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ABSTRACT: This paper considers a two-phase model predictive control (MPC) which utilize a parsimonious parametrization
of the future control moves to decrease the number of the degrees of freedom of the optimization and, thereby, to reduce the
computations. Namely, the future control actions of the dynamic optimization are split into two stages. In the first phase, the
control moves are considered as individual degrees of freedom. In the second phase, which is defined as the period between the
end of the first phase and the prediction horizon, the control actions are determined using a weighted sum of some open-loop
controls selected at the MPC design stage. With this parametrization, the bounds on the manipulated variables need to be treated
as linear constraints. Alternatively, this paper estimates the maximum and the minimum of the future control trajectory that
allows one to limit the number of the constraints representing the bounds on the MPC inputs. Thus, an additional reduction of
the computations is achieved. To test the two-phase MPC, an MPC-based control strategy for the Tennessee Eastman challenge
problem is developed, and a comparison of the two-phase MPC with MPC using Laguerre functions and MPC with move
blocking is presented.

1. INTRODUCTION

Model predictive control (MPC) is nowadays one of the
leading industrial control techniques. The constrained MPC
introduced in the late 1970s1,2 enables keeping the process as
close as possible to its constraints without violating them, which
is normally required to maximize the process efficiency.
Constrained MPC typically has the following main features:
linear process constraints, a linear process model, and a
quadratic objective, which results in a finite horizon formulation
and quadratic programming (QP) optimization. During its
development, MPC technology faced several major challenges.
In particular, in the early 1990s it was discovered that hard
constraints can cause feasibility problems, especially when large
disturbances appear. Therefore most modern MPC products
are designed to use soft output constraints in dynamic
optimization.3 Because of the finite horizon formulation,
MPC faced stability problems. Attempts to achieve stability
included different prediction and control horizon approach and
the introduction of a terminal cost to the MPC objective. These
methods were criticized in the study of Bitmead et al.4 as
“playing games” because there were no clear conditions
guaranteeing stability. Therefore the stability of MPC was
studied actively during the early 1990s (Keerthi and Gilbert5

and Mayne and Michalska6 were among the first studies
exploring this question), and a comprehensive review of the
studies was provided in Mayne et al.7 Briefly summarized, the
value of the MPC objective as a function of the plant state,
which is also called the value function of MPC, is almost
universally used as a natural Lyapunov function, and the
stability can be ensured if the MPC possesses the recursive
feasibility properties, which basically means that the control
trajectory found by the previous MPC run is still feasible.

The computation requirements of MPCs are constantly
growing due to both the increased complexity of control
systems involving more variables and the increasing use of
nonlinear models. That is why many researchers have
concentrated their efforts on reducing online computations of
MPC. In particular, the explicit MPC introduced by Bemporad
et al.8 precomputes the piecewise linear control law. However,
because of the exponential explosion of the number of pieces as
a function of the number of problem inputs, outputs, and
constraints, this approach is only suitable for small-scale
problems. A partial enumeration approach described by
Pannocchia et al.9 precomputes the optimal solutions for the
most frequently occurring sets of active constraints. This
approach combines the table storage method and the online
optimization, which makes it suitable for large control
problems. Rao et al.10 proposed a modification of the
interior-point algorithm exploring the structure of the QP
tasks related to the MPC objective optimization.
The current study explores an alternative approach to reduce

the computations which is based on improved parametrization
of the future control trajectories. In particular, Wang11,12

suggested using Laguerre functions to define the future control
moves and provided some simple examples demonstrating the
benefits of this approach compared with the traditional
parametrization, considering each control move within the
control horizon as an individual decision variable of the MPC
optimization. It is straightforward to show that MPC with
Laguerre functions possesses the recursive feasibility property,
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and therefore, the stability can be easily ensured. Numerous
studies providing further comparison of the MPC para-
metrizations in terms of feasibility and optimality concluded
that MPC using Laguerre functions outperforms the traditional
approach13−15 with the same degrees of freedom (dof). The
same conclusion was made regarding a robust MPC.16 The
referred comparison studies, however, tend to evaluate the
controllers on small-scale noiseless examples. An alternative
approach to future control move parametrization is move
blocking, in which the control trajectory is forced to stay
constant over some steps. Despite working well in practice, this
parametrization does not provide the recursive feasibility
property, and, therefore, stability cannot be directly established.
This limitation can be resolved by modifications of the move
blocking technique, two of which were proposed by Cagienard
et al.17 and Longo et al.18 An alternative parametrization of the
MPC control trajectory is based on the observation that the
terms of the MPC objective representing the first future steps
are frequently much bigger compared with the terms related to
a more distant future. In the result, the MPC objective is more
sensitive to the first control actions compared to the latest ones.
The two-phase MPC considered in the present work defines
the first future control actions independently (the first phase),
and the rest control moves are determined as a weighted sum of
some open-loop controls selected at the MPC design stage (the
second phase).
Compared to the traditional approach, considering each

