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ABSTRACT
Identifying mobile apps based on network traffic has multiple bene-
fits for security and network management. However, it is a challeng-
ing task due to multiple reasons. First, network traffic is encrypted
using an end-to-end encryption mechanism to protect data privacy.
Second, user behavior changes dynamically when using different
functionalities of mobile apps. Third, it is hard to differentiate traf-
fic behavior due to common shared libraries and content delivery
within modern mobile apps. Existing techniques managed to ad-
dress the encryption issue but not the others, thus achieving low
detection/classification accuracy. In this paper, we present MApp-
Graph, a novel technique to classify mobile apps, addressing all
the above issues. Given a chunk of network traffic generated by a
mobile app, MAppGraph constructs a communication graph whose
nodes are defined by tuples of IP address and port of the services
connected by the app, edges are established by the weighted com-
munication correlation among the nodes. We extract information
from packet headers without analyzing encrypted payload to form
feature vectors of the nodes. We leverage deep graph convolution
neural networks to learn the diverse communication behavior of
mobile apps from a large number of graphs and achieve a fast clas-
sification. To validate our technique, we collect traffic of a hundred
mobile apps on the Android platform and run extensive experiments
with various experimental scenarios. The experimental results show
that MAppGraph significantly improves classification accuracy by
up to 20% in various metrics compared to recently developed tech-
niques and demonstrates its practicality for security and network
management for mobile services.
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1 INTRODUCTION
The proliferation of communication technologies including 5G en-
ables a remarkable growth of smart and mobile devices. It is widely
predicted that the number of Internet of Things (IoT) devices in-
cluding smartphones will attain a few tens of billions by 2023 [18].
Besides daily functionalities such as financial payments, voice-over-
IP (VoIP) and video live streaming, today’s mobile applications are
increasingly being used for many real-time and high bandwidth
services such as virtual reality or augmented reality games. The
security of mobile devices and their applications has a great impact
on the security of the underlying networks, which are more and
more complex and vulnerable. Mobile service operators need to
protect not only their networks but also application and platform
services deployed in their infrastructures. However, they do not
have control over the applications installed on each device in their
network. Thus, addressing the problem of mobile and network secu-
rity becomes more challenging. A possible solution that operators
can still retain the capability of detection and monitoring of ac-
tive apps is to observe the network traffic behavior of each device.
Though this may lead to the problem of user privacy as mobile apps
can reveal a lot of sensitive information about users, it provides a
non-intrusive approach without requiring host (device) access.

Network traffic classification has been extensively studied in the
literature [29]. Most of existing techniques focused on the traffic of
traditional computer networks [10, 16, 24, 25, 35, 36, 39, 46]. Adopt-
ing such techniques to handle network traffic generated by modern
apps in smartphones faces several challenges. First, according to [5]
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more than 80% of mobile traffic is encrypted or adopts Transport
Layer Security (TLS), thus it might not be possible to classify traffic
using payload-based methods that analyze certain fields of applica-
tion layer protocols. Second, port-based classification methods fail
to classify mobile traffic as apps deliver their data predominantly
using HTTPS and send data back and forth using text formats such
as XML or JSON. Some information such as the number of files or
file size are not available to adopt web page classification. Third,
user behavior changes dynamically over time depending on the
used functionalities. The traffic captured in a short period (e.g.,
5 minutes) of a mobile app may not represent its complete traf-
fic behavior. For instance, a user surfs Facebook to update all the
new feeds for 10 minutes and then switches to Facebook Watch or
Facebook Live to watch available videos. Even though the user
uses the same app, the traffic behavior is much different between
updating new feeds from Facebook servers and streaming videos
from different sources (e.g., YouTube). Given the traffic of an app
captured at different times, it is challenging to identify a unique
signature that can be used to classify the app. Last but not least, to
optimize the performance, modern mobile apps are designed and
developed using micro-services that share the same libraries and
use content delivery networks (CDNs) and third-party services [50].
For such apps, using domain name resolution or IP address lookup
for app classification may not be useful. Yet, with local cache, DNS
and TLS exchanges may not be observed at all. This raises the need
for an effective approach to mobile-app classification that can deal
with encrypted traffic, and be aware of diverse functionalities and
the nature of sharing third-party services of mobile apps.

Existing works on mobile-app classification mostly overcome
the challenge of encrypted traffic but fail to address the remaining
issues. For instance, AppScanner [40] used a flow-based detection
approach that extracts side-channel features from the packet header
and computes statistical features to train a machine learning model
for mobile app classification. As apps use CDNs or shared services,
similar flow characteristics will be observed, thus confusing the
classification model [40, 41, 44]. Examples of shared services in-
clude crash analytics, mobile advertisement (ad) networks, social
networks. These services are often embedded through libraries
that are used by many apps: e.g., googleads.g.doubleclick.net,
lh4.googleusercontent.com and android.clients.google.com.
Motivated by this issue, the authors of FlowPrint [44] proposed to
construct the fingerprint of an app by considering the communica-
tion graph between the mobile device and other destinations (e.g.,
CDNs and third-party services) and the associated attributes such
as destination IP, destination port and TLS-certificates. At the infer-
ence stage, the fingerprint collected in the past is compared with
the new one to determine the app. However, due to the challenge
in building the communication graphs for all possible behavior of
an app, the author only considered a short communication period
(e.g., 5 minutes). Thus, it may not work well if the user changes her
usage behavior or uses different functionalities of the app.

In this paper, we develop MAppGraph, a novel technique for
mobile app classification addressing the above challenges. We col-
lect network traffic of mobile apps at different times, resulting in a
large amount of network traffic for each app to be processed. Each
chunk of traffic (e.g., within 5 minutes) forms a communication
graph where nodes are defined by the tuples of IP address and port

of the destination services, which are accessed by the apps during
that time window. We adopt the cross-correlation approach [32]
to establish the edges between nodes and compute their weight.
We extract information from packet headers such as packet size,
inter-arrival time of packets, etc., and derive statistical features,
which are used as attributes of the graph nodes to represent traffic
behavior of the communication between the app and a service.

With a large amount of traffic collected, one mobile app will
have a set of graphs, each representing traffic behavior at different
time instants. Learning or identifying the fingerprint of each mobile
app through this big set of graphs is challenging. The emergence of
graph neural networks (GNN), specifically deep graph convolution
neural networks (DGCNN) [49], has demonstrated the capability
of learning complex behavior and extracting high-level features
from big data to create the signature or fingerprint of analyzed
data. DGCNN can be naturally adapted to address the problem of
mobile-app classification and fingerprinting based on network traf-
fic, which can be represented as graphs. DGCNN can be used for
both supervised and unsupervised learning problems depending
on the problem objective. To this end, in MAppGraph, we exploit
the capability of DGCNN in a supervised learning manner for the
mobile-app classification problem and keep the unsupervised learn-
ing for future work. We collect traffic of 101 mobile apps, which
are popular in Google Play. For each app, more than 30 hours of
traffic were collected, resulting in more than 600 GB of traffic stored
in PCAP files. We run extensive experiments to demonstrate the
effectiveness of MAppGraph. We compare its performance with
recent techniques, specifically AppScanner [40] and FlowPrint [44]
as well as multi-layer perceptron (MLP). The main contribution of
the paper is summarized as follows:

• We develop a method for processing network traffic and
generating graphs with node features and edge weights that
better represent the communication behavior of mobile apps.

