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ABSTRACT

Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for
causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes
produced as a result of nonlinear wave–particle interactions. We show that wave parameters, consistent with large-
amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a
result of Landau trapping. Relativistic microbursts (>1 MeV) can also be generated by a similar mechanism, but
require waves with large propagation angles 50kBq >  and phase-speeds v c 9F . Using our result for
precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the
magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales
(of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our
results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of
planetary radiation belts and their role in the cyclical production of energetic electrons (E 100 keV) on kinetic
timescales, which is much faster than previously inferred.
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1. INTRODUCTION

The last 10 years have shown what could potentially be
described as a paradigm shift in our understanding of planetary
radiation belts’ properties and dynamics. The observation that
wave–particle interactions might dominate the transport proper-
ties of electrons (Green & Kivelson 2004; Chen et al. 2007;
Reeves et al. 2013), followed a few years later by the discovery
of large-amplitude ( E 100d mVm−1), obliquely propagating

40kBq > , quasi-monochromatic whistlers (LAWs) observed in
the lower band frequency range (Cattell et al. 2008, 2012;
Cully et al. 2008; Kellogg et al. 2010, 2011; Breneman et al.
2011, 2012; Kersten et al. 2011; Wilson et al. 2011; Agapitov
et al. 2014; Artemyev et al. 2015), and the more recent
observations of nonlinear electronic structures (Kellogg et al.
2010; Mozer et al. 2013, 2014; Malaspina et al. 2014), have
irremediably altered our comprehension of radiation belts. For
instance, the discovery of large-amplitude whistlers with
Poynting flux over four orders of magnitude above previous
estimates (Wilson et al. 2011) raises fundamental questions as
to the validity of quasi-linear theory (e.g., Diamond et al. 2010)
as a means to quantify wave–particle interactions and transport
coefficients (Thorne et al. 2013). The realization that electric
fields that are intermittent but large, parallel to the mean
magnetic field, are commonly observed in the radiation belts,
has led to a growing number of studies of nonlinear wave–
particle interactions applied to the Earth’s radiation belts
(Bortnik et al. 2008; Tao & Bortnik 2010; Yoon 2011;
Artemyev et al. 2012, 2014a, 2014b, 2014c; Osmane & Hamza
2012b, 2014; Yoon et al. 2013, 2014; Osmane & Pulkki-
nen 2014; Woodroffe & Streltsov 2014; Drake et al. 2015).

Despite the inherent difficulty to observe and quantify the
impact of LAWs due to their bursty nature and the necessity for
high time resolution instruments, there is already observational
evidence of their possible role in the generation of microburst
events (Kersten et al. 2011). Rapid, millisecond-long bursts of

electron precipitation, termed microbursts, have been measured
by numerous missions at energies ranging from keV (Anderson
& Milton 1964; Parks 1978) up to MeV, or relativistic energies
(Imhof et al. 1992; Nakamura et al. 1995; Blake et al. 1996).
Though the correlation between chorus waves and electron
energization in the radiation belts is not recent (Lorentzen
et al. 2001; Summers & Omura 2007; Hikishima et al. 2010;
Lakhina et al. 2010; Tsurutani et al. 2013), new theoretical
studies demonstrate that LAWs could be particularly efficient,
energizing electrons by 10–80 keV and pitch-angle scattering
( 1 7–aD ~  ) electrons on timescales consistent with micro-
burst events (Artemyev et al. 2012, 2014a; Osmane &
Hamza 2012b, 2014). For electrons with kinetic energies of
tens of keV, interacting with typical LAWs, the energy gain of
factors of two was associated with Landau trapped orbits
(Artemyev et al. 2012; Osmane & Hamza 2014).
In this report, we quantify particle and energy precipitation

fluxes generated by LAWs across a wide range of wave
properties. Wave parameters (phase-speeds vΦ and propagation
angles kBq ) are not limited to the cold plasma dispersion
approximation. Recent observations by Kellogg et al. (2010)
and Mozer et al. (2013) in the radiation belts and Kellogg et al.
(2011) in the magnetosphere show that the nonlinear electron
structures and waveforms are not always consistent with the
cold plasma dispersion relation, which explains the need for
widening the scope of the theoretical treatment herein.
Consequently, our study also quantifies energy and particle
fluxes generated by whistlers with v c 6F and 50kB q ,
that is, parameters inconsistent with the cold plasma dispersion
relation. This extension beyond the cold plasma dispersion
limits is useful as it shows the transition between keV and MeV
microbursts. The range of wave amplitude B B0d is also chosen
between 0.1% and 10%. This range of wave amplitude is based
on the statistical study of Wilson et al. (2011), in which, even
though the bulk of the amplitudes were measured between
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0.1% and 1%, whistlers with amplitudes of 10% were also
observed. Hence, our study is specifically designed to quantify
the effect of a wide range of wave properties (amplitude,
frequency, and refractive index) on the precipitating fluxes. The
investigated hypothesis is that despite the short-timescale
interaction with LAWs, pitch-angle scattering during the
trapping of Landau-resonant electrons might be sufficiently
strong to result in 10–100 ms microbursts with classical and
perhaps relativistic levels. Following our description of
precipitation fluxes for various wave parameters, we use our
results to argue that due to electron losses, holes in the
distribution function can result in the generation of double
layers and electron solitary holes on timescales consistent with
the observation of Mozer et al. (2013, 2014), Malaspina et al.
(2014), and the recent numerical investigation of Drake
et al. (2015).

