
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Nguyen, Duong; Yingchareonthawornchai, Sorrachai; Tekken Valapil, Vidhya; Kulkarni,
Sandeep S.; Demirbas, Murat
Precision, recall, and sensitivity of monitoring partially synchronous distributed programs

Published in:
Distributed Computing

DOI:
10.1007/s00446-021-00402-w

Published: 01/10/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Nguyen, D., Yingchareonthawornchai, S., Tekken Valapil, V., Kulkarni, S. S., & Demirbas, M. (2021). Precision,
recall, and sensitivity of monitoring partially synchronous distributed programs. Distributed Computing, 34(5),
319-348. https://doi.org/10.1007/s00446-021-00402-w

https://doi.org/10.1007/s00446-021-00402-w
https://doi.org/10.1007/s00446-021-00402-w

Distributed Computing manuscript No.
(will be inserted by the editor)

Precision, Recall, and Sensitivity of Monitoring Partially
Synchronous Distributed Programs

Duong Nguyen · Sorrachai Yingchareonthawornchai · Vidhya Tekken

Valapil · Sandeep S. Kulkarni · Murat Demirbas

Received: date / Accepted: date

Abstract Distributed programs are often designed

with implicit assumptions about the underlying sys-

tem. We focus on assumptions related to clock synchro-

nization. When a program written with clock synchro-

nization assumptions is monitored to determine if it

satisfies its requirements, the monitor should also ac-

count for these assumptions precisely. Otherwise, the

monitor will either miss potential bugs (false negatives)

or find bugs that are inconsistent with these assump-

tions (false positives). However, if assumptions made by

the program are implicit or change over time and are

not immediately available to the monitor, such false

positives and/or negatives are unavoidable. This paper

characterizes precision (probability that the violation

identified by the monitor is valid) and recall (probabil-

ity that the monitor identifies an actual violation) of
the monitor based on the gap between clock synchro-

nization assumptions made by the program/application

and the clock synchronization assumptions made by the

monitor. Our analysis is based on the development of

Duong Nguyen
E-mail: nguye476@cse.msu.edu

Vidhya Tekken Valapil
E-mail: tekkenva@cse.msu.edu

Sandeep S. Kulkarni
E-mail: sandeep@cse.msu.edu
Department of Computer Science and Engineering, Michigan
State University, East Lansing, Michigan, U.S.A.

Sorrachai Yingchareonthawornchai
E-mail: sorrachai.yingchareonthawornchai@aalto.fi
Department of Computer Science, Aalto University, Espoo,
Finland.

Murat Demirbas
E-mail: demirbas@buffalo.edu
Department of Computer Science and Engineering, The State
University of New York at Buffalo, Buffalo, New York, U.S.A.

an analytical model for precision, recall, and sensitivity

of monitors detecting conjunctive predicates. We vali-

date the model via simulations and experiments on the

Amazon Web Services (AWS) platform.

1 Introduction

1.1 Role of Clock Synchronization in Distributed

Programs

Consider a simple problem of ordered-access (a simpli-

fied version of mutual exclusion or time-division mul-

tiplexing (TDM)) where we have two processes and a

shared resource, and it is required that process P1 ac-

cesses the resource before P2. One straightforward ap-

proach to achieve such ordered-access is as shown in

Figure 1a where process P1 sends a message to P2

when it is done. Process P2 waits until this message

is received. Then, it can access the resource.

An advantage of the solution in Figure 1a is that

it works even if the time taken by P1 to access the re-

source varies arbitrarily. However, an important disad-

vantage of the solution is that it requires explicit com-

munication between P1 and P2. If such communication

is difficult/slow (due to the network being large, mo-

bile, or ad-hoc), implementing the solution in Figure

1a would be inefficient.

An alternate approach is as shown in Figure 1b,

where P1 guarantees that it will complete its resource

access within 5 ms. So P2 will have to wait for only 5 ms

and can then access the resource. An advantage of this

solution shown in Figure 1b is that it does not require

explicit communication. Hence, this solution is benefi-

cial if P1 and P2 are mobile in nature (e.g., drones or

robots) and permitting them to talk with each other is

2 Duong Nguyen et al.

P1:
 Access shared resource
 Send notification to P2

P2:
 Wait for message from P1
 Access shared resource

Asynchrounous

(a)

P1:
 Access shared resource
 in 5 ms

P2:
 Wait 5 ms
 Access shared resource

Perfect synchronization

(b)

P1:
 Access shared resource
 in 5 ms

P2:
 Wait 7 ms
 Access shared resource

Partially synchronized within 2 ms

(c)

P1:
 Access shared resource
 in 5 ms

P2:
 Wait 8 ms
 Access shared resource

Partially synchronized within 3 ms

(d)

Fig. 1: Solution for the ordered-access problem in a dis-

tributed program with 2 processes when their clocks are

(Figure 1a) asynchronous, (Figure 1b) perfectly syn-

chronous, (Figure 1c) partially synchronized within 2

ms, (Figure 1d) partially synchronized within 3 ms.