control action within the control horizon individually, three
parametrizations described above reduce the number of dof
needed to achieve good MPC performance, which results in
considerable computational savings. However, the number of
constraints has also a strong effect on the computational load.
Both the MPC using Laguerrer functions and the two-phase
MPC define the future control trajectory as a weighted sum of
preselected functions, and, therefore, the lower and the upper
bounds on the manipulated variables need to be treated as
linear constraints. In this paper, the maximum and the
minimum of the future control trajectory of the two-phase
MPC are estimated, and the number of the constraints
representing the bounds on the manipulated variables is greatly
decreased. In the result, a considerable reduction of the
computation time of the two-phase MPC is achieved.
In Zakharov et al.19 the two-phase MPC was successfully

tested on a small-scale grinding process with only two inputs
and four outputs. The aim of the present study is to carry out
comparative tests of the two-phase MPC and MPC with other
parametrizations using a larger process which would provide an
adequate ground for the comparison. In particular, the controls
are evaluated with respect to both the feasibility, which is the
capability to find a feasible solution during rapid transitions and
large disturbances, and the performance, which is the ability to
provide smooth trajectories of the process variables and to
follow the set points accurately. The Tennessee Eastman
challenge problem (TECP) was selected for the comparative
study because of its high nonlinearity and the dynamics,
including very fast and very slow responses, which result in the
requirement of long control and prediction horizons. Moreover,
some of the disturbances implemented in the process model
can be used for additional control evaluation.
The paper is organized as follows: Section 2 introduces the

proposed two-phase MPC and discusses its stability and
implementation issues. A MPC based control strategy of the
Tennessee Eastman process is presented in section 3, and the

test results are provided in section 4. Finally, section 5 presents
the conclusions.

2. TWO-PHASE MPC
2.1. Description of the Two-Phase MPC. This section

describes the two-phase MPC designed to equalize the
importance of every decision variable in terms of the MPC
objective. The two-phase MPC was formulated for the linear
discrete state space dynamics of a plant:

+ = +

+ = +

k A k B k

k C k

x x u

y x

( 1) ( ) ( )

( 1) ( 1) (1)

where x is an n-component state vector, u is an m component
vector of the input variables, and y is a p-component vector of
the measured plant outputs. For the sake of simplicity, it was
assumed that there was no noise in both the dynamics and the
measurements and that the state of the system was exactly
known. In addition, the following linear constraints were
imposed on the process inputs and process outputs:

≤ ≤ku u u( )l u
(2)

≤ ≤ky y y( )l u
(3)

On the basis of eqs 1−3 describing the dynamics and the
constraints, an MPC optimization aims to minimize the
objective function, which typically has the following form:
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,
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where Ly and Lu are usually positive definite quadratic forms
and a prediction horizon K longer than a control horizon N is
usually used to stabilize the MPC. The previous control action
u(−1) is needed to compute the increment of the control
actions used on the right-side of eq 4.
Since constrained MPC was introduced to simplify the

infinite horizon control problem, a longer control horizon is
needed to approach the optimal solution. The traditional MPC
treats the values of the first N control actions u̅ = (u(0),u(1), ...,
u(N−1)) as decision variables of the optimization, and the
constant value u(N−1) is usually applied after the control
horizon. In the case of a long enough control horizon, the term
JN−k,K−k(x(k)) approaches zero when k increases since MPC
drives the plant state x(k) to the target steady state to minimize
the objective (4). As a consequence, the relative contribution of
the first control actions to the right-side of eq 4 is more
important than the contribution of the latest control actions.
However, the latest control actions within the control horizon
increase the number of dof of the optimization in the same way
as the first control actions do. For this reason, the traditional
MPC parametrization requires relatively many dof to achieve
good performance, and thus the MPC optimization is not
computationally efficient. According to the two-phase MPC
parametrization, new optimization variables were introduced in
order to equalize the importance of every decision variable in
terms of the objective. To be more specific, several nearest
future control actions comprise the first phase, and the period
between the end of the first phase and the prediction horizon
was considered as a “second phase” of the dynamic
optimization, in which two open-loop controls were used to
define the control actions according to the following:
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where u* is the steady-state control defined by the set point
value and the variables αi

j, j = 1, 2, i = 1, ..., m are considered
optimization decision variables together with the first N control
actions u̅. The steady control u* can be calculated outside the
MPC optimization or considered as its decision variable. The
two open-loop controls gj(k) were defined using the following
exponential function:

= − = − −g k c k k K N( ) exp( ), 0, ..., 1j j (6)

where cj are some nonnegative constants. According to eq 5,
the same open-loop controls were used to define the future
control values for all process inputs, but the separate weights αi

j

of these open-loop controls were used for different inputs.
Figure 1 demonstrates a set of trajectories obtained as the
weighted sum of two open-loop controls defined by eq 6, where
the sum of the coefficients α1 + α2 equals unity.