2. MOTIVATION

2.1. Landau Trapping by LAWs

The results of Osmane & Hamza (2012b, 2014) and
Artemyev et al. (2012, 2014a) are the motivation of the current
study and can be summarized by using a simple kinematic
argument. Landau-resonant electrons near the equatorial plane
can be trapped in the potential of the parallel electric field for a
time T s vcos kB trap( )q~ f, for the propagation angle kBq , the
phase-speed vf, and the distance along the field line strap. The
trapping in the potential of the parallel electric field is
terminated as a result of the preservation of the first adiabatic
invariant p mB22m = ^ , whenever the electric force is of the
same order and opposite to the magnitude as the magnetic
mirror force, i.e., q E Bd ~ m

g  , where the first invariant μ is
written in terms of the perpendicular momentum p m vg=^ ^,
Lorentz factor γ and rest mass m. Assuming an inhomogeneous
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for the ratio of the wave amplitude to the background magnetic
field B B1 0d d= , the wave frequency to the gyro-frequency in
the equatorial plane 0n w= W , the wavelength k2l p= ,
pitch angle α, and refractive index n ck w= . For the cold
plasma approximation, the whistler dispersion relation can be
approximated to
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for the plasma frequency pew whenever eB mcpe 0 0w W =
and pew w .

Using the above approximations for the trapping length, we
can plot the timescale of interaction Δ of an electron near the
equatorial plane as a function of wave properties. In panel (a)
of Figure 1, an estimation of the timescale of interaction for an
electron with a large-amplitude whistler sub-element as a
function of the Lorentz factor γ and the propagation angle θ is
plotted. The interaction timescale is typically of the order of

10wD ~ , i.e., 10D ~ ms for a whistler wave of frequency
3 kHzw = . In panel (b), we integrated the full set of equations

of motion for a test-electron (Osmane & Hamza 2014, or see
Section 2 below) to demonstrate the validity of this estimate for
a typical orbit trapped by the LAWs in the equatorial plane.
Despite the short timescale for the resonant interaction,
relativistic electrons can gain a large amount of energy in the
parallel direction and experience a significant reduction of their
pitch angle while interacting with the parallel electric field
(Artemyev et al. 2012, 2014a; Osmane & Hamza 2012b, 2014).
The change in pitch angle during a single interaction occurs on
timescales of the order of 10 ms, and is observed to be
significant with 4 5–aD ~  , bringing the electron in or near
the loss cone. The short timescales involved result in the wave–
particle interaction with a single sub-element of the LAW wave
packet. Following the interaction with LAW sub-element, the
electron reaches larger magnetic field regions, and its dynamics
become dominated by the magnetic field mirror force. In panel
(c), we plot the cold plasma dispersion relation as a function of
propagation angle and wave frequency 0n w= W . We note
that the cold plasma dispersion relation indicates that large
propagation angles are associated with large refractive indices/
small phase-velocities, and vice-versa.

3. METHODOLOGY

3.1. Nonlinear Wave–Particle Interaction

We use the dynamical-system approach developed in
previous studies4 by Osmane & Hamza (2012a, 2012b, 2014)
to compute test-electron orbits with initial pitch angle 0a and
energy m c0

2g . Each electron orbit is initially located at the
equatorial plane with a divergence-free and inhomogeneous
magnetic field written as B yB g z y B g z z0 0 0( ) ˆ ( ) ˆ= - ¢ + , for the

function g z 1 z

L R

2

2
E
2( ) = + . The whistler wave propagates

obliquely to the background magnetic field as indicated by
the angle kBq defined by k Bcos kB 0( ) ·q = and with constant
amplitude. The magnetic field fluctuations are written as
B kz tcosx y, ( )d wµ - . The transverse electric field is given by
Faraday’s equation k E k c B k, ,T ( ) ( )d dw w w´ = and the
longitudinal component is set as 40% of the transverse
component, i.e., E E0.4k Td d= .5 The orbits are computed from
the relativistic Lorentz Equation (Osmane &
Hamza 2012a, 2012b, 2014) for a time interval of T 20w = ,
for a wave frequency ω typically of the order of 3 kHz, or when
normalized, written as 0n w= W with values ranging between
0.1, 0.5[ ]. Following previous work, we write the other relevant
parameters for our problem as B B1 0d d= for the relative wave
amplitude and n c v= f for the refractive index. We then
compute the change in pitch angle during the Landau-resonant
interaction, typically of 10–20 ms for a wave frequency

0.1 ew = W , then determine whether the particles can enter the
loss cone after a single interaction with the LAW. Even though
the wave model we use is limited in scope, it is sufficient for
our purpose. Large-amplitude whistlers typically have sub-
elements with 30 ms duration (Santolik et al. 2001) and the
wave–particle interaction timescale is of the order of 1–10 ms.

