of
readability

Table 3 Hyperparameters found
via grid search for the rectangle
(first block) and sinusoidal
(second block) experiments

Method DGP-2 DGP-3

B-MAP � = 0.087, σ = 0.3 � = 0.04, σ = 0.3

SS-MAP � = 0.008, σ = 0.14 � = 0.001, σ = 0.92

EKFS σ 2
1,2 = 2� = 0.001, σ = 2.1 σ 2

1,2 = 12, σ 3
1,2 = 0.8 � = 0.001, σ = 9

CKFS σ 2
1,2 = 2� = 0.001, σ = 1.54 N/A

PF-BS � = 0.008, σ = 0.54 � = 0.098, σ = 0.79

CKFS σ 2
1,2 = 0.4� = 2.83, σ = 1.49 σ 2

1,2 = 0.4, σ 3
1,2 = 1.2 � = 140, σ = 0.7

EKFS σ 2
1,2 = 1.6� = 0.23, σ = 1.16 σ 2

1,2 = 1.2, σ 3
1,2 = 0.9� = 0.22, σ = 0.01

Appendix E Hyperparameter Values Found
via Grid Search

For the sake of reproducibility we list the hyperparameters
found by grid search in the following Table 3. Due to a large
number of unknown hyperparameters, the grid search routine
assumes that GP nodes in the last layer share the same hyper-
parameters. Hereafter we use notations � and σ to represent
the last layer lengthscale and magnitude.

References

Abbott, B.P., et al.: Observation of gravitational waves from a binary
black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

Al-Shedivat, M.,Wilson, A.G., Saatchi, Y., Hu, Z., Xing, E.P.: Learning
scalable deep kernels with recurrent structure. J.Mach. Learn. Res.
18(82), 1–37 (2017)

Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte
Carlo methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72(3),
269–342 (2010)

Bishop, C.M.: Pattern Recognition and Machine Learning. Springer,
Berlin (2006)

Brigo, D., Hanzon, B., LeGland, F.: A differential geometric approach
to nonlinear filtering: the projection filter. IEEE Trans. Autom.
Control 43(2), 247–252 (1998)

Brooks, S., Gelman, A., Jones, G., Meng, X.L.: Handbook of Markov
Chain Monte Carlo. Chapman and Hall/CRC, Cambridge (2011)

Calandra, R., Peters, J., Rasmussen, C.E., Deisenroth, M.P.: Manifold
Gaussian processes for regression. In: 2016 International Joint
Conference on Neural Networks (IJCNN), pp 3338–3345 (2016)

Chang, P.E., Wilkinson, W.J., Khan, M.E., Solin, A.: Fast variational
learning in state-space Gaussian process models. In: 2020 IEEE
30th International Workshop onMachine Learning for Signal Pro-
cessing (MLSP) (2020)

Damianou,A., Lawrence,N.:DeepGaussian processes. In: Proceedings
of the Sixteenth International Conference onArtificial Intelligence
and Statistics, Scottsdale, Arizona, USA, vol. 31, pp. 207–215
(2013)

123



Statistics and Computing            (2021) 31:75 Page 25 of 26    75 

Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sam-
plingmethods forBayesianfiltering. Stat. Comput. 10(3), 197–208
(2000)

Dunlop, M.M., Girolami, M.A., Stuart, A.M., Teckentrup, A.L.: How
deep are deep Gaussian processes? J. Mach. Learn. Res. 19(54),
1–46 (2018)

Duvenaud, D., Rippel, O., Adams, R., Ghahramani, Z.: Avoiding
pathologies in very deep networks. Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics,
PMLR, Reykjavik, Iceland, Proceedings of Machine Learning
Research vol. 33, pp. 202–210 (2014)

Einstein, A., Rosen, N.: On gravitational waves. J. Franklin Inst. 223(1),
43–54 (1937)

Emzir, M., Lasanen, S., Purisha, Z., Roininen, L., Särkkä, S.: Non-
stationary multi-layered Gaussian priors for Bayesian inversion.
Inverse Prob. 37(1), 015002 (2020)

Emzir,M.F., Lasanen, S., Purisha, Z., Särkkä, S.:Hilbert-space reduced-
rank methods for deep Gaussian processes. In: 2019 IEEE 29th
International Workshop on Machine Learning for Signal Process-
ing (MLSP) (2019)

Florens-Zmirou, D.: Approximate discrete-time schemes for statistics
of diffusion processes. Statistics 20(4), 547–557 (1989)

Friedman, A.: Stochastic Differential Equations and Applications.
Springer, Berlin (1975)