As a result, the second phase was available for minimization
of the objective of the two-phase MPC in addition to providing
its stabilization effect. Furthermore, the control actions related
to the second phase could not be varied independently, and
they were instead determined using the weighted sum of the
open-loop controls which properly reflects the relative
importance of the second-phase control actions compared to
the control actions lying within the first phase.
2.2. Stability of the Two-Phase MPC. In this section, the

stability of the developed MPC is explored using a method
which has been previously used by many authors, including
Chen and Shaw20 and Primbs and Nevistic.21 The following
equation denotes the open-loop control produced by means of
the two-phase MPC objective optimization at state x with the
previous control action u, the control horizon N, and the
prediction horizon K as

= −k k k Kx u x u x u( , ) ( ( , , 0), ..., ( , , 1))N K N K N K, , , (7)

In order to establish the stability of the MPC, it is enough to
show that
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it is enough to finish the proof to show that
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On the right side of eq 12, the optimal control is selected
among the second-phase controls defined by eqs 5 and 6. On
the left side of the equation, the first control action is selected
freely, and the rest of the control actions are defined by means
of a second-phase control. To prove the two-phase MPC’s
stability, one must require the recursive feasibility property,
which means that any second-phase control v ̅ = (v(0), ..., v(N−
K−1)) considered without its first element must coincide with
another second-phase control w̅:

̅ = ̅ − = − −k k k N Kv w( ) ( 1), 1, ..., 1 (13)

Condition 13 holds for the open-loop controls defined by eq 6
since

α α− = − − −c k c c kexp( ) exp( ) exp( ( 1))i
j

j i
j

j j (14)

Furthermore, the left side of eq 12 has one more term than the
right-hand side. Therefore, to finish the proof, it is enough to
ensure that the last term in the left-hand side turns to zero,
which can be obtained by imposing the terminal constraints on
the system state. In fact, it is enough to require that the optimal
second-phase control on the left side of eq 12 achieves a rather
small value in the last term instead of achieving the exact steady
state. In particular, a long enough prediction horizon was used
in this work, which is sufficient to provide sustainable stability
to the controller without using the terminal constraints.

2.3. Implementation of the Bounds on the Input
Varaibles of the Two-Phase MPC. The second-phase
control actions ui(k) are linear functions of the optimization
decision variables αi

j. Thus, the MPC objective optimization
continues to be a quadratic programming task. More
specifically, the response of the decision variables αi

j on the
process outputs yl(k) can be obtained as a convolution of the
open-loop controls gj(k) and the impulse response of the plant
dynamics (eq 1), and the control error penalties and the output

Figure 1. Weighted averages of the two open-loop controls defined by
c1 = 0.15 and c2 = 0.07.
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constraints can be implemented similarly to traditional MPC.
The input bounds can be defined as follows:

≤ Ψ ≤u s ui
l

i i
u

(15)

where si = [ui(0), ui(1), ..., ui(N−1), ui*, αi1, αi
2] are the decision

variables of the MPC optimization and
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Actually, N of the conditions in eq 15 define the bounds on the
decision variables of the MPC optimization, whereas the rest of
the P − N conditions are treated as linear constraints.
Alternatively, it is possible to estimate the maximum of the
future control moves defined by eq 5. Assuming c1 < c2, k = c2/
c1, and k* = (k − 1)k−1/(k−1). It is straightforward to show that
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Taking into account eq 17, the upper input constraints related
to manipulated variable xi hold if

Φ ≤s ui i
u

(18)

where
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* *
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The lower input constraint can be handled symmetrically. In
comparison of eqs 15 and 16, the number of linear constraints
relating to a single manipulated variable drops from 2(P − N)
to 6.

3. DESCRIPTION OF THE MPC-BASED CONTROL OF
THE TENNESSEE EASTMAN CHALLENGE PROCESS
(TECP) DEVELOPED FOR THE TWO-PHASE MPC
TESTING

In this section, the Tennessee Eastman process is briefly
introduced and the MPC based control strategy developed for
the two-phase MPC testing is presented.