4 We hereafter summarize the main properties of the dynamical system.
Readers can find a detailed description of the dynamical system in the above
references.
5 It should be pointed out that the inclusion of a transverse component is not
necessary and one can follow the approach of Artemyev et al. (2012, 2014) by
including purely electrostatic whistler waves. The only two necessary physical
requirements are for a parallel electric field, hence the obliquity, and
sufficiently large-amplitude for physical trapping in the potential of the wave.
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Consequently, electrons trapped in the electrostatic field of the
sub-element do not visit neighboring sub-elements for 20t <
ms. Following the breaking of trapping at higher latitude, the
energy is on average conserved with the orbit well-described by
adiabatic motion, making the remaining spatial structures
unnecessary for our analysis. Examples of trapped electron
orbits satisfying these conditions can be found in Artemyev
et al. (2012) and Osmane & Hamza (2014).6 If we were to
quantify the energy gain and pitch-angle scattering for several
bounce periods and several interactions with LAWs, we would
need to take into account a more realistic wave model. Two
additional effects can also alter our results. The first one is that
the LAWs loose coherency at higher latitude (i.e., 25l > ;
Tsurutani et al. 2013). This loss of coherency will reduce the
energy gain and pitch-angle scattering (Artemyev et al. 2012).
A second effect is that waves with strongly oblique waves
leave the initial field line after a time proportional to the
transverse scale of the LAWs over the phase-speed. Transverse
scales for LAWs are typically of 500 km and have a phase-
speed of the order of 104 km s−1. Hence, the available time for
interaction is of the order of 50 ms, i.e., greater than the
interaction timescale of 1–10 ms. Our study is therefore
constrained to single interactions of electrons with LAWs in the
equatorial plane. This approach allows us to approximate
effects taking place on longer timescales, such as wave
dispersion and self-consistent effects leading to the damping
of the wave, as negligible (Yoon 2011). Future studies will
examine the net effects of multiple interactions, loss of
coherency at higher latitude, and the evolving size of the wave
packet.

3.2. Particle and Energy Precipitation Fluxes

Once the orbits are computed, we build a map in pitch angle
α and energy E m ce

2g= , denoted as W E,( )a . The map is
sampled uniformly with pitch angles 7 , 20[ ]a Î   spread by
an increment 1da =  and Lorentz factor 1.1, 2[ ]g Î spread
by increment 0.1dg = . Hence, we cover electrons with kinetic

energies 1(g - )mec
2 between 51 and 511 keV and energies E

between 511 keV and 102MeV with an initially empty loss
cone. Additionally, we solve the orbits for a single wave phase.
This choice is motivated by the study of the effect of the wave
phase for trapped electrons by Osmane & Hamza (2014).7 The
map, or weight function,W E,( )a is given a value of one when
a particle is pitch-angle scattered into the loss cone and zero
when not. Following previous models of electron precipitation
in the radiation belts (Lauben et al. 2001; Bortnik et al. 2006),
we model the particle spectral density as

E q,
E

E0
0( ) ( )y a y a=
h

h , for the free parameters ( E, ,0 0y h) set
as 1000y = electrons keV−1 cm−2 s−2, E 51.3 keV0 = and

1h = , where we have defined the function
q sin 2 sin2

lc( ) ( ) ( )a p a a= . Once the map W E,( )a from
the particle orbits has been constructed, we can compute the

particle fluxes as N E W E d dE, ,
2

511 keV

1.02 MeV

c
( ) ( )ò ò y a a a=

a

p

and the net energy fluxes

Q E E W E d dE, ,
2

511 keV

1.02 MeV

c
( ) ( )ò ò y a a a=

a

p
accordingly.

We note that the integration is computed for electrons initially
outside of the loss cone (i.e., with pitch angles outside the loss
cone lca a> at t=0), such that particle and energy fluxes
denote the precipitation contribution caused by LAWs solely.

4. RESULTS

4.1. Pitch Angle and Energy Precipitation Maps

Figure 2 shows examples of pitch-angle kinetic energy maps
for electrons interacting with an LAW. It is from these maps
that we construct the estimates of energy Q and particle N
fluxes. The wave parameters are chosen as 0.051d = , 0.1n = ,
and n=3, for illustrative purposes. The six maps are plotted
for varying propagation angles kBq . Red squares denote initial

Figure 1. Estimation of the timescale of interaction Δ for an electron with a large-amplitude whistler sub-element as a function of the Lorentz factor γ and the
propagation angle θ on panel (a). The contours are drawn, starting from the upper right corner, for 2, 4, 6, 8, 10, 20, 30, 40, 50[ ]D = milliseconds. The interaction
timescale is of the order of 10 ms. In panel (b), the change in pitch angle of an electron interacting with an LAW for a single electron orbit as a function of time

tt w= . The change in pitch angle, occurring within 10 ms, brings the electron in or near the loss cone, depending on the L-shell. Panel (c) shows the properties of the
cold plasma dispersion relation as a function of propagation angle θ and wave frequency 0n w= W . Contours are drawn, starting from the bottom right corner, for
refractive indices N c v 10, 12, 14, 16, 18, 20, 25, 30, 35, 40[ ]= =F .

6 For instance, see the left panel of Figure 8 in Osmane & Hamza (2014).

7 The effect of the wave phase has been investigated by Osmane & Hamza
(2014). Numerical orbits were computed to determine the role of the wave
phase on the Landau trapping. The overall conclusion was that the wave phase
did not have an impact on the energization of Landau trapped electrons (though
it does on electrons that are not Landau trapped) on timescales studied herein
(i.e., of the order of 20 ms). For longer timescales the wave phase could
determine whether the orbit would be trapped or quasi-trapped.
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pitch angles and kinetic energies of electrons scattered into the
loss cone (here defined as 6.4lca < for L 6 ). Black circles
denote initial electrons brought close to the loss cone boundary
(here defined as 6.4 7a< < ). Blue triangles denote electrons
that should remain physically trapped in the magnetosphere
after one interaction with an LAW. We note that as the
propagation angle increases, the number of electrons scattered
into the loss cone increases for the given values of n, 1d , and ν,
reaching a maximum for 65 70kB ( – )q =   , and then decreasing
for propagation angles of 75o and 80o. The decrease in the
number of precipitating electrons above kBq ∼ 70° can be
explained by nonlinear trapping effects, as shown in previous
studies (Osmane & Hamza 2012b, 2014). For a refractive index
set as n=3, Landau-resonant orbits cannot be physically
trapped for propagation angles 71kbq > . Hence, this example
demonstrates that increasing the parallel electric field or the
propagation angle alone may not be sufficient to increase the
efficiency of electron parallel energization and scattering.
Trapping effects are, therefore, not only constrained by the
wave amplitude, but also by the propagation angle and
refractive index. Additionally, we note that electrons with
kinetic energies 150 keV< and with pitch angles of 12 18– ,
can be efficiently scattered into the loss cone for propagation
angles of 60 65– . We note that even though the wave
properties discussed above do not comply with the cold plasma
dispersion relation, they correspond to properties of LAWs
reported by Cattell et al. (2008), Kellogg et al. (2010, 2011)