• We develop a DGCNN model that is able to learn the com-
munication behavior of mobile apps from a large number of
graphs and achieve a fast mobile-app classification.

• We collect traffic for 101 mobile apps and run extensive ex-
periments to demonstrate the effectiveness of MAppGraph.

• We enhance AppScanner and FlowPrint and use as baselines
for performance comparison with MAppGraph.

We have made both our prototype and a portion of dataset avail-
able at https://soeai.github.io/MAppGraph.

The rest of the paper is organized as follows. Section 2 presents
existing literature. Section 3 presents some background on deep
graph neural networks and their application to the problem of
mobile-app classification. Section 4 presents the details of MApp-
Graph. Section 5 present the experiments and analysis of results
before we conclude the paper in Section 6.

2 RELATEDWORK
Network-centric techniques that are based on traffic analysis have
been used extensively in various problems such as network manage-
ment and cybersecurity in both traditional computer networks and
mobile (IoT) networks. In traditional computer networks, network-
centric techniques have been used extensively in cybersecurity

https://soeai.github.io/MAppGraph
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problems such as network anomaly detection and attack detec-
tion [22, 28, 43]. Those works focused on collecting basic traffic
features at the data link layer and network layer of the TCP/IP
network model and calculating additional statistical features such
as mean and standard deviation of packet rate, packet size, inter-
arrival time between packets, number of packets in a flow, flow
rate, flow duration, and number of flows in a session. Several works
such as [2, 3] also use traffic analysis-based techniques for malware
detection, applying in the scenarios where malware samples attack
the victim from a remote source, e.g., botnet traffic.

In IoT networks, traffic analysis-based techniques have been used
for multiple purposes. In [42], the authors developed a distributed
device fingerprinting technique to exploit the presence of common
IoT devices and detect new devices across smart home networks
and enterprise networks. In [4], the authors showed that sensitive
information can be inferred from the IoT devices in smart homes.
The authors also demonstrated that users’ usage patterns can be
identified by analyzing the traffic of user devices,MAC address, DNS
queries and traffic rates. As using traffic can identify IoT devices,
in [38], the authors developed a multivariate Gaussian distribution,
which is trained on device traffic in a supervised learning approach,
resulting in amachine learningmodel used to fingerprint device and
authentication. As they used machine learning, the performance of
the model may degrade due to changes in domains, i.e., from one
smart home to another smart home. The authors applied transfer
learning [30] to minimize the performance degradation and adapt to
new domains. Similar works have been presented in [26, 27], which
also proposed to extract traffic features from the network, transport
and application layers to train machine learning models for device
fingerprinting and security enforcement. In [26], the authors also
proposed to gather the data from external resources such as Alexa
top website ranking1 and geo-location of IP addresses. All of the
works aimed to identify IoT devices as soon as possible after they
join the network. Thus, in [27], the authors aimed to minimize
the number of traffic packets required to successfully identify the
devices. Nevertheless, too few packets may not be sufficient to
represent the device traffic pattern.

Mobile-app classification based on network traffic has been stud-
ied in the literature [9, 11–13, 40, 44]. In [11, 12], the authors pro-
posed to used machine learning and deep learning for mobile-app
classification based on HTTP headers. In [9, 13], the authors devel-
oped the techniques for creating fingerprints automatically. How-
ever, those approaches are based on deep packet inspection, which
will not work when traffic is encrypted. AppScanner [40] uses sta-
tistical features of packet sizes in the TCP streams to train Support
Vector Machine (SVM) and Random Forest (RF) to learn traffic
patterns of mobile apps and classify known apps during the in-
ference phase. Similar to AppScanner, BIND [1] uses supervised
learning techniques to learn traffic behavior of mobile apps based
on statistical features of TCP streams combined with temporal
features to achieve higher performance compared to AppScanner.
Unfortunately, to optimize app performance, most mobile apps
nowadays share the same third-party services such as Content
Delivery Networks, making their TCP streams much similar and
harder to recognize apps. Another supervised learning technique

1Alexa Top Site: https://www.alexa.com/topsites; accessed: May 2021

has been proposed in [31], which showed that mobile apps can also
be identified even though the traffic is anonymized through Tor.

Recently, FlowPrint [44] has been proposed. The authors con-
sidered the spatial correlation of traffic flows between the mobile
apps and other destinations such as app servers and third-party ser-
vices and developed a technique to create mobile-app fingerprints
for app identification. However, a mobile app may have multiple
fingerprints associated with various functionalities. Within a short
duration (e.g., 5 minutes), a user may not use all the functionalities
of the app so that its created fingerprint represents all its traffic
behavior. Inspired by FlowPrint with an aim to address the diverse
behavior of mobile apps, we leverage the capability of deep graph
convolution neural networks, which can represent both statistical
traffic features by the node attributes and communication correla-
tion among nodes by the edges. With multiple graphs captured at
different times, we train a deep learning model to classify mobile
apps regardless of the user behavior and functionalities used.

3 BACKGROUND
3.1 Graph for Data Representation and GNN
Graphs and their methods deal with abstract concepts such as rela-
tionships and interactions. They provide an intuitively visual way
of thinking about these concepts. With the prevalence of graph-
structured data, there is an increasing need for graph representa-
tion learning [8]. Mathematically, a graph G is defined by a tuple
(V, E) where V is the set of nodes, E is the set of edges linking
the nodes. Each node, 𝑣 ∈ V is associated with a 𝑑-dimensional
vector of features, 𝑥𝑣 ∈ R𝑑 and denote the set of all features of
nodes as matrix X := {𝑥𝑣 : 𝑣 ∈ V} ∈ R𝑑×|V | . For every edge that
connects nodes 𝑢, 𝑣 ∈ V , we denote 𝑒𝑢,𝑣 ∈ R to be a weight of
the edge (𝑢, 𝑣) ∈ E. In Figure 1, we present an example of graph-
structured data. Analyzing graph-structured data is a challenging
task due to the fact that graphs do not exist in a Euclidean space
and they do not have a fixed form even though two graphs may
have the same adjacency matrix. In [6], Bruna et al. used convolu-
tional neural networks to represent graphs in the spectral domain.
In [49], Zhang et al. further improved the graph representation
with a new deep neural network architecture, namely Deep Graph
Convolution Neural Network (DGCNN), that can keep much more
vertex information and learn from the global graph topology. Such
generalization aims to learn meaningful embeddings (i.e., vector
representations) of nodes and/or (sub)graphs. Such embeddings
can be used in various downstream tasks, such as node classifica-
tion [45], link prediction [37], and graph classification [49]. Such
models are usually evaluated on chemical and social domains [47].
In this work, we adopt graph neural networks for cybersecurity
to represent mobile traffic in a meaningful manner and achieve
better performance for the mobile-app classification problem. As
DGCNN has demonstrated its superior performance compared to
existing approaches [49] in the graph classification problem, we
adopt DGCNN and carry out optimization on network architectures
and learning parameters.