Garcia-Fernández, A.F., Tronarp, F., Särkkä, S.: Gaussian process clas-
sification using posterior linearisation. IEEE Signal Process. Lett.
26(5), 735–739 (2019)

Glad, T., Ljung, L.: Control Theory: Multivariate and Nonlinear Meth-
ods. Taylor & Francis, New York (2000)

Godsill, S.J., Doucet, A., West, M.: Monte Carlo smoothing for nonlin-
ear time series. J. Am. Stat. Assoc. 99(465), 156–168 (2004)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press,
Cambridge (2016)

Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. IEE Proc. F (Radar and Signal
Process.) 140(2), 107–113 (1993)

Hartikainen, J., Särkkä, S.: Kalman filtering and smoothing solutions
to temporal Gaussian process regression models. In: 2010 IEEE
International Workshop on Machine Learning for Signal Process-
ing, pp. 379–384 (2010)

Heinonen, M., Mannerström, H., Rousu, J., Kaski, S., Lähdesmäki,
H.: Non-stationary Gaussian process regression with Hamiltonian
Monte Carlo. In: Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, PMLR, Proceedings of
Machine Learning Research, vol 51, pp. 732–740 (2016)

Higdon, D., Swall, J., Kern, J.: Non-stationary spatial modeling.
Bayesian. Statistics 6(1), 761–768 (1999)

Hill, C.D., Nuroski, P., Bieri, L., Garfinkle, D., Yunes, N.: The mathe-
matics of gravitational waves. Notice of the AMS 64(7), 686–707
(2017)

Itô, K., Xiong, K.: Gaussian filters for nonlinear filtering problems.
IEEE Trans. Autom. Control 45(5), 910–927 (2000)

Jazwinski, A.: Stochastic Processes and Filtering Theory. Academic
Press, Cambridge (1970)

Kessler, M.: Estimation of an ergodic diffusion from discrete observa-
tions. Scand. J. Stat. 24(2), 211–229 (1997)

Khasminskii, R.: Stochastic Stability ofDifferential Equations, 2nd edn.
Springer, Berlin (2012)

Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian non-
linear state space models. J. Comput. Gr. Stat. 5(1), 1–25 (1996)

Klenke, A.: Probability Theory: A Comprehensive Course, 2nd edn.
Springer, London (2014)

Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential
Equations. Springer, Berlin (1992)

Koyama, S.: Projection smoothing for continuous and continuous-
discrete stochastic dynamic systems. Signal Process. 144, 333–340
(2018)

Kuo, H.H.: Introduction to Stochastic Integration. Springer, New York
(2006)

Kushner, H.J.: Approximations to optimal nonlinear filters. IEEETrans.
Autom. Control 12(5), 546–556 (1967)

Lazaro-Gredilla, M., Titsias, M.: Variational heteroscedastic Gaussian
process regression. In: Proceedings of the 28th International Con-
ference on Machine Learning (ICML-11), ACM, New York, NY,
USA, pp 841–848 (2011)

Le, Q.V., Smola, A.J., Canu, S.: Heteroscedastic Gaussian process
regression. In: Proceedings of the 22nd International Conference
on Machine Learning, Association for Computing Machinery,
New York, NY, USA, p 489–496 (2005)

Lindgren, F., Rue, H., Lindström, J.: An explicit link between Gaus-
sian fields and Gaussian Markov random fields: The stochastic
partial differential equation approach. J. R. Stat. Soc. Ser. B (Stat.
Methodol.) 73(4), 423–498 (2011)

Luengo, D., Martino, L., Bugallo, M., Elvira, V., Särkkä, S.: A survey
of Monte Carlo methods for parameter estimation. EURASIP J.
Adv. Signal Process. 25, 1–62 (2020)

Mao, X.: Stochastic Differential Equations and Applications, 2nd edn.
Woodhead Publishing, Oxford (2008)

Monterrubio-Gómez, K., Roininen, L., Wade, S., Damoulas, T., Giro-
lami,M.: Posterior inference for sparse hierarchical non-stationary
models. Comput. Stat. Data Anal. 148, 106954 (2020)

Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer,
Berlin (2006)

Øksendal, B.: Stochastic Differential Equations: An Introduction with
Applications, 5th edn. Springer, Berlin (2003)

Paciorek, C.J., Schervish, M.J.: Nonstationary covariance functions for
Gaussian process regression. In: Advances in Neural Information
Processing Systems 16, MIT Press, pp. 273–280 (2004)

Paciorek, C.J., Schervish, M.J.: Spatial modelling using a new class of
nonstationary covariance functions. Environmetrics 17(5), 483–
506 (2006)

Quinonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse
approximate Gaussian process regression. J. Mach. Learn. Res.
6(Dec):1939–1959 (2005)

Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine
Learning. The MIT Press, Cambridge (2006)

Rogers, C., Williams, D.: Diffusions, Markov Processes, and Martin-
gales, vol. 1, 2nd edn. Cambridge University Press, Cambridge
(2000a)

Rogers, C., Williams, D.: Diffusions, Markov Processes, and Martin-
gales, vol. 2, 2nd edn. Cambridge University Press (2000b)

Roininen, L., Girolami, M., Lasanen, S., Markkanen, M.: Hyperpriors
for Matérn fields with applications in Bayesian inversion. Inverse
Problems Imaging 13(1), 1–29 (2019)

Rudner, T., Sejdinovic, D., Gal, Y.: Inter-domain deep Gaussian pro-
cesses with RKHS Fourier features. Proc. Int. Conf. Mach. Learn.
2020, 10236–10245 (2020)

Salimbeni, H., Deisenroth, M.: Doubly stochastic variational inference
for deep Gaussian processes. In: Advances in Neural Information
Processing Systems, Curran Associates, Inc., vol 30 (2017a)

Salimbeni, H., Deisenroth, M.P.: Deeply non-stationary Gaussian pro-
cesses. In: NIPS Workshop on Bayesian Deep Learning (2017b)

Sampson, P.D., Guttorp, P.: Nonparametric estimation of nonstationary
spatial covariance structure. J. Am. Stat. Assoc. 87(417), 108–119
(1992)

Särkkä, S.: BayesianFiltering andSmoothing. Institute ofMathematical
Statistics Textbooks, Cambridge University Press (2013)

Särkkä, S., Hartikainen, J.: Infinite-dimensional Kalman filtering
approach to spatio-temporal Gaussian process regression. Pro-
ceedings of the Fifteenth International Conference on Artificial

123



   75 Page 26 of 26 Statistics and Computing            (2021) 31:75 

Intelligence and Statistics, La Palma, Canary Islands vol. 22, pp.
993–1001 (2012)

Särkkä, S., Sarmavuori, J.: Gaussian filtering and smoothing for
continuous-discrete dynamic systems. Signal Process. 93(2), 500–
510 (2013)

Särkkä, S., Solin, A.: Applied Stochastic Differential Equations. Insti-
tute of Mathematical Statistics Textbooks, Cambridge University
Press (2019)

Särkkä, S., Solin, A., Hartikainen, J.: Spatiotemporal learning via
infinite-dimensional Bayesian filtering and smoothing: A look at
Gaussian process regression through Kalman filtering. IEEE Sig-
nal Process. Mag. 30(4), 51–61 (2013)

Shen, Y., Luo, Q., Mao, X.: The improved LaSalle-type theorems for
stochastic functional differential equations. J. Math. Anal. Appl.
318(1), 134–154 (2006)

Snelson, E., Ghahramani, Z., Rasmussen, C.E.: Warped Gaussian pro-
cesses. In: Advances in Neural Information Processing Systems
16, pp. 337–344. MIT Press (2004)

Tolvanen, V., Jylänki, P., Vehtari, A.: Expectation propagation for non-
stationary heteroscedastic Gaussian process regression. In: 2014
IEEE InternationalWorkshoponMachineLearning for Signal Pro-
cessing (MLSP) (2014)

Vannucci, M., Corradi, F.: Covariance structure of wavelet coefficients:
theory and models in a Bayesian perspective. J. R. Stat. Soc. Ser.
B (Stat. Methodol.) 61(4), 971–986 (1999)

Wilkinson, W., Solin, A., Adam, V.: Sparse algorithms for Marko-
vian Gaussian processes. In: Proceedings of the 24th International
Conference on Artificial Intelligence and Statistics, vol 130, pp
1747–1755 (2021)

Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel
learning. In: Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, PMLR, Cadiz, Spain, Pro-
ceedings of Machine Learning Research, vol 51, pp 370–378
(2016a)

Wilson, A.G., Hu, Z., Salakhutdinov, R.R., Xing, E.P.: Stochastic vari-
ational deep kernel learning. In: Advances in Neural Information
Processing Systems, Curran Associates, Inc., vol 29 (2016b)

Xu, D., Yang, Z., Huang, Y.: Existence-uniqueness and continuation
theorems for stochastic functional differential equations. J. Differ.
Equ. 245(6), 1681–1703 (2008)

Zhao, Z., Karvonen, T., Hostettler, R., Särkkä, S.: Taylor moments
expansion for continuous-discrete Gaussian filtering. IEEE Trans-
actions on Automatic Control In press (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