Breneman et al. (2011, 2012), and Wilson et al. 2011, and are
indicative of the complex and efficient response to a single
parameter change. In the following sections, we compute
energy and particle precipitation fluxes for wave properties
both within the cold plasma dispersion regime as well as
outside.

4.1.1. Effect of Wave Amplitude B B1 0d d=

Figure 3 demonstrates the impact of the wave amplitude on
the precipitation fluxes as a function of propagation angle. The
left panel denotes the energy flux Q as a function of
propagation angles kBq , and parametrized for various values
of wave amplitudes 0.009, 0.02, 0.04, 0.06, 0.08, 0.11 [ ]d = .
Embedded in the left panel is the logarithmic figure. The center
panel denotes the particle fluxes N, and the right panel denotes
the mean particle energy Q/N (units in eV) as a function of
propagation angle. Embedded in the right panel is the ratio
Q/N on a logarithmic scale. We note from these three panels,
that as the amplitude of the wave increases, precipitation fluxes
increase correspondingly. We observe a transition from
hundreds of keV to MeV mean energy bursts occuring for

60kBq > . For 40kBq < , very few or no particles get scattered
in the loss cone and the energy flux falls abruptly to zero. The
peak in energy flux, particle flux, and mean energy values takes
place for 70kBq ~  because the maximum energization for the
chosen refractive index n=3 takes place in the vicinity of the
Hopf–Hopf bifurcation for Landau-resonant electrons (Osmane

Figure 2. Pitch-angle (α) Kinetic energy m c1 e0
2( – )g maps for electrons interacting with an LAW with 0.051d = , 0.1n = , and n=3. The six maps are plotted for

varying propagation angles. Red squares denote initial pitch angles and kinetic energies of electrons scattered into the loss cone ( 6.4lca < ). Black circles denote initial
electrons brought to the loss-cone boundary (6.4 7a< < ). Blue triangles denote electrons that remain physically trapped in the magnetosphere. We note that as the
propagation angle increases, the number of electrons scattered into the loss cone increases, reaching a maximum of 65 70( – )q =   and then decreasing for propagation
angles of 75o and 80o. Additionally, we note that electrons with pitch angles of 12 18[ – ]  can be precipitated after a single interaction.
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& Hamza 2012a). If we were to change the refractive index,
this peak would shift to values given by ntan 1kB

2( ) –q = .
For instance, for n=2, the peak would shift to 60kBq = . We
also note that the mean particle energy saturates at MeV levels
for 0.021 d and 60kBq > . This means that for wave
amplitudes greater than 2% of the background field, there is
no appreciable change in Q/N.

4.1.2. Effect of the Refractive Index n c v= F

Figure 4 demonstrates the impact of the refractive index on
the precipitation fluxes as a function of propagation angle. The
left panel denotes the energy flux Q as a function of
propogation angles kBq , and parametrized for various values
of refractive indices n 2, 3, 6, 9, 12, 15[ ]= . Embedded in the
left panel, is the logarithmic plot for Q. The center panel
denotes the particle fluxes N, and the right panel denotes the
mean particle energy Q/N as a function of propagation angle.
We note that the mean energy bursts Q/N are typically below
the MeV level for parameters consistent with the cold plasma
dispersion relation n 10> and 30kBq < . We note that for
LAWs to scatter particles into the loss cone through a single
interaction to MeV levels, phase-speeds of c v c 9> F and
large propagation angles ( 50kB q ) are required. The
enhancement in mean particle energy observed for n 9> and
resulting in values of Q N 1 MeV~ for smaller propagation
angles is due to cyclotron-resonant (i.e., electrons for which

k v 2w g- ~ W  ) particles, rather than Landau-resonant
electrons. However, we note that even though cyclotron

resonance is a useful mechanism for generating microbursts,
the trapping of Landau-resonant electrons is more efficient for
large-amplitude whistlers capable of energizing a broader
population caught in the potential well (Artemyev et al. 2014a).
Consequently, we retain from this analysis that LAWs obeying
the cold plasma dispersion can primarily generate keV
microbursts. On the other hand, if large propagation angles
associated with smaller refractive indices can be generated in
the radiation belts, consistent with the LAW observations of
Kellogg et al. (2010), they could produce relativistic micro-
bursts in the MeV range through a single interaction.