For simplicity, assume that P1 and P2 begin simulta-

neously.

challenging/expensive. In particular, after P1 and P2

have synchronized their clocks with each other, they

can schedule their activities without explicit commu-

nication at every step. Permitting such implicit com-

munication is likely to be significantly more efficient in

such programs rather than requiring explicit communi-

cation.

However, a problem with the solution in Figure 1b is

that the clocks of P1 and P2 may advance at a slightly

different rate. Specifically, if the clock of P2 advances

faster than that of P1, then it is possible that P1 and

P2 may access the resource simultaneously.

If the clock skew between P1 and P2 is arbitrary

then the only choice is to use the program in Figure

1a. However, suppose that we also knew that the clock

skew is bounded by some value, we can utilize it in the

program. As an illustration, if the clocks differ by at

most 2 ms, then we can make P2 to wait for 7 ms (cf.

Figure 1c). The program in Figure 1c guarantees that

even if the clocks of P1 and P2 differ by up to 2 ms,

P2 will access the resource only after P1. Similarly, if

the clocks differed by at most 3 ms then the program

in Figure 1d would achieve the same result.

1.2 Implicit Clock Synchronization Assumptions in

Distributed Programs

Observe that if the programmer writes the code in Fig-

ure 1c (respectively, 1d), the programmer is making

an implicit assumption that clocks differ by at most

2ms (respectively 3ms). While examples in Figure 1

are straightforward, we note that programs that uti-

lize time/timeouts (e.g., [5,11,9,10]) make similar as-

sumptions about clock skew and/or message delays. Im-

plicit clock synchronization assumptions are also used

in programs where communication between processes is

challenging (e.g., drones), and enabling the processes to

take independent actions in a pre-determined manner is

desirable. Figure 1 illustrates one such scenario where

actions need to be taken one after another. Another

common scenario is when actions of two processes need

to be (almost) simultaneous. Examples of such prede-

termined independent simultaneous actions include two

sensors taking pictures (or recording other measure-

ments) simultaneously (coordinated without communi-

cation) so that the centralized manager can combine

and interpret them later effectively.

Also, in some applications the actual clock syn-

chronization assumption may depend upon intermittent

feedback from the underlying system. For example, Net-

work Time Protocol (NTP) [16] provides information

about the clock difference in the system (with respect

to the reference NTP server) at the given instant. In

other words, the clock synchronization assumption of

the application may be dynamic, i.e., it may change

over time.

1.3 Analyzing Programs with Implicit Clock

Synchronization Assumptions

As it is well known, writing distributed programs is

challenging and error-prone. Hence, developing tech-

niques for evaluating their correctness is critical. These

techniques include static program analysis (e.g., model

checking) and runtime analysis (e.g., runtime monitor-

ing). Our paper focuses on the latter.

The correctness of runtime monitors depends on

their knowledge of the properties of the programs be-

ing monitored. Especially, it is crucial that the moni-

tor is aware of the clock synchronization assumptions

made by the program. For example, if we use a moni-

tor that assumes that the clocks are not synchronized,

then that monitor will declare a violation of ordered-

access for the program in Figure 1c. This is because the

monitor thinks that the resource-access at P1 and P2

can possibly happen simultaneously (i.e. concurrently

[13]). On the other hand, a programmer who designed

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 3

this program with the assumption that the clock skew

is at most 2ms will consider the prompted violation

to be a false positive. This is because the programmer

knows that the instant at which P1 accesses the re-

source is strictly earlier than the instant at which P2

accesses the resource due to the wait enforced at P2.

Thus knowing the program’s clock synchronization as-

sumption (as well as other assumptions made by the

application programmer) helps the monitor avoid false

positives/negatives.

As discussed in Section 1.2 above, the program in

Figure 1c makes an implicit assumption that clocks

are synchronized to be within 2ms. These implicit

clock synchronization assumptions (or assumptions

that change over time, discussed in Section 1.2) make

monitoring even more challenging, as the monitor may

not be aware of the exact values of these implicit as-

sumptions made by the program. In these scenarios,

there can be a mismatch between the assumptions made

by the program and the assumptions made by the mon-

itor. This mismatch can lead to either false positives

(the monitor flags a violation that did not occur) or

false negatives (the monitor misses reporting a valid

violation that actually occurred).

For example, if the program in Figure 1c is mon-

itored by a monitor that assumes that the clocks are

synchronized to be within 3ms then it will lead to false

positives, where the monitor reports a violation when

P1 accesses the resource until time 5 and P2 accesses

the resource at time 7.