3.1. Description of the TE. The TECP was first published
by Downs and Vogel,22 and their paper describes the model for
this process. The model was created for the development,
study, and evaluation of process control technology. The
authors state that the TECP is well-suited for a variety of
studies of both plantwide and multivariable control. The nature
of the process is classified as open loop unstable and consists of
the following five units: an exothermic two-phase reactor, a
vapor−liquid flash separator, a condenser, a recycle-compres-
sor, and a reboiled stripper. Figure 2 illustrates the process
diagram of the TECP. A summary of the real process can be
found in Downs and Vogel,22 and it is presented here very
shortly to clarify the operation of this process.
Among the reactions occurring within the process, two

simultaneous gas−liquid exothermic reactions producing two
products from four reactants are shown in the reaction
equations that follow:

Figure 2. Tennessee Eastman challenge process, Downs and Vogel.22. Reproduced with permission from ref 22. Copyright 1993 Elsevier.
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+ + →A(g) C(g) D(g) G(l) (product 1)

+ + →A(g) C(g) E(g) H(l) (product 2)

All of the reactions involved in the process are irreversible and
exothermic whereas the reaction rates are a function of the
temperature through the Arrhenius equation. The gaseous
reactants are fed to the reactor, where they react and form the
liquid products. These gas-phase reactions are catalyzed by
means of a nonvolatile catalyst that is dissolved in the liquid
phase. The reactor is cooled by an internal cooling bundle, and
the products leave the reactor as vapor along with unreacted
feeds. The catalyst does not leave the reactor together with the
product. The product stream leaving the reactor is condensed
in a cooler and isolated in a vapor−liquid separator in a
successive stage downstream. The uncondensed components
are recycled back through a centrifugal compressor to the
reactor’s feed stream, whereas the condensed components are
led to a product stripping column where unreacted reactants
are removed by feed stream four. The final products G and H
leave the base of the stripper and are separated in a downstream
refining section, not included in the base problem description.
According to Downs and Vogel,22 the objectives of the plant

control are as follow: to maintain process variables at desired
values, to keep process operating conditions within the
constraints, to minimize variability of the product rate and
the product quality during the disturbances, to minimize
movement of valves which affect other processes (A and C feed
flows) and to recover quickly and smoothly from disturbances
and production rate and product mix changes. In particular, the
composition of the purge flow, the recirculation rate and the
temperature in the tanks are usually controlled to achieve and
maintain the desired operating conditions, including the
composition of the reactor content. Since the number of the
listed process outputs is bigger compared to the number of
process inputs, which are available to manipulate the process
conditions, various control strategies are possible. In addition,
the level of the tanks and the pressure in the reactor are
frequently controlled to keep them within the safety limits.
3.2. Description of the MPC-Based TECP Control. A

number of different control strategies for the TE are introduced
and discussed in the literature. As the basis for the development

of an MPC based control, the model of the process provided by
Ricker23 and the decentralized control developed by Larsson et
al.24 were used in the current study. The decentralized control
strategy includes the following five stabilizing loops: control of
the reactor pressure and the reactor temperature and control of
the reactor, separator, and stripper levels. The reactor level,
reactor temperature, and reactor pressure control loops are able
to follow the respective set points fairly well. However, the
reactor pressure control loop may saturate due to the limited
capacity of the purge valve, which may result in a process
shutdown. To achieve smoother production rate, the separator
level and the stripper level loops were not tuned to track the set
points tightly, and significant control errors may occur during
transitions.
The MPC based control strategy used in the current study

considered the reactor level and the reactor pressure set points
as manipulated variables of the MPC because of the clear effect
of the reactor operating conditions on the whole process. In
addition, the feed flow rates of the raw materials were also
considered as manipulated variables of the MPC. Following the
control strategy proposed in Larsson et al.,24 the controlled
variables of the MPC were the production rate, the
concentration of G in the product, the concentration of C in
the purge, and the recirculation flow rate. In addition, the MPC
must prevent saturation of the reactor pressure control loop,
and, therefore, the purge rate was also considered as a
controlled process output.
In the current study, it was decided to switch off the

separator level and the stripper level loops in the MPC based
control and to instead consider the separator level and the
stripper level as controlled variables of the MPC. The reason
for this is that a constrained MPC is able to handle the process
safety limits more efficiently than the PI loops can. In addition,
the separator and the stripper levels can be varied by the MPC
to produce smoother fluctuations of the production rate during
the plant transitions. The separator outflow and the stripper
outflow rates were considered as the manipulated variables of
the MPC to enable efficient control of the levels of these tanks.
The resulting MPC based control strategy is summarized in

Figure 3, and the manipulated and the controlled variables of
the MPC are listed in Table 1 and Table 2, together with the
related constraints, the suppression move penalty coefficients,

Figure 3. MPC-based control of the TECP.
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and the control error penalty coefficients. The hard constraints
imposed on the separator and the stripper levels are normal
operation limits, and the hard constraints are imposed on the
purge rate to avoid saturation of the reactor pressure loop and
prevent plant shutdown. The control error penalty coefficients
for the separator and the stripper levels have relatively small
values to enable smoothing the production rate fluctuations by
varying the tank levels. On the other hand, the penalty

coefficients for the production rate and the component G in the
product have relatively large values. The suppression move
penalties are defined according to the scale of the manipulated
variables of the MPC. The sampling time of 0.2 h was selected
to capture the dynamics of the fastest input−output models.
Since there are many very slow input−output responses, some
of which are even longer than 20 h, a prediction horizon of 50
samples corresponding to 10 h of simulation time was used.