3.2 DGCNN for Graph Classification
In general, graph classification involves differentiating graph in-
stances of different classes and predicting the label of an unknown

https://www.alexa.com/topsites
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Figure 1: An Example of Graph-structured Data.

graph. Mathematically, given D := {(G1, 𝑦1), (G2, 𝑦2), ...} where
𝑦𝑖 ∈ Y is the class label of the graph G𝑖 ∈ G, the goal of graph
classification is to learn a mapping 𝑓 : G→ Y that maps graphs
to the set of class labels and predicts the class labels of unknown
graphs. This task requires a graph representation vector distinctive
enough to distinguish graphs of different classes. There exist sev-
eral graph neural network architectures that can be used for graph
classification such as DiffPool [48], DGCNN [49] and 2STG+ [14].
The common point of those architectures is that they consist of
three sequential stages in the graph analysis process:

• First, a given graph is passed through the graph convolution
layers that extract local features and define a consistent
vertex ordering;

• Second, the pooling layers will process the output of the first
stage and build a vector representation of the entire graph
with predefined order and size;

• Third, they employ traditional convolutional or dense (fully
connected) layers that take the output of the second stage
and make the prediction.

For the sake of completeness, we present below the details of each
stage of the graph analysis process. We refer the reader to [49] for
further detailed mathematical proofs of the approach.

3.2.1 Graph Convolution Layers. Given a graph G := (V, E), let
A be the adjacency matrix of G such that A is a symmetric binary
matrix with the assumption that the graph has no self-loops. The
node feature matrix is defined as X ∈ R𝑛×𝑑 where 𝑛 = |V|. A
graph convolution layer computes node latent representation as
𝑍 = 𝜎 (𝐷̃−1ÃX𝑊 ) where Ã := A + 𝐼 is the adjacency matrix
with added self-loops, 𝐷̃ is the diagonal degree matrix of the graph
such that 𝐷̃𝑖,𝑖 :=

∑
𝑗 Ã𝑖, 𝑗 ,𝑊 ∈ R𝑑×𝑑 is a matrix of trainable graph

convolution parameters that are shared among nodes, 𝜎 is a non-
linear activation function, and 𝑍 ∈ R𝑛×𝑑 is the output activation
matrix.

Intuitively, nodes in a graph are defined by their neighbors and
connections. Thus, the latent representation of a node is also af-
fected by that of its neighbors. The graph convolution layers reflect
this rationale by starting from node features (X𝑊 ), allow informa-
tion to propagate between neighboring nodes by the product of
node features and adjacency matrix (ÃX𝑊 ). To compute multi-
scale node latent representation, multiple graph convolution layers
can be stacked. The final node latent representation is computed as
𝑍 𝑙+1 = 𝜎 (𝐷̃−1Ã𝑍 𝑙𝑊 𝑙 ) where 𝑙 = 0 . . . 𝐿 − 1, 𝑍 0 := X, 𝑍 𝑙 ∈ R𝑛×𝑑𝑙
is the output of the 𝑙 th graph convolution layer; 𝑑𝑙 is the number

...
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Figure 2: Information PropagationBetweenNodeswithMul-
tiple Convolution Layers.

of the output channels of the 𝑙 th layer (i.e., the number of features
of each graph node extracted at the 𝑙 th layer);𝑊 𝑙 ∈ R𝑑𝑙×𝑑𝑙+1 is
trainable parameters of the 𝑙 th layer. In Figure 2, we illustrate how
the features of a node are propagated to its neighbors during the
convolution process given the graph example depicted in Figure 1.
After the completion of the convolution process through all convo-
lution layers, we obtain node latent representation that can learn
from the entire graph topology.

3.2.2 Pooling Layers. Given node latent representation obtained
from the first stage through graph convolution layers, the pool-
ing layers aim at combining latent representation of all the nodes
into a vector with a predefined order and size. The output of the
pooling layers is a latent representation of a graph. There exist
several pooling approaches such as global pooling [15] and hier-
archical pooling [21, 48]. Global pooling is the simplest approach
that takes the mean and max of the final node latent representation.
Hierarchical pooling step-by-step reduces the number of nodes
(after one or multiple graph convolution layers) either by merging
similar nodes to super-nodes [48] or selecting the most significant
nodes [21] until a single super-node is found. In DGCNN [49], the
authors developed SortPooling algorithm for sorting nodes by the
sum of node features at the 𝐿th layer, which is the last layer in the
graph convolution stage. If two nodes have the same value at the
𝑙 th layer, the sum of node features at the (𝑙 − 1)th layer is used
until ties are broken. Since the number of nodes in each graph is
heterogeneous, pooling layers also perform truncation or extension
of the graph latent representation to a predefined size, which is
then fed to the third/last stage of the graph classification process.
Given a predefined size of the graph latent representation (say 𝑘), if
there are more than 𝑘 values in the graph latent representation vec-
tor, truncation is performed. Otherwise, zero-padding is performed.
The value of 𝑘 is defined heuristically based on the input data. For
instance, 𝑘 is defined such that 90% of graph nodes will be used to
construct the graph latent representation vector so as to avoid loss
of node features in the final graph latent representation.

3.2.3 Neural Network Layers. After pooling layers, each graph
is represented by a latent vector. To further learn the local pat-
tern of graphs, one or multiple 1-dimensional convolution layers
associating with MaxPooling layers are applied before using fully-
connected layers followed by a softmax layer to predict the class.

3.3 Network Traffic Collection
We assume that mobile traffic collection can be done by network
operators using available network monitoring tools [20], which
capture the traffic without interfering with app functionalities. As
our technique does not require the payload, it can be discarded to
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reduce the storage space needed. To prepare the training dataset
for the classifier, a large amount of traffic needs to be collected and
processed. While this task can be done in an offline manner, the
inference phase needs to be done in real-time so as to react to the
abnormal behavior of mobile apps. After being analyzed by the
classifier, the traffic samples collected during the inference phase
can also be discarded or stored to enrich the training dataset.

4 MOBILE-APP CLASSIFICATION USING
DEEP GRAPH CONVOLUTION NEURAL
NETWORKS

WenowpresentMAppGraph, a novel technique that adopts DGCNN
to cybersecurity for the problem of mobile-app classification. We
first present the most important task that is the construction of
graphs of mobile-app traffic behavior and node feature extraction.
We then present the DGCNN architecture used in our work.

4.1 Construction of Traffic Behavior Graphs
4.1.1 Construction of Graph Topology. Given that network traffic
of mobile apps is captured with a predefined time window (𝑇window),
say 5 minutes, the construction of a traffic behavior graph involves
node and edge determination to correlate nodes and weight com-
putation for the edges. It should be noted that the longer the time
window, the more the traffic is captured and the diverse the app
behavior is observed. Obviously, the longer the time window, the
longer the time needed before the app is classified. This may af-
fect the security of the networks or mobile service platform as the
app can exhibit malicious behavior that needs to be detected as
soon as possible. At first glance, a naive solution is to construct a
traffic behavior graph by considering the IP addresses (including
the IP address of the device) as graph nodes and connecting those
nodes based on traffic flows exchanged among them. However, this
makes all the graphs in the star form where the device IP address
is the central node that has connections to all the remaining nodes.
Furthermore, as mobile apps share third-party services, the star-
formed graphs of many apps will be similar with the same number
of nodes.