On the other hand, if the application developer as-

sumes that the clocks differ by at most 3ms but in-

correctly develops the program in Figure 1c (that ac-

counts only for clock skew up to 2ms) then the de-

veloped program may violate ordered-access. (Observe

that the program in Figure 1c is correct only if clocks

differ by at most 2ms.) If the monitor that is monitor-

ing this (incorrectly developed) program assumes that

the clock skew is at most 3ms then it will correctly re-

port every such violation. However, if the monitor relied

on the assumption that the clock skew is at most 2ms

then it will miss all violations. If the monitor relied on

a clock skew of 2:5ms it will miss some (but not all)

violations.

Based on the above discussion, the goal of the pa-

per is to analyze false positives and false negatives for

the case where the clock synchronization assumption of

the application/program (denoted as �app) differs from

the clock synchronization assumption of the monitor

(denoted as �mon). Specifically, for such monitors, we

want to compute precision and recall which are de-

fined next (cf. Figure 2).

fapp = actual
violations

fmon = violations
reported by

monitor

fcorrect

Fig. 2: Illustration of precision and recall: fcorrect are

all actual violations reported by the monitor.

Definition 1 Let fapp be all actual violations by the

application/program, fmon be all the violations reported

by the monitor, and fcorrect be all actual violations

correctly reported by the monitor. Then,

precision =
fcorrect
fmon

recall =
fcorrect
fapp

false positive rate = 1 � precision

false negative rate = 1 � recall

1.4 Contributions of the Paper

In this paper, we analyze the precision and recall of

runtime monitors when there is a mismatch between

the clock synchronization assumption made by the ap-

plication and that made by the monitor. In particular,

we consider the following scenarios:

– Asynchronous monitors: We consider the case

where the application assumes that clocks are par-

tially synchronized (�app is finite) but the monitor

is not aware of this synchronization and assumes

no bound for clock synchronization (�mon = 1).

Since the recall of such monitors (denoted as asyn-

chronous monitors) is always 1 (every actual viola-

tion is detected and reported by asynchronous mon-

itors), we identify their precision under different pa-

rameters (specified in Section 3.1).

– Partially synchronous monitors: We consider

the case where both the application and monitor

assume that clocks are partially synchronized but

the value of �app differs from �mon. We identify the

precision and recall of such monitors under different

parameters.

– Quasi-synchronous monitors: We consider the

case where we use quasi-synchronous monitors.

While we define quasi-synchronous monitors in Sec-

tion 5, we view them as the dual of asynchronous

4 Duong Nguyen et al.

monitors. Specifically, while asynchronous monitors

have a recall of 1 (and a precision of less than

1), quasi-synchronous monitors have a precision of

1 (every violation reported by quasi-synchronous

monitors is an actual violation) and have a recall

of less than 1. We focus on analyzing their recall

under different parameters.

– Analytical/Simulation/Experimental Re-

sults: For each of these settings, we present an

analytical model to predict the precision and recall

of the monitors, as well as results from simulations

and experiments in Amazon Web Services (AWS)

environment to validate our analytical models.

1.5 Organization of the Paper

In Section 2, we present our computational model. In

this section, we also define the notion of happened be-

fore, concurrency, global snapshots, and their exten-

sions in applications that rely on clock synchronization.

Section 3 investigates the precision and sensitivity of

asynchronous monitors in monitoring applications that

rely on bounded clock synchronization assumptions. In

Section 4, we analyze the precision, recall, and sensi-

tivity of the monitor when the clock synchronization

assumptions made by the application and the monitor

differ. Section 5 focuses on the effectiveness of quasi-

synchronous monitors. We discuss related work in Sec-

tion 6. Finally, we summarize the results and their im-

plications in Section 7 and conclude in Section 8.

2 Preliminaries

2.1 Distributed Program Model

We consider a distributed program that consists of a set

of n processes that communicate via messages. Each

process has a local clock. We assume that the pro-

cesses use a protocol such as Network Time Protocol

(NTP) [16] to ensure that their local clocks are synchro-

nized to be within � of each other. Any message sent in

the program is received no earlier than �min time and

no later than �max time. We denote such a program

as 〈�; �min; �max〉-program. We also use the abbre-

viated notion of 〈�; �〉-program, where � denotes the

minimum message delay and the maximum mes-

sage delay is 1.

Observe that this modeling is generic enough

to model programs in asynchronous systems (� =

1; �min = 0; �max = 1), programs in purely syn-

chronous systems (� = 0; �min = 0; �max = 0), and pro-

grams in partially synchronous systems (0 < �; �min <

Table 1: List of important symbols used in the paper.