3.3. Identification of the TE Model for the MPC.
Because of the highly nonlinear process dynamics, the
identification of an accurate process model based on the
process data is a difficult task. Due to the process nature, a
linear model fails to describe some of the process phenomena
even qualitatively. In particular, an increase in the A and C feed
rates without supplying more D and E reactants may increase
the production rate up to a certain extent. However, further
increase will only cause an explosive growth of the purge rate
without any further production rate increase due to exhaustion
of the D and E components in the reactor. These phenomena
cannot be described properly by a linear process model, and it
was noted that including the squared A and C feed rates in the
model inputs results in much better model accuracy in a wide
range of process operations.
Since it was difficult to achieve proper accuracy in the

process model identified from the data, the state estimation is a
critical stage for reliable prediction of the process outputs and
an efficient MPC implementation in general. There are some
measurements not included to the MPC inputs and outputs
which may provide additional valuable information about the
process state and therefore increase prediction accuracy. In
particular, some of the reactor state variables are determined by
the MPC inputs. However, neither the MPC inputs nor the
outputs describe the reactor content composition, which
correlates strongly with the composition of the purge flow. In

Table 1. Controlled Variables of the MPC

controlled variable of the
MPC

nominal
value

low
limit

high
limit

control error
penalty

concn of C in the
purge, %

21.6 50

recirculation rate, kscmh 32.2 50
concn of G in product, % 54.0 50
separator level, % 50 35 65 1
stripper level, % 50 35 65 1
production rate, m3/h 22.85 200
purge rate, kscmh 0.23 0.05 0.6 0

Table 2. Manipulated Variables of the MPC

manipulated variable of
the MPC

nominal
value

low
limit

high
limit

suppression move
penalty

E feed flow, kg/h 4 435.6 0 8 335.6 0.2
striper underflow, m3/h 25.11 0 200
separator underflow,
m3/h

22.85 0 - 200

reactor level SP, % 65 50 80 200
reactor pressure SP, KPa 2 800 2 700 2 900 20
D feed flow, kg/h 3 663.5 0 5 813.5 0.2
A + C feed flow, kscmh 9.28 0 15.08 4 000
A feed flow, kscmh 0.23 0 0.73 40 000

Figure 4. Structure of the TECP model containing a concentration of A in the purge, the concentration of D in the purge, and the separator
temperature as the state variables.
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addition, the separator temperature is another key state variable
affecting the product condensation rate in the separator. To
achieve better state estimation and thereby more accurate
model prediction, the aforementioned variables were incorpo-
rated into the process model as states by identifying the model
as presented in Figure 4. In other words, most of the process
outputs were predicted directly from the model inputs, and the
inputs to the separator level and the stripper level models were
the process states (separator temperature and concentrations of
A and D in the purge flow) which were predicted from the
process inputs.
Process data for the model identification were generated by

simultaneously exciting the set points of the decentralized
control strategy proposed by Larsson et al.24 with a sequence of
steps of random magnitudes. Some of the controlled variables
of the decentralized strategy (which are mostly the outputs of
the MPC based control) are shown in Figure 5, presenting
about one-third of the data used for identification. It is worth
noting that the magnitude of the steps was high enough to
cover the whole operating range of the MPC. The matrixes
defining the model according to eq 1 are provided in the
Supporting Information. Before the MPC objective optimiza-
tion, the process model is linearized at the conditions defined
by the control value obtained at the previous MPC run.
To achieve offset free tracking, the variables representing the

bias of each model output (including the separator temperature
and components A and D in the purge) were introduced to the
model. The Kalman filter was obtained assuming the process
noise, the measurement noise, and the noise affecting the
model bias have the variance provided in Table 3. Using these
Kalman filter parameters, the estimations of the recirculation
rate, the purge flow rate, and especially the concentration of C
in the purge flow are relatively slow and inaccurate. However,
the penalty weights assigned to the listed variables are rather
small, and the respective set points are not followed precisely.

Because of this, the filtering quality does not deteriorate the
controller performance much. On the other hand, more
aggressive Kalman filter settings can result in strong oscillations,
an example of which is given in Figure 6. An increase of the
suppression move penalty weights which is sufficient to prevent
oscillations leads to a too sluggish response of the output
variables. For this reason, the filtering settings provided in
Table 3 were used in all simulations.

4. RESULTS OF THE SIMULATIONS
The aim of the present section is to compare the proposed two-
phase MPC against two other predictive control techniques
utilizing parsimonious parametrization of the future control

Figure 5. Part of the data used for the model identification.