4.2. Relationship between Quasi-stationary Electrostatic
Structures and Microbursts

In the previous section, we have demonstrated that large-
amplitude whistlers can result in the precipitation of electrons
in the form of microbursts with energies ranging from keV to
MeV energies. The impact of the energization and electron
losses on the distribution function is schematically described in
Figure 5. Following the interaction with the waves, Landau-
resonant electrons are accelerated along the background
magnetic field. The majority of the electrons do not enter the
loss cone (with the boundaries between mirror trapped and
untrapped electrons indicated by red lines), but a portion,
quantified by the above analysis, do. As the electrons are
entering regions of higher magnetic field, electrons outside of
the loss cone bounce back, while those inside the loss cone are
precipitated. The loss of electrons in the form of microbursts at

Figure 3. Energy flux Q (left panel), particle flux N (center panel), and mean energy Q/N as a function of propagation angle kBq , and for varying wave-amplitude 1d .
As the amplitude is increased, the energy flux increases. We note that the mean energy saturates at MeV levels for 0.021 d and that a transition from hundreds of
keV electrons to MeV electrons occurs at 60q >  and 0.021 d .

Figure 4. Energy flux Q (left panel), particle flux N (center panel), and mean energy Q/N as a function of phase-speeds. We note that the mean energy is typically of
less than 1 MeV for parameters consistent with the cold plasma dispersion relation, but can reach MeV levels for phase-speeds v c 9F and large propagation angles

50kBq > . Such values of the phase-speed and propagation angles are consistent with LAWs observed by Kellogg et al. (2010) and Wilson et al. (2011).
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mirror points, therefore, results in holes of the electron
distribution function around v 0= . In this section, we
demonstrate that electron kinetic structures discovered in the
Earth’s radiation belts by Mozer et al. (2013), Malaspina et al.
(2014) can be generated as a consequence of microbursts and
subsequent electron holes near mirror points (v 0= ).8 We use
microburst density depletions from the above analysis to
quantify the size of holes and associated electric field
amplitudes that can then be compared with data. We note that
a self-consistent treatment of the problem describing large-
amplitude whistler turbulence in an inhomogeneous magnetic
field and populated by electrons ranging from tens of eV to a
few MeV necessitates the artillery of numerical tools currently
unavailable. By splitting the problem into three distinct parts
(energization by oblique whistlers, microburst precipitation/
hole formation, and electrostatic structure formation) the
problem becomes analytically tractable and leads to predictions
(particle/energy microbursts fluxes, amplitude of electrostatic
structures, etc.) that can be compared with observations.

4.2.1. Reduced Quasi-stationary Vlasov Equation

In this section, we describe the wave–particle interaction of
an electron of charge e- , mass m, and parallel momentum p in
a slowly changing background magnetic field with the

following Hamiltonian.

H
p

m
B s e s t

2
, , 3

2

( ) ( ) ( )m= + - F
 

where s is the position coordinate along the background

magnetic field, p mB22m = ^ is the conserved first adiabatic
invariant, and Φ is the electric potential. We consider the
dynamics of Landau trapped electrons resulting in vortex
structures inside the distribution function, thus neglecting
cyclotron resonances is justified. Hamilton’s equations are
given for this instance by p B s s s t s,˙ ( ) ( )m= - ¶ ¶ + ¶F ¶    
and s p m˙ =  . Assuming that phase-space density is con-
served9, that is, we are looking for electrostatic structures
taking place on timescales of 10pe

1 4w ~- - s less than the
bounce frequency (typically 0.1–1 s for electrons with 100 s of
keV at L 5> ) for which losses become important, we can write
the Vlasov equation for the characteristics derived from the
above Hamiltonian10 in the following form.

f

t
v

f

s m

B

s

e

m s

f

v
0. 4( )

⎡
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⎤
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¶

+
¶
¶
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¶
¶

+
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¶
¶

=
   

We then proceed by normalizing time with the plasma
frequency n e m4pe 0

2w p= , spatial scales with the Debye

length T n e4D e 0
2l p= , and potential by the electron

temperature in energy units Te. The normalized Vlasov
equations can then be written for the normalized potential

e T B Te emY = F - in a simplified form as

f
v

f

s s

f

v
0. 5( )

t
¶
¶

+
¶
¶

+
¶Y
¶

¶
¶

=

We now now seek quasi-stationary solutions for the Vlasov
equation for a background magnetic field of the form
B B k scos b0 ( )= in which the normalized wave vector
k R L9b D El= is written in terms of the Earth’s radius
R 6300E ~ km s−1 and the L-shell L. A Galilean transforma-
tion to a frame of reference with constant speed v vtheF yields a
stationary electrostatic potential s t s,( ) ( )F  F ¢ but a time
dependence in the magnetic field is introduced:
B s B s ,( ) ( )t ¢ . Following this transformation, we can write
the normalized potential in terms of a stationary component 0Y
and a slowly time varying component 1 0( ) tY ~ Y with

Figure 5. Schematic qualitatively describing how holes in the distribution are
formed in one bounce period bt . The red boundaries indicate the loss cone, and
the black lines indicate contours of constant energy in the v v– ^ plane. Particles
in the green area labeled as 1 are Landau resonant with the large-amplitude
whistlers. They get accelerated parallel to the background field, with some
entering the loss cone and others remaining outside the loss cone (label 2).
Those who entered the loss cone will be precipitated, while those that are not,
through conservation of the adiabatic invariant μ, bounce back at the mirror
point (label 3). Consequently, at the mirror point, the distribution function
experiences a hole, approximated by the analysis of microburst particle fluxes
by n nt o ∼ 0.1%–1%.