These symbols/notations are defined in Sections 1.3, 2,

and 3.1

Symbol Meaning

� Communication rate between processes

� The frequency of local predicates becoming

true

� Message delay

�min Minimum message delay

�max Maximum message delay (1, if

unspecified)

� Clock skew (synchronization error)

�app Synchronization error assumed by the

application/program

�mon Synchronization error assumed by the

monitor

‘ Interval length: duration for which a local

predicate stays true

n Number of processes

1). In this paper, we focus on monitoring programs

that rely on a clock synchronization assumption. In

other words, the h�; �i-programs considered in this pa-

per are programs in partially synchronous systems.

For convenience, Table 1 lists some important sym-

bols and what they mean in the paper. Other symbols

that are used locally are defined in the sections using

them.

2.2 Extended Happened-before (!�) and

Concurrency (jj�)

In a h�; �min; �maxi-program, each process is associated

with a set of variables. Execution of this program con-

sists of a set of events that are either send events, receive

events, or local events. Send/Receive events correspond

to messages sent/received by the process. Local events

at a process (may) change the values of the variables

of the process. Each event e is associated with phy:e

that corresponds to the physical time (the reading of

the local clock of the process where e occurred) when e

occurred.

Let e and f be two events in h�; �min; �maxi-
program. First, we recall Lamport’s definition of causal-

ity relation [13] as follows: we say that e happened be-

fore f (denoted as e hb f) if and only if

– e and f are events at the same process and e oc-

curred before f , or

– e is a send event and f is the corresponding receive

event, or

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 5

– there exists an event g such that e hb g and g hb f .

Two events e and f are concurrent, denoted as e jj f ,

if and only if both e hb f and f hb e are false.

Based on Lamport’s definition, we define the rela-

tion→� where e!� f if and only if

– e and f are events on the same process and phy:e <

phy:f , or

– e is a send event and f is the corresponding receive

event, or

– phy:e+ � < phy:f , or

– there exists an event g such that e!� g and g !� f

Note that the definition of!� is just an extension of

Lamport’s happened-before relation (hb) with the stip-

ulation that the clocks of two processes never differ by

more than �. We can also extend the generic concur-

rency relation jj to define relation ||�, such that ejj�f
if and only if (:(e!� f) ^ :(f !� e)).

2.3 State of a Process

The goal of the monitor is to determine if the pro-

gram reaches (has the potential to reach) an undesir-

able state. Hence, next, we define the notion of pro-

gram state (which is obtained from the states of its

processes).

The (local) state of a process is identified by the

values of variables used by that process. The values of

these variables may change due to local events at the

process. (For the sake of simplicity, we are assuming

that the state does not change at message send/receive.

If there is a need to change the state at send or receive,

we split the send event into a local event that changes

the state and a message transmission. Likewise, we split

the receive event into message reception and a local

event that changes the state.)

It is straightforward that if e and f are consecutive

local events on process i with physical time phy:e and

phy:f then the state of process i remains unchanged in

the interval [phy:e; phy:f). Thus, we can create addi-

tional local events (where nothing happens) during this

interval if needed. For example, in Figure 3, e2 and e3

are two consecutive events on process p0 that happened

at physical time 15 and 20, respectively. We assume that

there are pseudo events at physical time 16, 17, 18, 19

where the state of p0 is the same as that in e2.

Finally, since each process state corresponds to an

event (or the newly added pseudo event), we can extend

relations !� and jj� to states as well. Specifically, two

local states that are mutually concurrent (as defined in

[13]) and that are within � of each other are said to be

�-consistent with each other.

2.4 Monitoring

In this paper, we focus on monitors that aim to de-

tect conditions or violations represented in the form

of weak conjunctive predicates [8] . Specifically,

we consider identifying if a given predicate P be-

comes true in the program, where P is of the form

P1 ^P2 ^ � � � ^Pn and Pi is a local predicate or con-

dition at process i. The truth value of Pi is determined

by variables in process i. If a predicate is a conjunc-

tion of local predicates of less than n processes, it is a

partial conjunctive predicate.

Satisfaction of P corresponds to the case where we

identify a consistent global snapshot (g) of the program

where P is true. A global snapshot (also called global

state) g is of the form fls:ij ls:i is a local state at pro-

cess i g. A global snapshot is called a consistent global

snapshot if for any two local states ls:i and ls:j in it,

ls:ijj�ls:j. In other words, a consistent global snapshot

consists of local states (also called local snapshots) of all

processes such that (1) any two local states are within

� of each other and (2) any two local states are mu-

tually concurrent as defined by Lamport’s happened-

before relation [13]. We denote such a snapshot as �-

consistent snapshot.

Thus, satisfaction of P corresponds to the case

where we identify a consistent global snapshot (g) that

consists of a set of mutually concurrent local states,

where for each process i, predicate Pi is true in the

local state ls:i of the process.