Table 3. Variance of the Process Noise, Measurement Noise,
and the Noise Related to the Model Bias Used for the
Kalman Filter

variance of the
process noise

variance of the
measurement

noise
variance of the
model bias noise

separator temp 0.005 2, 0.005 3,
0.001 5, 0.007 2

0.084 0.001 7

concn of C in
the purge

0.000 11 0.10 0.000 16

recirculation
rate

0.001 7 0.12 0.000 78

concn of G in
product

0.006 7, 0.007 4 0.12 0.002 5

component A
in purge

0.005 4 0.11 0.002 2

component D
in purge

0.011 0.13 0.004 5

separator level 0.073 0.12 0.000 26
stripper level 0.026 0.12 0.000 13
production
rate

0.000 98 0.10 0.000 24

purge rate 0.049 0.048 0.007 8
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moves. Namely, the MPC with blocking used for the
comparison study has the control horizon of nine samples
and the blocking factors of [1,1,2,2,3]. Two configurations of
the MPC using Laguerre functions were considered, in which 3
and 5 degrees of freedom are assigned to each manipulated
variable. In both cases, the parameter a defining the decay rate
of the functions is set to 0.85. Finally, the two-phase MPC with
the control horizon of two and three samples was tested, and
the decay parameters were set to c1 = 0.2 and c2 = 0.3 in both
configurations. The bounds on the manipulated variables were

implemented according to eqs 18 and 19. In fact, the selected
controllers introduce approximately the same amount of dof
(from 4 to 6 for each manipulated variable), in order to
adequately compare different parametrization approaches.
Furthermore, all predictive controllers share the same sampling
time of 0.2 h and the same prediction horizon of 50 samples
corresponding to 10 h of simulation time. The same objective
function with the parameters defined in Tables 1 and 2 is
minimized by all MPCs.

Figure 6. Oscillations in the signals produced by the MPC with Laguerre functions using a more aggressive filter configuration.

Figure 7. Prediction of three process variables made by the MPC with blocking at the beginning of the second transition (20.2 h of the simulation
time).

Figure 8. Comparison of the results of the two-phase MPCs with the control horizon of two and three samples.

Figure 9. Comparison of the results of the MPCs using three and five Laguerre functions.
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Downs and Vogel22 proposed steps in the production rate,
the product composition, the reactor pressure, and component
B in the purge to test control strategies. The production rate
and the product composition were varied in the first case study.
In the proposed control strategy, the reactor pressure is
controlled by a SISO control loop, and a step in this variable
was not considered for this reason. Since component B in purge

is not an output variable in the considered control strategy, the
second case study induced changes in the recirculation flow rate
and component C in the purge, which both strongly affect the
composition of the purge rate in general, instead of the last of
the step tests proposed by Downs and Vogel.22 Finally, the
controllers performance was evaluated in the presence of
random variations of the composition of the A and C feed

Figure 10. Case study 1: Simulation results for the two-phase MPC (N = 2) and MPC with Laguerre functions (N = 5).

Table 4. Average Computation Time and the Running Cost of the MPCs in Case Study 1

av calculation time, s av running costs

MPC name no. of decision variables transition 1 transition 2 transition 1 transition 2

MPC with blocking, N = 6 48 0.109 177.4
Laguerre MPC, N = 3 24 0.165 0.197 164.9 97.7
Laguerre MPC, N = 5 40 0.228 0.285 171.8 92.0
two-phase MPC, N = 2 32 0.131 0.133 174.0 86.4
two-phase MPC, N = 3 40 0.128 0.147 173.7 86.7
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stream, which is defined as IDV(8) in Downs and Vogel.22

According to Ricker and Lee,25 this is one of the most difficult
disturbances to handle.
The simulation results are described as follows. First, it is

reported which of the controllers (if any) was unable to
perform the required transitions, and the suitable numbers of
dof were selected for the two-phase MPC and the MPC
utilizing Laguerre functions. The results of the selected
controllers are compared in terms of deviations of the output
variables from the respective set points, variations of the purge
flow, smoothness of the raw material feed flow rates, and the
running costs of the plant. In the first comparative study, the
controller performance is also compared by checking the
trajectories of the optimization objective, wherein a decreasing
curve indicates that the transition went smoothly.
4.1. Results of the Production Rate and the Product