To overcome this issue and produce a better graph represen-
tation of the traffic behavior of mobile apps, we define a graph
node by a tuple of a destination IP address and the port number of
the service that the app connects to. Multiple third-party services
may be deployed under the same server (i.e., the same IP address)
but with different port numbers. For instance, SMTP Email and
DNS services may have the same IP address but using different
port numbers (587 for the secure email service and 53 for the DNS
service). It is to be noted that third-party services are usually de-
ployed in multiple servers (with different IP addresses) to provide
load balancing. The requests from mobile apps will be distributed
to a specific service based on their load. For this reason, using a
rule-based classification approach with the destination IP address
may not work well. Nevertheless, the port number does not change
and the number of destination nodes remain unchanged.

The challenging issue is how to determinewhether two nodes are
correlated such that an edge between them needs to be established.
To achieve this goal, we adopt the temporal correlation concept pre-
sented in [44], which is in turn based on the cross-correlation [32]
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Figure 3: Examples of Traffic Behavior Graphs of Facebook
(a and b) and Spotify (c) Constructed by Our Approach.

between activities of all node pairs. Given the traffic captured in a
time window that results in the list of graph nodes determined as
discussed above, the time window is further divided into multiple
slices with a predefined slice duration (𝑡slice, say 10 seconds). Let 𝑇
denote the number of slices. During each slice, we consider a node
(i.e., a pair of a destination IP address and a port number) is active
if the mobile app has sent or received at least one traffic packet
to the service deployed at the destination IP address and the port
number. Let 𝑎𝑖 (𝑡) be a binary variable indicating whether node 𝑖
is active at time slice 𝑡 or not such that 𝑎𝑖 (𝑡) = 1 if node 𝑖 is active
and 𝑎𝑖 (𝑡) = 0, otherwise. The cross-correlation between node 𝑖 and
node 𝑗 during 𝑇 slices is defined as C𝑖, 𝑗 =

∑𝑇
𝑡=1 𝑎𝑖 (𝑡) · 𝑎 𝑗 (𝑡).

The cross-correlation between two nodes (C𝑖, 𝑗 ) is high if they
have a lot of activities in the same time slices. Otherwise, 𝐶𝑖, 𝑗 is
low or even equal to zero if there is no correlation between them.
Using cross-correlation, we can establish edges among nodes and
set the weight for the edges accordingly. If C𝑖, 𝑗 ≠ 0, an edge be-
tween node 𝑖 and node 𝑗 is established with the weight C𝑖, 𝑗 . To
avoid the feature bias when feeding graphs to DCGNN for train-
ing and prediction, we can normalize the cross-correlation to the
range [0, 1] using a min-max scaler. Using the graph construction
technique presented above, we achieve the graph representation of
communication behavior of mobile apps as shown in Figure 3 with
three example graphs of Facebook and Spotify. The thickness of
the edge between two nodes indicates the weight of the edge (i.e.,
the cross-correlation between the nodes).

4.1.2 Extraction of Node Features. We need to construct a feature
vector for each node in the graphs. Since a mobile app connects to
various services, each being represented by a node in the graph as
a tuple of an IP address and a port, the behavior of traffic from the
mobile device to the server of each service may be different in terms
of various traffic features such as packet size, number of packets,
flow duration, etc. To generalize our technique (MAppGraph) to
both encrypted and unencrypted traffic, we extract information
only from packet headers without analyzing packet payloads. Apart
from packet features, we also consider flow features such as the
number of flows, mean number of packets in each flow and mean
flow size in bytes. In this work, we consider only TCP andUDP flows
and we rely on Wireshark to collect traffic features. In practical
scenarios, an online traffic feature extraction tool such as [43] is
needed to process the traffic stream on the fly. It is also to be noted
that a flow is different from a TCP session, which is defined with
TCP flags and can last for a long duration. As defined in [43], a
flow is a sequence of packets that have the same tuple of source IP,
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Figure 4: Architecture and Parameters of MAppGraph Model for Mobile App Classification.

destination IP, source port destination port and protocol, and the
inter-arrival time between two consecutive packets is shorter than
a predefined threshold (e.g., 3 seconds). From the basic features,
we derive statistical features that are useful for DGCNN to learn
the communication behavior of mobile apps. There is a total of
63 features, which are extracted and derived from the traffic. We
classify these features into 4 categories.

• Aggregated features: These are the features computed as
sum, total count, max and min values of basic features over
the time window of traffic capture (e.g., 5 minutes). These
include the total number of packets, the total number of
bytes and the total number of flows.

• Temporal features: Temporal features include the flow dura-
tion, the mean and standard deviation of flow duration.

• Statistical features: These are the mean, median absolute
deviation (MAD), variance, skew, kurtosis and standard de-
viation (in the short stand. dev.) of packet size (in bytes),
number of packets, number of bytes, flow size (in bytes)
over the time window of traffic capture (e.g., 5 minutes).
We separate incoming and outgoing packets and extract fea-
tures before aggregating them all together to provide more
statistical features.

• Categorical features: Categorical features such as transmis-
sion protocol and IP address need to be factorized before
being fed to MAppGraph. Each IP address is factorized and
normalized into 4 features, each representing a component
of the address. For instance, the IP address 223.12.45.68 is
factorized as 4 features (223/255, 12/255, 45/255, 68/255).

In Table 1, we summarize the list of traffic features used for attribut-
ing graph nodes. Instead of performing feature selection and using
only important features for attributing graph nodes, we leverage
the capability of deep learning that can learn latent characteristics
of data and feed all the possible features to MAppGraph. On one
hand, this implicitly relieves the effort of feature engineering and
selection. On the other hand, this provides maximum information
that can be collected from network traffic to achieve the highest
performance in mobile app classification.

4.2 MAppGraph Model Architecture
In Figure 4, we present the architecture and detailed parameters of
the MAppGraph model obtained after a parameter tuning process.
We employ 3 graph convolution layers, each having the size of 1024.
The SortPooling layer that follows the graph convolution layers

Table 1: Traffic features used for attributing graph nodes

No. Feature Category

1 Number of incoming packets Aggregate
2 Max of incoming packet size Aggregate
3 Min of incoming packet size Aggregate
4 Mean of incoming packet size Statistical
5 MAD of incoming packet size Statistical
6 Stand. dev. of incoming packet size Statistical
7 Variance of incoming packet size Statistical
8 Skew of incoming packet size Statistical
9 Kurtosis of incoming packet size Statistical

10-18 10 − 90 percentile of incoming packet size Statistical
19-37 Features 1-18 for outgoing packets
38-56 Features 1-18 on both types of packets
57 Mean flow size (in bytes) Statistical
58 Mean flow duration (in seconds) Temporal
59 Stand. dev. of flow duration (in seconds) Temporal
60 Total number of flows Aggregate
61 Mean number of packets in each flow Statistical
62 Transmission protocol Categorical
63 IP address of the node Categorical

has the size of 512. The activation function used in graph convolu-
tion layers and the SortPooling layer is tanh. In the classification
stage, we employ two traditional 1-dimensional convolution lay-
ers, between them a MaxPooling layer is integrated. The output of
the 1-dimensional convolution layers is flattened before being fed
to a fully-connected layer with a size of 1024 with a ReLU activa-
tion function. Before the softmax layer for classification, a Dropout
layer with a dropout probability of 0.25 is used to prevent the model
from overfitting. We use Adam optimizer [19] during the training
of MAppGraph.