8 There are infinite numbers of mirror points, a function of the equatorial pitch
angle. We use the following expression to estimate the latitude of the mirror
point. sin

B

B
2

eq
cos

1 3 sinM

M

M

eq 6

2
( ) ( )a = = q

q+
. The average pitch-angle scattering for

wave amplitudes 0.09 0.11 d is of the order of 1°. Consequently, the bulk
of the precipitation will take place for particles with equatorial pitch angles
between 6° and 7° and the mirror point with the deepest hole will be located at
57°. 4 latitude±1°. 2. However, other holes formed at other magnetic mirror
points can also result in double layers and solitary electron hole generation.
Though beyond the scope of the paper, this effect could result in a train of
nonlinear structures, similar to the one described by Mozer et al. (2013).

9 We seek quasi-stationary (i.e., stationary for timescales of the order of a
bounce period) electrostatic structure solutions arising at the mirror point
following electron losses in the form of microbursts, i.e., when phase-space
density is approximately conserved for another bounce motion. However, we
can include a collision term denoting precipitation R f4f

t c
loss b

1( ) p t~¶
¶

- where
R4 lossp is the solid angle in velocity space of the loss cone, and bt is the bounce

frequency. Following the perturbation analysis defined below and the density
depletion obtained from the previous section, indicating that only a fraction of
electrons with n n 0.1% 1%t 0 –~ are precipitated, the collision term is shown
to always be smaller for microbursts than the perturbation term of the order

R R 10E
1

pe b loss pe
1

b
1 5 l w t w t~ ~- - - - . Hence, the following analysis is

based on the initial existence of a hole in the distribution, but once the hole
is formed, as a result of microburst events, additional precipitation does not
alter the background distribution for timescales T bt .
10 The Hamiltonian in Equation (1) can be obtained by averaging the full
Hamiltonian over the gyro-rotation (Cary & Brizard 2009).
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where the term 2 ( )J indicates terms of the order of two and
larger. Rewriting the Vlasov equation in terms of the new
variables s v,( )¢ ¢ to zeroth order in the small parameter
k v t LR 1b Et l w~F  , we find the following stationary
equation.

v
f

s s

f

v
0 70 0 0 ( )

¶
¶

+
¶Y
¶

¶
¶

=

for f f s v,0 0 ( )= and s0 0( )Y = Y where the primes have been
eliminated. The solution for the distribution function f0 is
correct for timescales t 10 s , assuming the phase-speed of
the electrostatic structure is of the order of 1–10 times the
thermal electron speed. Such a timescale is of the order of a few
bounce periods and is much larger than the typical kinetic
electron scales e ce

1t ~ W- in the radiation belts. Hence, if we can
find solutions to Equation (7) and the Poisson equation, with
growth rates much larger than the bounce frequency, we can
demonstrate that quasi-stationary electrostatic solutions can be
generated self-consistently in the radiation belts. Since trapping
in an electrostatic structure takes place on timescales compar-
able with the associated wave frequency, typically several
orders of magnitude larger than the bounce frequency, a
reduced description of the electron plasma is therefore possible.

4.3. Electron Solitary Holes and Double Layer Solutions

Equation (7) in association with Poisson’s equation for
Maxwellian ions has been formally derived by Kim (1983).
The solution for the distribution of electrons can be rewritten as
f E, 1 20 ( )s p= E vexp 1 2 d

2[ ( ( )s- -
E E v Eexp 1 2 d

2( ) ( ( ) ( )]sbQ + - - Q - where E( )Q is the
Heaviside function, v v vd the= F , E v 2 22 –= Y, and σ is the
sign of the normalized energy E. Following the recipe of Kim
(1983), one can use Poisson’s equation to derive an equation
for Φ. In the limit k s 1b  , s s2 2 2 2¶ Y ¶ @ ¶ F ¶ , one can
write Poisson’s equation in the small amplitude limit (i.e.,

L R T 1e
2 2

E
2l F ^  ) in the form:

s
A B C 8

2

2
3 2 2 5 2 ( ) ( )J

¶ F
¶

= F + F + F + F

where the coefficients are defined by A T T Z v 2i de ( )= - ¢ ,

B v 1e
d

4

3
2vd

2 2

( )b= - -
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-

, and

C e T T e
e
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3

4
v

i
v

v
1

2
2

e
2 2 2

2

2
d d

d2 2
2

( )= - +- -
-

, in which the para-

meter β (not to be confused with the kinetic to magnetic
pressure of the plasma) controls the amount of trapped
particles, and the function Z v 2d( )¢ represents the real part
of the derivative of the complex dispersion function. The
solution is found by imposing charge neutrality for s = ¥
and by requiring that the electric field is zero outside of the
electrostatic structure 0, max( )F = F . Solutions for the quasi-

stationary Vlasov–Poisson system results in two different types
of solutions. The first solution, neglecting terms of the order of

3 2F and higher, consist in electron solitary holes written as

e

v
s225

1
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d
SEH

2

2

2

4

vd
2

( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟p

k
b

kF =
+ -

-

for parameters T T Z v1 4 2i de ( )k =  - ¢ ,

v e1 30d
v2 2

maxd
2–b p k- = F , and

e T T v3 2 48v
i dmax

1 2 2
e

2 2d
2( ) kF = - -- - . Similarly, if one keeps

a term of the order of 3 2F , one can find an electron double
layer solution written in terms of the above parameters as

e

v
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15
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2

2
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b
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+

We can now make use of the density of electrons lost in the
form of microbursts as a means to obtain an estimate of β. Once
the parameter β is obtained, one can find an associated value
for v v vd the= f and then the range of amplitudes for the
electron solitary holes and double layers. Figure 6(a) shows the
change in the distribution function for various values of β.
Figure 6(b) shows the dependence of electrostatic structures as
a function of the parameter β.