Composition Variation Tests. The first scenario contained
two transitions. During the first transition, the production rate
set point was linearly increased from the nominal value, which
is 22.84 m3/h, to 28.5 m3/h between 5 and 7 h of simulation
time. In the second transition period, taking place from 20 to
22 h of the simulation time, the content of component G in the
product was switched from its nominal value of 54 to 80%. The
production rate was simultaneously changed back to 23 m3/h,
because the increased production rate is infeasible for 80:20
product composition. In both episodes the set points were
manipulated very rapidly in order to provide a proper ground
for MPCs feasibility and performance evaluation.
The only controller that failed to complete the transitions is

the MPC with blocking, which was unable to find a feasible
solution of the optimization at the beginning of the second
transition period. In this case study, the separator level
constraints are the most difficult to fulfill, which is confirmed
by the prediction of the trajectories of three process variables
made by the MPC at the beginning of the second transition;
see Figure 7. The separator temperature and the concentration
of component A in the purge, having respectively negative and
positive effects on the condensation rate in the separator, both
possess very slow dynamics. For this reason, driving these
variables to the target steady values takes over 10 h of

simulation time, which is the prediction horizon of the MPC.
The optimization of the MPC with blocking, however, is only
able to consider a constant separator outflow between 2 and 10
h of the simulation time, and, therefore, it has insufficient
capability to keep the separator level within the constraints. In
particular, Figure 7 shows the prediction of the separator level
obtained by the MPC optimization just before it started to be
infeasible. In the result, the MPC with blocking was able to
perform the second transition neither in 2 nor in 5 h.
Before the comparison of the two-phase MPC and the MPC

using Laguerre functions, results of both control techniques
were checked to define the suitable number of degrees of
freedom for each method. The two-phase MPCs with the
control horizons of two and three samples provided almost the
same results in the transitions, which is confirmed by Figure 8.
Therefore, the two-phase MPC with the control horizon of two
samples is selected for further evaluation. The MPCs with three
and five Laguerre functions introduced in ref 11 achieved a
similar quality of the production rate tracking, which is shown
in Figure 9. However, the former controller was noticeably
more aggressive in changing the operating conditions, which
can be seen for example on the plot of the content of
component A in the purge, which is a good indicator of the
reactor state. Thus, the results of the later MPC with five
Laguerre functions were used for the comparison.
The results of the selected controllers (the two-phase MPC

with N = 2 and the Laguerre MPC with N = 5) are shown in
Figure 10. The two-phase MPC followed the production rate
set point slightly more tightly especially during the second
transition. The product composition was tracked equally well
by both of the controllers. Furthermore, the MPC with
Laguerre functions changed the component A in the purge flow
very rapidly, which required aggressive manipulations of the
component A feed flow rate and the purge flow rate. In
particular, higher purge flow rate peaks were obtained by the
MPC with Laguerre functions leading to higher average
running costs in the second transition period. In addition, the
MPC using the Laguerre functions allowed a 20% deviation in
the separator level, whereas the two-phase MPC kept the level
variations within 10%. Both controllers achieved satisfactory
accuracy in tracking all other set points. The average
computation times and the average running costs are
summarized in Table 4 for all considered controllers. In brief,
in this case study the two-phase MPC slightly outperforms the
MPC with Laguerre functions in control performance. The
computation time of the two-phase MPC stays below 60% of
that of its competitor. The MPC with blocking probably
requires more degrees of freedom to achieve satisfactory
feasibility and performance.
Next, the controller performance was tested by examining

the evolution of the MPC objective during the second

Figure 11. Objective of the MPC optimization during the second
transition period.

Figure 12. Comparison of the results of the MPCs using three and five Laguerre functions.
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transition period, which is shown in Figure 11. During the
transition, the two-phase MPC produced a smooth and
decreasing curve, confirming that the transition went well.
The objective of the MPC with Laguerre functions has a peak
at about 23 h of simulation time, indicating that the controller
had some difficulties in finding a good solution.
4.2. Results of the Recirculation Rate and Component

C in the Purge Variation Tests. The second scenario
contains two transitions. During the first transition, the
recirculation set point was linearly switched from the nominal
value, which is 32.2 kscmh, to 28 kscmh between 5 and 7 h of
simulation time. In the second transition period, taking place
from 20 to 25 h of simulation time, the recirculation rate was
driven back to its nominal value, and the concentration of
component C in the purge was simultaneously changed from
21.6 to 15%. In other words, this scenario aims to check the

ability of the controllers to change the reactor content
composition and the operating conditions while the production
rate and the product specification stay constant.
Before the comparison of the control techniques, the

simulation results were evaluated to define the suitable number
of the degrees of freedom. The two-phase MPCs with the
control horizon of two and three samples provided almost
undistinguishable results, and the controller with the control
horizon of two samples is selected for further evaluation. The
MPCs with three and five orthogonal functions achieved similar
quality of the set points tracking. In particular, the recirculation
flow rate dynamics is shown in Figure 12. However, the former
controller produced a lower peak in the purge rate during the
second transition and smoother trajectories at the end of the
simulation period. Thus, the results of the former MPC with
three Laguerre functions are considered in more detail.

Figure 13. Case study 2: Simulation results for three MPCs.