5 EXPERIMENTS
5.1 Data Collection
There exist several datasets that contain encrypted traffic of mobile
apps such as ReCon [34], Cross Platform [33] and ANDRUBIS [23].
These datasets contain the traffic of a large number of mobile apps
on various platforms such as Android and iOS, i.e., up to 512 mobile
apps. However, the duration of traffic capture for each mobile app is
not long enough (the longest average duration is 339.4 seconds [44])
for observing diverse behavior and various functionalities of the
apps. We note that existing work such as [44] needs at least 300 sec-
onds of traffic capture to create fingerprints of an app. Furthermore,
these pre-processed datasets do not provide all features required in
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our technique. Thus, to capture the traffic of diverse user behavior
and various functionalities of mobile apps, we decided to carry out
our own traffic data collection.

We focused on Android apps, which can run on various brands
of smartphones such as Samsung, Xiaomi, Google Pixel, etc. Our
research team along with a recruited team of 10 students (see Ap-
pendix A) carried out traffic collection within 6 months with 8
smartphones. We setup a controlled data collection environment,
in which the smartphones are connected to a WiFi router where we
mirror the traffic to a desktop with sufficient storage space. All the
mobile apps are accessible within the university campus through
the university network. On each mobile device, apart from the core
Android apps of the OS, only one app (among 101 mobile apps men-
tioned in Appendix B) is in use. All the traffic generated from the
mobile device is labeled with the in-use app. Many mobile devices
can be used at the same time to collect traffic from different apps.
We recognize them based on the IP address of the mobile devices.

During the project lifetime, multiple data collection sessions
have been carried out. In each session (around 3-4 hours), the vol-
unteering students (the number of students who join in each session
varies) will get a smartphone (provided by the research team) and
access one of the apps in the list (presented in Appendix B). With
this randomness, we believe the collected traffic reflects the com-
mon user behavior in using common apps (of course maybe some
apps will not be accessed by the user or the user behavior change
will access some personal services) and all users may not have the
same usage behavior. Nevertheless, we believe it is a very challeng-
ing problem in controlled experiments using mobile apps when
users volunteer to do the pilot. This is out of our control.

As a result, we managed to collect the traffic for 101 mobile apps,
which are popular (testified by the number of installs) in Google
Play. For each app, we intentionally captured more than 30 hours
of traffic stored in PCAP files, each belonging to a particular app. In
Table 6 of Appendix B, we present all the mobile apps that we have
collected their traffic.With the PCAP files, we performed graph con-
struction for each mobile app with a sliding window of𝑇window = 5
minutes (if not stated otherwise). To provide more graphs to train
the MAppGraph model, we set an overlapping duration window
to 3 minutes. This results in at least 800 graphs for each mobile
app in our experiments. In Figure 5, we present data pre-processing
to construct graphs and the workflow for experiments and perfor-
mance comparison. We randomly split these graphs into training
and test sets with a ratio 80 : 20.

5.2 Performance Metrics and Comparison
We use conventional performance metrics of machine learning for
a multi-class classification problem such as Precision, Recall, F1-
Score and Accuracy. We compare the performance of MAppGraph
with three following techniques.

5.2.1 Multilayer Perceptron (MLP). We aggregate features of graph
nodes into a single vector. Due to the heterogeneity in the number of
nodes in the graphs, we fixed the number of nodes, which have the
highest number of traffic packets to construct the feature vectors.
The selected nodes are sorted in the descending order based on
the number of traffic packets to construct the feature vector. We
define this parameter as 𝑁 in the experiments presented hereafter.
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Figure 5: Preparation of Training and Testing Datasets.

As we used only node features, the correlation among nodes is not
used in the models. The architecture of MLP consists of 3 hidden
layers, each having 1024 hidden nodes. After each dense layer, a
batch normalization layer is added to normalize data before feeding
to the next dense layer. We used ReLU for MLP.

5.2.2 AppScanner. AppScanner [40] is a flow-based mobile app
classification technique, in which a capture of 50 minutes of mobile
app traffic is analyzed and flow features are extracted to train a
machine learning model (Random Forest and Support Vector Ma-
chine) to classify traffic flows of mobile apps. The authors extracted
40 traffic features, which are also used in our work presented in
Table 1. For a fair comparison, we faithfully used the source codes
of AppScanner downloaded from its website2 and run with our
collected data. As shown in Figure 5, each AppScanner model re-
quires 50 minutes of traffic for each app. For all the apps used in
our experiments, every app has at least 16 traffic chunks with a
duration of 50 minutes. Thus, we considered 16 AppScanner models
to evaluate the performance. Besides presenting the performance
of each individual model, we used a naive voting scheme to use
all the 16 models for classification. Given a mobile app, the class
predicted by the highest number of models is considered as the
final prediction of the app. We denote this technique as Enhanced
AppScanner in the experiments.

5.2.3 FlowPrint. FlowPrint [44] considers the cross-correlation to
classify or detect mobile apps. With the traffic collected in a time
window (e.g., 5 minutes), instead of using machine learning, Flow-
Print defines app fingerprint as “the set of network destinations
that form a maximal clique in the correlation graph”. Given two
fingerprints, the authors use the Jaccard similarity [17] to com-
pare the similarity between them. If the similarity is larger than
a predefined threshold then the two fingerprints are considered
to belong to the same app. Similar to AppScanner, FlowPrint uses
only 5 minutes of traffic capture to create fingerprints for each
app. In our experiments, with more than 30 hours of traffic, we can
create up to 544 traffic chunks of 5 minutes for each. As shown in
Figure 5, we use a naive voting scheme to determine which mobile
app a test traffic sample belongs to. Given a test traffic sample, the
2AppScanner: https://github.com/Thijsvanede/AppScanner

https://github.com/Thijsvanede/AppScanner
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obtained fingerprints will be compared with all the pre-computed
fingerprints obtained from the 544 traffic chunks. The mobile app
that has the highest number of pre-computed fingerprints similar
to the test fingerprints will be the final prediction. We faithfully
used the source codes of FlowPrint downloaded from the website
of its authors3 to run the experiments. We also denoted the adopted
FlowPrint as Enhanced FlowPrint in the experiments.

For the hyper-parameters of MLP and MAppGraph, we trained
the models with 150 training epochs. The initial learning rate is
10−4 with a decay of 0.9 after every 10 training epochs. Training the
MAppGraph model can be done in an offline manner. In a practical
deployment, a pre-trained model is used in the production while
another model is trained in parallel to reflect any changes in mobile
app behavior (e.g., version upgrading or being attacked). Advanced
training methods such as incremental learning [7] can also be ap-
plied to reduce the training time of the model when new data is
collected. To ensure reproducibility, we conducted each experiment
over multiple random-seeded runs. The experiments were carried
out on a customized desktop with AMD Ryzen Threadripper 2950X
16-core processor @ 3.5GHz, 64 GB of RAM and 2 Nvidia GeForce
RTX 2080Ti GPUs, each having 11 GB of memory.