4.3.1. Effect of Temperature Anisotropy T Tie on the Instability

The instability criterion for the generation of both double
layers and electron solitary holes is highly dependent on the
temperature anisotropy τ. The electron distribution in the
radiation belts observed in association with double layers have
been reported to have thermal speeds of the order of 25 eV by
Mozer et al. (2013). In a statistical study of LAWs by Wilson
et al. (2011), one could deduce from the LAW associated
distribution functions thermal spread of the order of
20–650 eV. The ion distribution function on the other hand
were shown by Spjeldvik (1997) to have a thermal spread of a
few keV to hundreds of keV, depending on the L-shell.
Additionally, ions injected into the radiation belts have thermal
speeds of the order of 3 keV (Onsager et al. 1991). In Figure 7,
we have plotted the parameter space consistent with the
generation of double layer and electron solitary hole solutions.
The instability can be generated for temperature anisotropies
T T 30%ie < , for a trapping parameter of 0.70b < - and
electron drift energy, in the frame of the stationary ions and
normalized by the electron thermal energy, of E 0.9d > .11

These values overlap with the values inferred from radiation
belt measurements. Taking a ratio of the electron to ion
temperature T T 25 1000 1ie ~  , we find that for electron
holes of the order of 0.1%–10%, electrostatic structures with
electric fields as large as 1 mVm−1 can be generated for
various hole sizes.

4.3.2. Stability of Nonlinear Electrostatic Structures: Necessity for
f 0d < Near Mirror Points

The self-consistent potential due to an electron phase-space
hole in its rest frame can be written in non-normalized form as

11 See also Kim (1983) in the text under Equation (7), where he notes that the
temperature anisotropy is 0.285 t < + for a small parameter ò.
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(Dupree 1982)

s
e fdv4 , 11

v

v2

2
2

2

2
( )òp d-

¶ F
¶

+ L F =-

-D

D








where fd is the change in the distribution function in the
vicinity of the mirror point v 0= , i.e., f 0d = for v v 2∣ ∣ > D 

and f f E f E, ; 0 , ; 00 0( ) ( )d s b s b= = - ¹ for v v 2∣ ∣  D  .
The right-hand side represents the charge density of the hole
situated at v v 2= D  and Λ is the plasma shielding length
function of the dielectric function ε and written as

k k ku1 , 12 2 [ ( ) ]eL = -R . As pointed out by Dupree
(1982), the self-interaction term due to the presence of the
phase-space hole can lead to self-bound electrostatic structures.
The left-hand side is proportional to k2eF, and it follows that
since e 0F < , f 0d e < . Hence, if 0e > , that is for holes
taking place at v 0~ near the mirror point, a bound state
requires f 0d < .12 Hence the negative fluctuations tend to self-
trap, whereas the positive fluctuations are unstable. In the
following sub-section, we derive a relationship between phase-
space density hole depth f fd and size vD .

4.3.3. Constraint on Phase-space Hole Depth fd and Width vD 

From Equation (11), we can derive a relationship between
the width of the electron hole and its depth quantified by fd ,
which is necessary for the existence of stable nonlinear
electronic structures. We know from the microburst analysis
that the dimension of the hole along the field line sD  scales as
LR 5 6300Edq ~ * km 1 .2 550*  = km since the bulk of the
precipitated electron have equatorial pitch angles between 6°
and 7°. This dimension is much larger than the shielding length
Λ, which itself is proportional in magnitude to the Debye
length Del for very small holes. Consequently, s1 2 2D L- ,

and we can approximate Equation (11) as e f v42 p dL F D-  .
This expression can be written in terms of the normalized

Figure 6. Distribution function of the parallel velocity ( v Bv 0·= ) without electron hole ( 0F = ) in black, and with electron holes ( 0.1, 0.740 bF = = - ) in red and
( 0.1, 1.740 bF = = - ) in blue, respectively, corresponding to density holes of the order of 1% and 5%. In panel (b), the normalized potential as a function of the
normalized spatial variable for different values of the parameter 1.24, 1.34, 1.54, 1.74[ ]b = - - - - corresponding to the solid, dashed–dotted, dashed, and dotted
lines, respectively. The parameter β controls the amount of precipitated particles. As β increases, the amplitude of the electrostatic structure is constrained to smaller
values.

Figure 7. Parameter space for the validity of the double layer and electron
solitary holes solution. The instability can be generated for temperature
anisotropies T T 30%ie < , for a trapping parameter 0.70b < - and electron
drift energy, in the frame of the stationary ions and normalized by the electron
thermal energy, E 0.9d > .

12 We note that bumps or beams with similar densities in the distribution
functions due to Landau trapped electrons with v vth could also lead to
stable nonlinear structures on similar timescales. We here take the perspective
of a hole near a mirror point to simplify the analytical treatment.
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coordinates as
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where f(0) stands for the maximum value of the distribution at
the mirror point and n f v0 0 th~ . In order for seed fluctuations of
nonlinear electrostatic structures to grow and be stable, the
following condition must be respected:
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e
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10 10 , 13D
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2
e

2 3

( )
– ( )d l fD

>
L

- -

where we used values derived from the model of Kim (1983) of
e T 0.1 0.01e –F ~ and 1 4Dl L ~ corresponding to seed
electric fields of E 1~ mVm−1. This constraint indicates that
the larger the nonlinear electrostatic structures, the larger the
hole depth and/or width needs to be. With the numerator being
proportional to the density of precipitated electrons nt, and the
denominator to the background density in the vicinity of the
mirror point, we estimate that the precipitated electron ratio
n nt 0 of the order of 0.1%–1% can result in stable seeds for
nonlinear structures.