Table 5. Average Computation Time and the Running Cost of the MPCs in Case Study 2

av calculation time, s av running costs

MPC name no. of decision variables transition 1 transition 2 transition 1 transition 2

MPC with blocking, N = 6 48 0.116 0.111 142.9 117.9
Laguerre MPC, N = 3 24 0.175 0.188 143.8 122.2
Laguerre MPC, N = 5 40 0.256 0.253 140.6 120.2
two-phase MPC, N = 2 32 0.131 0.126 139.1 119.5
two-phase MPC, N = 3 40 0.153 0.150 139.4 119.6
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The results of the selected controllers (the two-phase MPC
with N = 2, the MPC with blocking, and the Laguerre MPC
with N = 3) are shown in Figure 13. All controllers managed to
prevent deviations in the production rate and component G in
the product. Because of the objective weights selection, the
recirculation rate and component C in the purge were not
controlled tightly. However, these set points were tracked
rather well by all controllers considered. It can be seen from the
plots that the controllers delivered equally smooth trajectories
of the A and C feed rates, and the purge rate peaks were similar
in all cases. In brief, all three controllers handled the second
scenario successfully, except that the MPC with Laguerre
functions allowed bigger variations in the stripper level. The
average computation times and the average running costs are
summarized in Table 5 for all considered controllers.
4.3. Results of the Simulations with Disturbances. In

the third scenario, the controllers were evaluated in the
presence of random variations of the composition of the A and
C feed stream. Namely, the content of components A, B, and C
is varied, disturbing the stoichiometric ratio of the reactants and
affecting the accumulation of the inert component B in the
process. Therefore, the purge flow rate must be frequently set
to a high level to remove an excess of the components from the
reactor. In addition, the disturbance has a strong effect on the
levels of the separator and the striper, which can also result in a
process shutdown if an improper process control is applied.
Thus, the aforementioned process outputs were studied in this
scenario to evaluate the feasibility of the controllers. Since the
disturbance itself provided enough excitation to test the plant
control, all set points are kept constant as it is done in other
works, such as Ricker and Lee.25

The MPC with blocking and the MPC using three Laguerre
functions failed to find a feasible optimization solution at about
20 h of simulation time. Since the two-phase MPC with the
control horizons of two and three samples provided almost

identical results, the former controller is selected for the
comparison. The two-phase MPC with the horizon of two
samples and the MPC using five Laguerre functions provided
very close results, which is demonstrated by Figure 14. In brief,
both controllers achieved a stable production rate (the tracking
error is almost always below 1 m3/h) and product composition
(the error is almost always within 2%) and avoided the
operating conditions leading to a shutdown. The two-phase
controller achieves slightly lower production cost of $126.6/
min and twice as fast average computation time (0.145 s)
compared with its competitor ($127.5/min and 0.280 s,
respectively).

5. CONCLUSIONS

The paper presents a comparative study of three MPCs utilizing
different parsimonious parametrizations of the control moves.
The Tennessee Eastman challenge problem (TECP) was in
particular selected for the comparative study because of its
dynamics, including very fast and very slow responses, which
results in requirement of long control and prediction horizons.
A MPC based control strategy of the Tennessee Eastman
process was developed using a model identified from process
data. The squared A and C feed rates were included to the
model inputs which resulted in much better model accuracy in
a wide range of process operations. Furthermore, to achieve
better state estimation and thereby more accurate model
prediction, the separator temperature and content of
components A and D in the purge flow were incorporated
into the process model as states.
The simulation results demonstrated that the MPC

optimization may need to adjust the distant future control
moves of some of its manipulated variables to find a feasible
solution. This in particular happens if some manipulated
variables, having a short effect on a constrained controller
output, must be adjusted to compensate for some long-term

Figure 14. Case study 3: Simulation results for the two-phase MPC (N = 2) and MPC with five Laguerre functions.
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effects of other inputs on the same output variable. In the
proposed control strategy, the MPC with blocking cannot
probably achieve satisfactory performance using just 4 or 5 dof
for each input, which is sufficient for the two-phase MPC and
MPC using Laguerre functions. Both the two-phase MPC and
MPC using Laguerre functions provided an adequate perform-
ance and good feasibility by using only 5 dof for each input.
However, in the second transition of the first case study, the
MPC using Laguerre functions faced some problems in finding
a good solution, which in particular resulted in worse tracking
of the production rate set point and slightly higher running
costs compared with the two-phase MPC during the transition.
This is also confirmed by a period of increasing of the MPC
objective value during the first part of the transition. In all case
studies, the two-phase MPC did not perform worse compared
to the MPC using Laguerre functions.
The paper proposed an estimation of the maximum and

minimum of the future control trajectory for the two-phase
MPC. In the result, the number of constraints representing the
lower and upper bounds on a manipulated variable reduced
from twice the second-phase length to only 6, and a
considerable computational savings was achieved. In particular,
in all case studies the computation time of the two-phase MPC
is below 60% of those of the MPC using Laguerre functions,
whereas both controllers use 5 dof for each manipulated
variable.
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