5.3 Analysis of Results
5.3.1 Overall Performance Comparison. We now present the per-
formance comparison of MAppGraph with MLP, AppScanner and
FlowPrint. In Table 2, we present the performance of all the tech-
niques in terms of Precision, Recall, F1-Score and Accuracy on our
dataset. The results show that MAppGraph has the best perfor-
mance. Compared to the worst performance results produced by
Enhanced AppScanner, MAppGraph significantly improves the per-
formance in all the metrics by up to 20%. Our experiments also con-
firm the fact that FlowPrint outperforms AppScanner as discussed
in [44]. Interestingly, MLP has a better performance compared to
Enhanced AppScanner. This demonstrates that using flow-based
detection or classification of mobile apps is not an appropriate ap-
proach as most of the apps nowadays share the same third-party
services. This makes traffic flows between the mobile apps and
the servers of the third-party services have similar behavior, thus
being indistinguishable among the apps. Even though MLP does
not process graphs with nodes and edges among nodes, the way we
select the graph nodes whose features are used to train the model
implicitly takes into account the communication correlation of the
mobile app and various third-party services used by the app.

It is interesting to show that the result obtained with Enhanced
AppScanner based on the voting scheme is much better compared
to the performance of individual models. Table 3 presents the per-
formance of AppScanner obtained with individual models. The
experimental results show that individual models of AppScanner
have stable performance (i.e., testified by the low standard devia-
tion of all performance metrics) throughout different traffic chunks
used to train the models. Enhanced AppScanner significantly im-
proves the performance by up to 25% and 20% compared to the
worst and best individual models, respectively. This demonstrates
the diversity of traffic behavior of mobile apps when users use

3FlowPrint: https://github.com/Thijsvanede/FlowPrint

Table 2: Overall Performance Comparison

Technique Precision Recall F1-Score Accuracy

MLP 0.9081 0.9075 0.9074 0.9075
Enhanced 0.8634 0.7938 0.7828 0.7938AppScanner
Enhanced 0.8759 0.8341 0.8275 0.8341FlowPrint
MAppGraph 0.9364 0.9346 0.9347 0.9346

Table 3: AppScanner Performance with Individual Models

Model No. Precision Recall F1-Score Accuracy

1 0.7527 0.6660 0.6468 0.6660
2 0.7476 0.6483 0.6304 0.6483
3 0.7791 0.6757 0.6556 0.6757
4 0.7405 0.6468 0.6299 0.6468
5 0.7779 0.6577 0.6460 0.6577
6 0.7358 0.6652 0.6479 0.6652
7 0.7281 0.6493 0.6308 0.6493
8 0.7354 0.6559 0.6398 0.6559
9 0.7322 0.6485 0.6323 0.6485
10 0.7590 0.6515 0.6381 0.6515
11 0.7666 0.6515 0.6418 0.6515
12 0.7306 0.6527 0.6419 0.6527
13 0.7873 0.6563 0.6571 0.6563
14 0.7618 0.6415 0.6357 0.6415
15 0.7420 0.6346 0.6258 0.6346
16 0.7592 0.6633 0.6534 0.6633
Mean 0.7522 0.6541 0.6408 0.6541
Stan. Dev. 0.0187 0.0101 0.0097 0.0101
Enhanced 0.8634 0.7938 0.7828 0.7938AppScanner

various functionalities, which pose challenges for the detection and
classification techniques.

Compared to Enhanced FlowPrint which also considers the cross-
correlation among app servers and third-party services by construct-
ing communication graphs, MAppGraph improves the performance
by up to 7%. This improvement is a result of the combination of
advanced deep learning techniques and consideration of the di-
verse behavior of mobile apps. On one hand, using DGCNN (with
multiple graph convolution layers) allows the classification model
to learn the communication behavior of mobile apps better from
the graph topology and node attributes. On the other hand, MApp-
Graph takes into account the diversity of mobile app behavior by
training a single DGCNN model on multiple graphs. This is an
advantage of our technique compared to FlowPrint, which has to
compare the fingerprints obtained from a test traffic sample with
all pre-computed fingerprints (there are at least 544 × 101 finger-
prints computed by FlowPrint in our experiments). This fingerprint
comparison technique is not practical as there is a large number
of mobile installed by users in reality. Nevertheless, in Figure 6,
we present the performance of Enhanced FlowPrint with respect
to the number of traffic chunks (of 5 minutes) of each app used
in the voting scheme. The results show that the performance im-
provement is significant when we increase the number of traffic
chunks of each app used for inference from 1 to 20. However, using

https://github.com/Thijsvanede/FlowPrint
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Figure 6: Performance of Enhanced FlowPrint w.r.t Number
of Traffic Chunks of Each App Used for Classification.

more than 20 traffic chunks of each app only results in a slight per-
formance improvement that may not be worth compensating for
the inference time/cost. It is worth mentioning that inference with
MAppGraph is performed by simply applying linear operations
(i.e., matrix multiplication) of graphs (i.e., node attributes and edge
weights) with the parameters of a single DGCNN model.

5.3.2 Impact of Number of Graph Nodes used to Train Models. As
discussed in Section 3, the pooling layers perform truncation or
extension of the graph latent representation to predefined size (𝑘).
This implicitly corresponds to the number of graph nodes (denoted
as 𝑁 ) whose features are used to train the model in case of MLP
(i.e., 𝑘 is a multiple of 𝑁 ). The rationale behind this experiment is
that with a high value of 𝑁 , all the graphs that have fewer nodes
must use zero paddings for feature vectors (in the case of MLP) or
the latent representation vectors (in case of MAppGraph). These
zero-valued features may mislead the learning of the models. On
the other hand, if we use a small number of nodes, we may lose
useful information from the nodes that are discarded, thus affecting
the performance of the models as well. In Figure 7, we present the
histogram of the number of nodes in the graphs of our dataset with
𝑇window set to 5 minutes. The histogram shows that most of the
graphs have around 10 nodes. 90% of graphs have fewer than 35
nodes and 86% of graphs have fewer than 30 nodes. In Figure 8, we
present the performance of the models with respect to four values of
𝑁 . We obtained expected results that performance degrades when
fewer nodes are used. The performance increases to an optimum
value of 𝑁 before decreasing again when a large number of nodes
are used. It is interesting mentioning that the optimal value of
𝑁 is different between MLP and MAppGraph. The reason could
be the fact that MAppGraph needs more information about the
graph topology to differentiate mobile apps. Nevertheless, in all the
experimental scenarios, we observed that MAppGraph has a better
performance compared to MLP. We note that FlowPrint considers
the entire graphs for determining app fingerprints. Thus, we do not
present FlowPrint in this experiment.

5.3.3 Impact of Time Window Duration of Traffic Collection for
Graph Construction. In this experiment, we evaluate the impact of
the time window (𝑇window) duration needed for traffic capture to
construct the communication graphs of mobile apps. In the experi-
ments presented above, we used a time window of 5 minutes for
traffic capture. However, it would be better if the model can classify
the apps with shorter traffic capture, leading to better benefits such
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Figure 7: Histogram of Number of Nodes in Graphs.
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Figure 8: Performance of MLP and MAppGraph w.r.t. Num-
ber of Nodes in Graphs.

as lower computational resources required, a quick reaction in case
of security breaches. In Table 4, we present the performance of
the proposed technique with respect to the duration of the time
window required to capture traffic.