For the sake of simplicity of the discussion, we define

the term hb-consistent for the case where � = 1. In

other words, hb-consistent snapshots are consistent

snapshots of programs in asynchronous systems.
From these definitions, we observe

Observation 1 If a snapshot g is �1-consistent then it

is �2-consistent if �2 � �1

Observation 2 If a snapshot g is �-consistent then it

is hb-consistent.

When determining consistent global snapshots,

the monitor uses the clock synchronization assump-

tion �mon. This means that the monitor detects

�mon-consistent snapshots. On the other hand, �app-

consistent snapshots are the actual snapshots that

could have occurred during the execution of the appli-

cation program, where �app is the synchronization error

assumed by the application. If �app � �mon, by Obser-

vation 1, the set of all �app-consistent snapshots will

be a subset of �mon-consistent snapshots . Therefore,

fcorrect = fapp and, by Definition 1 the monitor has

recall = 1 (no false negatives). Similarly, if �app � �mon,

the set of all �mon-consistent snapshots is a subset of

6 Duong Nguyen et al.

�app-consistent snapshots. Therefore, fcorrect = fmon
and precision = 1 (no false positives). So we have:

Observation 3 If �app � �mon, the recall of the moni-

tor is 1.

Observation 4 If �app � �mon, the precision of the

monitor is 1.

2.5 Predicate Detection Algorithm by Garg and

Chase [8]

The predicate detection algorithm used by the moni-

tors in this paper is based on the algorithm by Garg

and Chase [8] for detecting conjunctive predicates in

programs in asynchronous systems (� = 1). In this

section, we briefly describe the predicate detection al-

gorithm by Garg and Chase.

In [8], besides the n application processes, there are

a set of n monitoring processes, which are collectively

called the monitor, that perform the task of detect-

ing when predicate P is satisfied. Each time the local

predicate at process i becomes true, process i sends

a message containing its state and the Vector Clock

timestamp [7,15] of when its local predicate Pi became

true to its corresponding monitoring process. Such a

message is called a candidate. From the streams of

candidates provided by the application processes, the

monitor runs the predicate detection algorithm as fol-

lows:

S1. The monitor forms the initial global snapshot using

the first candidates from each application process.

S2. If the global snapshot is hb-consistent, the monitor

moves to step S3. If the global snapshot is not hb-

consistent, the monitor moves to step S4.

S3. The global snapshot is hb-consistent and the mon-

itor reports a satisfaction instance of predicate P
and terminates.

S4. Since the global snapshot is not hb-consistent, there

exist at least two candidates not concurrent with

each other. Let candi denote the candidate from

process i currently being used in the global snap-

shot. There must exist two processes i and j such

that candi hb candj . The monitor replaces the cur-

rent candidate with the next candidate from process

i and then moves to step S2.

The presence of the monitor may also interfere with

the execution of the application processes (e.g. trans-

mission of information to the monitor, competing for

resources in case the monitor shares physical machines

with application processes). However, this paper fo-

cuses on the accuracy (precision/recall) of the monitor

and not on the monitor’s interaction with the appli-

cation. We refer to [20] for an evaluation of the im-

pact caused by similar monitors on the performance

of the application processes. Since performance is not

the focus of this paper, our results are unaffected by

the choice of predicate detection algorithm used by the

monitor.

3 Precision and Sensitivity of Asynchronous

Monitors

In this section, we evaluate the precision and sensitiv-

ity of asynchronous monitors (that assume no bound

for clock synchronization, � = 1) when monitoring

h�; �i-programs (that assume bounded clock synchro-

nization). Specifically, this section answers the following

question: Suppose we utilize an asynchronous monitor

(designed for monitoring programs in asynchronous sys-

tems) in monitoring programs in partially synchronous

systems, what is the precision, recall, and sensitivity of

the monitor. While the notion of sensitivity is explained

in detail in Section 3.3.2, intuitively it characterizes how

the precision/recall of the monitor changes when other

parameters change. In Section 3.1 we present the pa-

rameters used in the analytical model. In Section 3.2

we discuss the predicate detection algorithm used by

the monitor. Section 3.3 presents the analytical model

to compute precision of asynchronous monitors in h�; �i-
programs. We validate the analytical model using sim-

ulations and experiments in Sections 3.5-3.6 based on

the setup in Section 3.4.

3.1 Parameters for Analytical Model

Since we analyze the effectiveness of asynchronous mon-

itors in h�; �i-program, � and � are two parameters in

our analytical model. We now identify other parameters

considered in our model. These parameters are summa-

rized in Table 1.

To generate the analytical model and simulations,

we view the application/program execution as a run,

where each process runs independently with respect

to the constraint that clocks of two different processes

never differ by more than �. At each clock tick of the

process 1, it sends a message with probability �. The

destination is determined uniformly randomly from the

remaining processes. With the constraint � (message de-

lay), the delivery time for this message is determined.