4.3.4. Summary of Results on Nonlinear Structures

Despite the approximations made (reducing the problem to a
one-dimensional, electrostatic equation), we have shown that in
the classical limit and for timescales much smaller than several
bounce periods, the precipitation of electrons in the form of
microbursts can result in stable electrostatic structures one
order of magnitude below typically observed amplitudes (i.e.,
we theoretically obtain E 1~ mVm−1 whereas observations
show E 10 20–~ mVm−1). These results are also consistent
with the numerical study of Drake et al. (2015) showing that
electron bursts resulting from the interaction with LAWs can
lead to electrostatic structures. The parameter regime of the
above model requires T T 0.30ie < and is consistent with the
observations of precipitation of keV electrons with small
density holes on the order of n n 0.1% 1%t 0 –~ . Landau-
resonant energetic electrons in the radiation belts only count for
about 1% of the cold electron population. Whistlers with very
large-amplitude 0.041d > and strong obliquity 50kBq >  are,
therefore, more likely to generate microbursts and produce seed
fluctuations for stable nonlinear electrostatic structures. Finally,
we would like to stress that the reduction the wave–particle
interaction to a one-dimensional problem is only valid for
electron time scales pe

1w- . The wave–particle interactions and
the stability and generation of nonlinear structures on longer
timescales will require a study incorporating additional spatial
dimensions and more realistic fields.

5. CONCLUSION

Using a dynamical-system approach, we have investigated
the efficiency of LAWs for causing microburst precipitation by
modeling the microburst energy and particle fluxes produced as
a result of nonlinear wave–particle interactions. We have found
that microbursts of keV and MeV energies are generated for a
wide range of propagation angles and amplitudes. However,
because of the constraint on the refractive index and wave
propagation, whistlers derived from the cold plasma dispersion
relation cannot cause relativistic MeV microbursts after one

single interaction. These results, therefore, indicate that
relativistic microbursts, such as those observed by SAM-
PEX/HILT from low-Earth orbit (Blake et al. 1996; Kersten
et al. 2011) are generated either by multiple interactions of
electrons with whistlers in the cold plasma regime or by the
single interaction of electrons with LAWs outside of the cold
plasma regime.
Additionally, we have shown that as a consequence of

microbursts and the resulting phase-hole in the velocity
distribution function, electrostatic structures consistent in scales
(of the order the Debye length) and amplitudes (of the order of
1 mVm−1) to nonlinear structures observed in the radiation
belts (Mozer et al. 2013; Malaspina et al. 2014) could be
generated on timescales much smaller than several electron
bounce periods for precipitated densities of the order of 0.1%
of the background electron density, i.e., if energetic electrons
form 1% of the radiation belts, we estimate that 1/10 of
energetic particles precipitated could lead to the generation of
nonlinear electrostatic structures. It should be pointed out that
holes in the distribution function of electrons, as a result of
trapping by LAWs and/or microburst precipitations, are not the
only means through which double layers and electron solitary
holes can be generated. In a recent study, Agapitov et al. (2015)
showed that nonlinear electronic structures could be generated
as a result of a parametric decay of whistler waves. Similarly to
our study, they find that the decay instability possesses a
characteristic time smaller than 1 s, consistent with
observations.
Finally, our results point to the inherent relationship between

nonlinear electronic structures in the Earth’s radiation belts and
their role in the acceleration and precipitation of electrons on
kinetic timescales. Large-amplitude whistlers contribute to the
acceleration and precipitation of electrons. Electron trapping
and precipitation of electrons allows formation of electrostatic
structures, which were shown to accelerate particles to keV
levels (Artemyev et al. 2014b; Osmane & Pulkkinen 2014) and
therefore feed further energization by whistlers. The mechan-
isms described here and in previous theoretical studies
(Artemyev et al. 2012, 2014a; Osmane & Hamza 2012b,
2014), therefore, provide a self-contained cycle upon which
radiation belts can continuously create a fresh population of
keV electrons. keV electrons with smaller pitch angles will
eventually precipitate, and cause the generation of electrostatic
structures leading to a newly formed keV-energy electron
population. In a ten-year statistical study of radiation belts,
Artemyev et al. (2015) demonstrated that strongly oblique
whistlers ( 60q > ) with small magnetic components, but
strong electric fields, have been systematically under-sampled
and, consequently, their impact in regulating the belts under-
estimated. The implication of our results, in conjunction with
observations by Mozer et al. (2013, 2014), Malaspina et al.
(2014), Agapitov et al. (2015), and Artemyev et al. (2015) is
that nonlinear electronic structures, i.e., large-amplitude
oblique whistlers and double layers, might have a central role
in regulating the radiation belts on kinetic timescales. Even
though the above mechanisms have yet to be shown to regulate
the dynamics of radiation’s belts on long timescales, they have
the potential to dominate the depletion and enhancement of the
keV radiation belts’ electrons over other mechanisms due to the
very small timescale involved. Future studies will improve
upon the discretized microburst model and dynamical system

9

The Astrophysical Journal, 816:51 (10pp), 2016 January 10 Osmane et al.



described herein to extend our results to longer timescales (e.g.,
comparable to or greater than the bounce period).
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