As expected, the performance of all the techniques decreases
when we use a shorter traffic capture window. The results show that
when we reduce the traffic capture from 5 minutes to 1 minute, the
performance of MAppGraph decreases by 7%. We believe that the
gain obtained when reducing the traffic capture duration (e.g., faster
app classification and detection, less storage and computational
resources required) is more significant compared to the loss in
performance. In practice, this parameter can be configured by the
network operators based on their desired performance and objective.
Nevertheless, the trends of performance among the techniques do
not change such that the proposed technique (MAppGraph) always
performs the best followed by MLP and Enhanced FlowPrint.

It is to be noted that when the time window duration is short (the
cases of 𝑇window ⩽ 2), we do not apply overlapping. The rational
behind is twofold. First, with short capture duration, we managed
to generate sufficient data to split into train and test for perfor-
mance evaluation. Second, it is practically fast enough to detect
the applications. In case where the capture duration is long (e.g., 5
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Table 4: Impact of TimeWindow (in minutes) of Traffic Col-
lection on Performance of Classification Models

𝑇window Technique Precision Recall F1-Score Accuracy

5
MLP 0.9081 0.9075 0.9074 0.9075
Enhanced 0.8759 0.8341 0.8275 0.8341FlowPrint
MAppGraph 0.9364 0.9346 0.9347 0.9346

4

MLP 0.8905 0.8894 0.8896 0.8894
Enhanced 0.8559 0.8296 0.8258 0.8296FlowPrint
MAppGraph 0.9181 0.9174 0.9171 0.9174

3

MLP 0.8705 0.8671 0.8681 0.8671
Enhanced 0.8546 0.8175 0.8179 0.8175FlowPrint
MAppGraph 0.8977 0.8932 0.8935 0.8932

2

MLP 0.8648 0.8625 0.8631 0.8625
Enhanced 0.8447 0.7945 0.7978 0.7945FlowPrint
MAppGraph 0.8759 0.8738 0.8734 0.8738

1

MLP 0.8478 0.847 0.8466 0.8470
Enhanced 0.7785 0.6535 0.6711 0.6535FlowPrint
MAppGraph 0.8698 0.8683 0.8679 0.8683

Table 5: Impact of Slice Duration on Performance of Classi-
fication Models

𝑡slice Technique Precision Recall F1-Score Accuracy

1
Enhanced 0.7773 0.7325 0.7176 0.7325FlowPrint
MAppGraph 0.9342 0.9327 0.9328 0.9327

5
Enhanced 0.8414 0.8112 0.8065 0.8112FlowPrint
MAppGraph 0.9353 0.9335 0.9337 0.9335

10
Enhanced 0.8759 0.8341 0.8275 0.8341FlowPrint
MAppGraph 0.9364 0.9346 0.9347 0.9346

minutes), sliding windows will increase the frequency of classifica-
tion and detection. For instance, with sliding windows of 2 minutes
and 𝑇window = 5 minutes, within 10 minutes, 3 samples will be col-
lected and analyzed instead of 2 samples in case of non-overlapping.
This could help users (e.g., network administrator) who deploy the
proposed approach, quickly detect and class the apps.

5.3.4 Impact of Slice Duration on Cross-Correlation in Graph Con-
struction. In this experiment, we evaluate the impact of the slice
duration that is used to determine the communication correlation
among destination services connected by a mobile app. The shorter
the slice duration, the fewer the edges in the graphs. On the other
hand, the longer the slice duration, the graphs become fully con-
nected. In both scenarios, the communication correlation may affect
the capability of MAppGraph in learning the communication be-
havior of mobile apps. In Table 5, we present the performance of
the techniques with different values of slice duration. It is to be
noted that the slice duration is used to compute the weight of graph
edges. Thus, it does not affect the performance of MLP that only

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

Precision Recall F1-Score Accuracy

P
er

fo
rm

an
ce

With IP Without IP

Figure 9: Performance of MAppGraph with and without us-
ing IP Addresses in Feature Vectors.

uses traffic features of the nodes in the graphs (i.e., the destina-
tion services that mobile apps connect to). Thus, we do not show
MLP in this experiment. Interestingly, the results show that the
performance increases along with the increase in the slice duration.
While FlowPrint incurs a big performance gap (up to 13%) between
the two scenarios: 𝑡slice = 1 second and 𝑡slice = 10 seconds, this
does not happen to MAppGraph. The difference between the two
scenarios is less than 1%. This relieves the effort for determining
optimal slice duration to obtain the best performance.

5.3.5 Performance with and without using the IP Addresses in Fea-
ture Vectors. As we discussed previously, IP addresses of destination
services may change due to load balancing. In this experiment, we
train MAppGraph without using the IP addresses of destination
services in the feature vectors. In Figure 9, we present the perfor-
mance comparison of MAppGraph with and without IP addresses
in feature vectors. The results show that the performance slightly
decreases when IP addresses are not used to train MAppGraph.
However, we believe that this performance is acceptable as the
model does not need to be retrained when deploying in a different
network domain of the destination services. It is worth mentioning
that the performance of MAppGraph without using IP addresses
as a feature still significantly better than that of FlowPrint, thus
demonstrating the effectiveness of the proposed technique.

5.3.6 Classification of Mobile Apps with Similar Functionalities. In
this experiment, we evaluate the performance of MAppGraph when
apps have similar functionalities. We created 2 datasets, each having
17 apps. The first dataset includes 17 apps related to audio and
music players such as Spotify and SoundCloud, which should have
similar traffic features such as packet size, flow size, etc. The second
dataset includes the apps with different functionalities. We trained
two DGCNN models and tested them on the two datasets, denoted
as SIM-APP and DIFF-APP, respectively. In Figure 10, we present the
performance of these two models. As expected, SIM-APP has lower
performance compared to DIFF-APP. The model (DIFF-APP) trained
on the dataset with different functionalities attains 0.9750 for all
performance metrics. However, the performance degradation when
similar apps are present in the dataset is not significant (i.e., 4%).
This shows that considering cross-correlation among the services
used by the apps into graphs and combining with traffic features
(i.e., information extracted from packet headers) as attributes of
graph nodes allow us to accurately differentiate mobile apps even
though they have similar functionalities.
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Figure 10: Classification of Apps with Similar and Different
Functionalities.
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Figure 11: Performance of Techniquesw.r.t Number of Apps.

5.3.7 Performance with Different Number of Apps. We evaluate the
performance of MAppGraph with different number of apps. We
randomly selected a number of apps from the original dataset to
train and test the model. The results presented in Figure 11 show
that the performance of the techniques degrades along with the
increase in the number of apps. This is expected as the higher the
number of apps, the higher the possibility that the more apps have
similar behavior. The results also indicate that the performance of
MLP, AppScanner and FlowPrint degrades quickly, resulting in a
big margin between the two scenarios (i.e., the smallest and highest
number of apps). Whereas, the performance of the DGCNN model
slightly decreases and still achieves high performance even with
the highest number of apps in the dataset. This demonstrates the
effectiveness of MAppGraph.