1 We provide an interpretation of a clock tick in terms of
actual elapsed time in Section 3.3.3. Furthermore, the exact
discretization of the clock has a negligible effect on the com-
puted precision/recall.

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 7

Thus, at each clock tick, the process also checks if there

is a message intended to be received at that time. If so,

it receives that message.

At each clock tick, each process i also changes its lo-

cal predicate Pi to true with probability �. We consider

two types of runs: (1) point-based, where the decision

to change Pi at each clock tick is independent of the

decision at another clock tick, and (2) interval-based,

where once the local predicate becomes true, it remains

true for an interval of duration ‘. And only after time

‘, process i uses probability � to make its local predi-

cate Pi true. We denote global predicates in the former

runs as point-based predicates and in the latter runs

as interval-based predicates. Finally, the number of

processes n is also used in the analytical model.

3.2 Modification of Predicate Detection Algorithm in

[8]

In this section, we describe how we extend the predi-

cate detection algorithm by Garg and Chase (discussed

in Section 2.5) for asynchronous monitors. We note that

these extensions are also used by the partially syn-

chronous monitors in Section 4.

The first modification, which enables the monitors

to detect interval-based predicates, is that our predi-

cate detection algorithm accounts for ‘, the duration

(or interval) for which the local predicates remain true.

For example, consider the scenario in Figure 3, where

the local predicate at process p0 becomes true at event

e1 and continues to be true till event e3 and the local

predicate at process p1 becomes true at event f1 and

continues to be true till event f2. Their corresponding

time intervals can be denoted as [5; 20] and [20; 35] at

p0 and p1, respectively. Here if a snapshot containing

events e1 and f1 is reported by the monitor, the snap-

shot may not seem to be �-consistent (i.e. it may look

like a false positive) if � < 15, because e1 and f1 are

15 time units apart from each other. However the local

predicate at p0 is true from event e1 till event e3 at

t = 20, so events e3 and f1 form a valid snapshot even

if � = 0.

We handle the intervals where the local predicates

are true as follows: Processes report intervals as can-

didates to the monitor. We run the algorithm in [8]

with the initial events in the intervals. When a con-

sistent snapshot is found in Step 3 (cf. Section 2.5),

we obtain the candidates that correspond to an hb-

consistent snapshot. Next, we use all pseudo events in

the corresponding candidate intervals. If any of these

pseudo events could lead to an �-consistent snapshot,

the monitor reports that snapshot.

Fig. 3: Interval-based predicate detection. � = 10.

Events e1 and f1 are not �-consistent. e3 and f1 are

�-consistent.

The second modification deals with the scenario

where the monitor in [8] terminates once it finds the

snapshot where the given conjunctive predicate P is

true. At this point, instead of terminating, our monitor

starts to identify the next snapshot where P is true.

In particular, the candidate with the smallest physical

time in the current snapshot is replaced by the next

candidate (from the same process), and the monitor

moves to step S2 of the algorithm (cf. Section 2.5).

We note that since the above modifications are

straightforward, the correctness of predicate detection

in [8] is preserved.

3.3 Analytical Model

When a monitor designed for programs in asynchronous

systems is used for programs in partially synchronous

systems, it can result in false positives. In this section,

we develop an analytical model to address the following

question:

Problem Statement 1: If we use a monitor

that is designed for a program in asynchronous

systems and apply it for an h�; �i-program, what

is the likelihood that it would result in a false

positive?

Recall that a false positive occurs if the snapshot

identified by the monitor is infeasible in an h�; �i pro-

gram because the events in the snapshot are too far

(more than �) apart in physical time.

3.3.1 Precision

Recall that every snapshot found by an asynchronous

monitor is an hb-consistent snapshot. An asynchronous

monitor has recall = 1 because every �-snapshot is hb-

snapshot as stated in Observation 2. If an hb-consistent

snapshot is also �-consistent, the asynchronous moni-

tor is correct (true positive). In the following results,

we compute the precision of an asynchronous monitor

when monitoring an h�; �i-program.

8 Duong Nguyen et al.

For simplicity of analysis, in the analytical model,

we ignore messages. Essentially, this means that � is

0 or very small. With simulation and experiments, we

find that this assumption is reasonable in practice. In

other words, in most settings, � has a small effect on

the precision of the monitor. We discuss the impact of

� in more detail in Section 3.5.3.

Theorem 1 For an h�; �i-program with n processes,

where the local predicate Pi becomes true with proba-

bility � and remains true for duration ‘, the probability

that an hb-consistent snapshot where
V
i Pi is true is

also �-consistent is

�(�; n; �; ‘) = (1� (1� �)�+‘)n�1

Proof Given a distributed program, for a long execution

trace of the distributed program, it follows that the

precision (true positive rate) will eventually converge to

some value by the law of large numbers in probability

theory.