5.3.8 Discussion on Detection of Unseen/unidentified Apps. While
the proposed technique mainly applies to the problem of mobile app
classification, it can also be adopted for the problem of detection of
unseen or unidentified apps. Note that the output of the softmax
layer (i.e., the output layer of the DGCNN architecture) for class
decision is a probability and the class with the highest probability
is selected. This probability is considered as the confidence of the

model to decide whether the traffic sample belongs to the selected
app. We can compare the confidence with a predefined threshold
(e.g., 0.5). If the probability is smaller than the threshold, we can
confirm that the app is unseen or unidentified. A more advanced ap-
proach that uses an unsupervised learning approach such as graph
clustering could also be employed. Such an unsupervised learning
approach does not need a large labelled dataset, thus relieving us
from data labelling effort. We make this as our future work.

6 CONCLUSION
In this paper, we presented MAppGraph, a novel technique for
mobile app classification that can deal with encrypted traffic, dy-
namic communication behavior and implementation nature of mo-
bile apps. We developed a technique to process mobile traffic and
construct communication behavior graphs that considers the cross-
correlation among the services connected by the apps and traffic
features, which are useful for differentiating mobile apps. We de-
veloped a DGCNN model that is able to learn the diverse commu-
nication behavior of mobile apps from a large number of graphs.
We collected traffic for 101 Android apps, each with more than
30 hours of traffic for the experiments. We carried out extensive
experiments with various scenarios and compared the performance
of MAppGraph with a traditional deep learning model (MLP) and
two state-of-the-art techniques (AppScanner and FlowPrint). The
experimental results show that MAppGraph outperforms the base-
line techniques with a performance improvement of up to 20% in
terms of Precision, Recall, F1-Score and Accuracy. With high per-
formance and fast execution, MAppGraph enables better mobile
security by using it in anomaly detection, automated vulnerability
patching of mobile apps, etc. as well as in network management
such as dynamic resource allocation and traffic engineering.
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A DATA COLLECTION AND ETHICS
Our data collection process involved a group of 10 students includ-
ing the first two co-authors of the paper under the supervision of the
4th co-author. We set up controlled experimental sessions, in each
session (around 3-4 hours), the volunteering students (the number
of students who joined in each session varies) get a smartphone
provided by the research team and access one of the apps presented
in Appendix B. The students were offered beverage and food during
the experimental sessions. After each session, the research team
took back the devices, extracted the logs and anonymized the data.
We also used the mobile devices purchased in the scope of our
project to perform traffic collection rather than using personal
devices of the students. We also did not store personal informa-
tion of students. Thus, the data collection team did not involve the
institutional review board (IRB).
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B LIST OF MOBILE APPS

Table 6: List of Mobile Apps

No. Package Name Number of Installs No. Package Name Number of Installs

1 com.facebook.katana >5 billion 52 com.sendo >10 million
2 com.instagram.android >1 billion 53 com.shopee.vn >10 million
3 com.facebook.orca >1 billion 54 com.ted.android >10 million
4 com.netflix.mediaclient >1 billion 55 gsn.game.zingplaynew1 >10 million
5 com.skype.raider >1 billion 56 vn.tiki.app.tikiandroid >10 million
6 com.snapchat.android >1 billion 57 vn.vtv.vtvgo >10 million
7 com.twitter.android >1 billion 58 droidhang.twgame.restaurant >5 million
8 com.dts.freefireth >500 million 59 game.bida.vng >5 million
9 video.like >500 million 60 com.chotot.vn >5 million
10 com.linkedin.android >500 million 61 com.imbb.oversea.android >5 million
11 com.pinterest >500 million 62 com.guardian >5 million
12 com.spotify.music >500 million 63 mobi.fiveplay.tinmoi24h >5 million
13 org.telegram.messenger >500 million 64 com.hihuc.cchess.online >1 million
14 us.zoom.videomeetings >500 million 65 vcc.mobilenewsreader.kenh14 >1 million
15 com.innersloth.spacemafia >100 million 66 myradio.radio.fmradio.liveradio.radiostation >1 million
16 com.azarlive.android >100 million 67 mobi.mangatoon.novel.portuguese >1 million
17 sg.bigo.live >100 million 68 com.live.party >1 million
18 com.mobilemotion.dubsmash >100 million 69 com.popsworldwide.popskids >1 million
19 com.google.android.apps.meetings >100 million 70 com.giaitri.tvviet >1 million
20 com.yy.hiyo >100 million 71 com.riotgames.league.wildriftvn >1 million
21 com.lazada.android >100 million 72 vieon.phim.tv >1 million
22 com.soundcloud.android >100 million 73 fr.playsoft.vnexpress >1 million
23 com.starmakerinteractive.starmaker >100 million 74 wsj.reader_sp >1 million
24 com.sgiggle.production >100 million 75 com.tencent.qqlivei18n.tw >1 million
25 com.ss.android.ugc.trill >100 million 76 com.toast.comico.vn >0.5 million
26 com.tinder >100 million 77 com.hahalolo.android.social >0.5 million
27 tv.twitch.android.app >100 million 78 com.vivavietnam.lotus >0.5 million
28 com.zing.zalo >100 million 79 xyz.wmfall.phim >0.5 million
29 me.mycake >50 million 80 com.viettel.tv360 >0.5 million
30 com.garena.game.kgvn >50 million 81 vn.com.dantrinews.android >0.1 million
31 com.huya.nimo >50 million 82 io.pobble.sen.android >0.1 million
32 com.nono.android >50 million 83 com.music.mp3.trutinh.nhacvang >0.1 million
33 com.reddit.frontpage >50 million 84 app.sachnoi >0.1 million
34 com.radio.fmradio >50 million 85 vcc.mobilenewsreader.sohanews >0.1 million
35 com.tencent.wesing >50 million 86 com.gkim.thanhniennews >0.1 million
36 org.wikipedia >50 million 87 tivi.vina.thecomics >0.1 million
37 com.zing.mp3 >50 million 88 com.tvonline.tivi24h >0.1 million
38 com.baohay24h.app >10 million 89 com.topcv >0.1 million
39 com.epi >10 million 90 vn.tuoitre.app >0.1 million
40 bbc.mobile.news.ww >10 million 91 com.vietnamworks.vietnamworks >0.1 million
41 com.chess >10 million 92 com.wewe.musicsounds >0.1 million
42 com.cnn.mobile.android.phone >10 million 93 com.miboo >0.1 million
43 com.fplay.activity >10 million 94 com.kaka.kakavideo >0.05 million
44 sg.bigo.hellotalk >10 million 95 com.habn.webtruyen >0.05 million
45 com.iqiyi.i18n >10 million 96 com.radione >0.05 million
46 mobi.mangatoon.comics.aphone >10 million 97 vn.diijam.jammer >0.01 million
47 com.vng.mlbbvn >10 million 98 com.craftbox.jwapp.android >0.01 million
48 ht.nct >10 million 99 smartapphome.tinhte >0.01 million
49 fm.castbox.audiobook.radio.podcast >10 million 100 com.bachtruyen >0.01 million
50 com.vng.pubgmobile >10 million 101 com.msa.audiobooks >0.005 million
51 com.quora.android >10 million