Without loss of generality, assume that process 0 is

one of the first processes to have their local predicates

become true in the hb-consistent snapshot. Recall that

Pi denotes the local predicate at process i. Let 0 be the

time when P0 becomes true. Define the random variable

xi as the first time since time 0 that Pi (1 � i � n� 1)

becomes true. Since the probability for Pi to be false

at each clock tick is 1� �, the probability that Pi does

not become true before time t (Pi is false from time 0

to t� 1) is P (xi � t) = (1��)t. The probability of the

complement event, i.e. Pi becomes true before time t,

is P (xi < t) = 1� (1� �)t.
Recall that for interval-based predicate, when a lo-

cal predicate becomes true it remains true for a dura-

tion ‘. Therefore, P0 remains true until time ‘� 1. For

the hb-consistent global snapshot to be �-consistent in

interval-based predicate, any Pi (1 � i � n � 1) must

become true before time � + ‘ so that the local state

at process i is still �-consistent with the local state at

process 0. Furthermore, since every Pi becomes true

no earlier than time 0, the local states of the processes

will be mutually �-consistent as long as the local pred-

icates at the processes become true before time � + ‘.

Therefore, we have:

�(�; n; �; ‘) =
Qn�1
i=1 P (xi < �+ ‘)

= (1� (1� �)�+‘)n�1

ut

Since point-based predicate is a special case of

interval-based predicate where ‘ = 1, the precision of an

asynchronous monitor detecting point-based predicate

in an h�; �i-program denoted as �(�; n; �) = �(�; n; �; 1),

is provided in Corollary 1:

Corollary 1 For point-based predicate, the probability

of an hb-consistent snapshot being �-consistent is

�(�; n; �) = �(�; n; �; 1) = (1� (1� �)�+1)n�1

The formula in Theorem 1 suggests that the preci-

sion of the monitor will decrease when n (the number of

processes) increases. The precision will increase when ‘

(the interval length for which local predicates remain

true) increases or � (the probability that a local pred-

icate becomes true) increases. Since the false positive

rate = 1 � precision, the effects of these factors are

reversed for the false positive rate.

3.3.2 Sensitivity

In addition to the value of the precision of the monitor,

we want to evaluate how the value of precision changes

with the value of �, as it will characterize the sensitivity

of the monitor if the precise value of � is not known.

Since the first derivative 2 of �(�; n; �; ‘) with respect to

� (�0 – which is always positive – cf. Figure 4a) measures

how the precision � changes as the value of � changes,

the sensitivity of the monitor’s precision is identified

by this first derivative of � – the monitor is sensitive

(not sensitive, respectively) when the value of �0 is high

(small, respectively) corresponding to the solid (dashed,

respectively) portion of the red line in Figure 4a.

Figure 4b shows the first (�0), second (�00) and third

(�000) derivative of precision function � with respect to

�. We note that the y-axis of �0 is on the left side of

Figure 4b and the y-axis of �00 and �000 is on the right

side of the graph. The two values �p1 and �p2 on the

x-axis correspond to the values of � where �000 = 0

(i.e. �000(�p1
) = �000(�p2

) = 0). On the curve of �0, A =

(�p1 ; �
0(�p1)) and B = (�p2 ; �

0(�p2)). On the curve of �00,

C = (�p1
; �00(�p1

)) and D = (�p2
; �00(�p2

)). From this fig-

ure, we observe that the curve for �0 can be partitioned

into three phases from left to right:

(1) The first phase on the left where �00 (the first deriva-

tive of �0) is positive and increases from 0 until it

reaches the maximum (point C when � = �p1
). In

this phase �0 increases from 0 at an accelerating

rate but its value is small.

2 We use �0, �00, and �000 to denote the first (@�
@�

), second

(@
2�
@�2), and third (@

3�
@�3) partial derivative of � with respect to

�.

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 9

(2) The second phase at the middle where �00 decreases

from its positive maximum (point C) to 0 and keeps

decreasing to its negative minimum (point D) when

� = �p2
. Thus, �0 increases (from point A) at a

slower rate until it reaches its maximal value, then

decreases to point B but its value is still high.

(3) The last phase on the right where �00 is negative and

increases from its minimum (point D) to 0. Accord-

ingly, �0 keeps decreasing at a slower rate until it

vanishes.

The region of high sensitivity is associated with the

middle phase where the value of �0 is high (this region

is highlighted by solid lines in Figure 4). The boundary

point where the transition between the phases of �0

occurs are called the inflection points of �0, denoted as

�p1
and �p2

. They are the points where �00 (the green line

in Figure 4b) changes its direction, or �000 (the purple

line in Figure 4b) equals 0.

The following lemma identifies the position of the

two inflection points of �0.

Lemma 1 (Inflection points) Assume that n > 1.

For interval-based predicates, the two inflection points

�p1
and �p2

(with �p1
< �p2

) of the function @�(�;n;�;‘)
@�

are

�p1 = log(1��)(
3n� 4 +

p
5n2 � 16n+ 12

2(n� 1)2
)� ‘

�p2
= log(1��)(

3n� 4�
p

5n2 � 16n+ 12

2(n� 1)2
)� ‘

Proof An inflection point of the slope @�(�;n;�;‘)
@� is

where its second derivative (which is the third deriva-
tive of �(�; n; �; ‘)) equals 0.

With B = 1 � �, we obtained the following partial

derivatives of �(�; n; �; ‘) with respect to �:

� =(1�B�+‘)n�1

�0 =� (n� 1) lnB(1�B�+‘)(n�2)B�+‘

�00 =� (n� 1)(lnB)2(1�B�+‘)(n�3)�

(B�+‘ � nB2(�+‘) +B2(�+‘))

�000 =� (n� 1)(lnB)3(1�B�+‘)(n�4)B�+‘�

[(n2 � 2n+ 1)B2(�+‘) � (3n� 4)B�+‘ + 1]

We know that 0 < B = 1� � < 1 (since 0 < � < 1)

and n > 1. Therefore �000 = 0 iff

(n2 � 2n+ 1)B2(�+‘) � (3n� 4)B�+‘ + 1 = 0

With y = B�+‘, we have

(n2 � 2n+ 1)y2 � (3n� 4)y + 1 = 0

0 60 100 150
0

0.01

0.03

0.05

0

0.2

0.8

1

(
, n

,
,

l)

Precision of asynchronous monitor for < , > program
 n=50, =0.1, l=1

B

A

(a)

0 60 100 150
0

0.01

0.03

0.05

-2

-1

0

1

2

3

4
10-3

Derivatives of (precision of asynchronous monitor)
 n=50, =0.1, l=1

C

D

A B

(b)

Fig. 4: A sample graph of �(�; n; �; ‘) – the precision

function of asynchronous monitor for h�; �i-program –

and its derivatives with respect to �. Figure 4a: � and

its first derivative. Figure 4b: the first, second, and

third derivatives of �. The region between two inflection

points (�p1
and �p2

) are highlighted with solid lines.

The solutions of this quadratic equation are

fy1; y2g =
3n� 4�

p
5n2 � 16n+ 12

2(n� 1)2

By substituting � = logBy�‘ and B = 1��, we obtain

the values of �p1
and �p2

as stated in Lemma 1. ut

In case of point-based predicate where ‘ = 1, the

inflection points of @�(�;n;�)
@� are provided in Corollary 2:

Corollary 2 (Point-based inflection points)

Assume that n > 1. For point based predicates, the two

inflection points �p1
and �p2

(with �p1
< �p2

) of the

10 Duong Nguyen et al.

function @�(�;n;�)
@� are

�p1
= log(1��)(

3n� 4 +
p

5n2 � 16n+ 12

2(n� 1)2
)� 1

�p2
= log(1��)(

3n� 4�
p

5n2 � 16n+ 12

2(n� 1)2
)� 1

The two inflection points �p1 and �p2 partition the

domain of � into three ranges: (0; �p1
), [�p1

; �p2
], and

(�p2
;1). In the ranges (0; �p1

) and (�p2
;1), the rate of

change of precision (i.e., �0) is small and the precision

(i.e., �) is relatively insensitive to changes in �. In the

range [�p1
; �p2

], �0 is high and the value of � changes

significantly as � changes. In other words, except in the

range [�p1
; �p2

], we can compute the precision of the

asynchronous monitor with only approximate knowl-

edge of �. Specifically, if we believed that the value of

� equals x, but the actual value of � is x � �x and

[x; x � �x] does not overlap with [�p1
; �p2

], then the

precision computed by the model for � = x would be

close to the actual precision for � = x � �x. As a re-

sult, if the high sensitivity range [�p1
; �p2

] is small, it

is more likely to get a good estimate of the precision

of the asynchronous monitor. The next theorem shows

that the relative gap between the two boundaries of

this range approaches zero as the number of processes

n increases.

Theorem 2 (Relative high sensitivity range)

The relative width of the high sensitivity range (the

relative difference between phase transition �p1 and

post-phase transition �p2) of an asynchronous monitor

when monitoring an h�; �i-program with n processes

approaches 0 as n increases (and this is independent of

�, the probability of a local predicate becoming true):

lim
n!1

�p2 � �p1

�p1

= 0

Proof The equation in Theorem 2 is equivalent to

limn!1
�p2

�p1
= 1. Since � < 1 and n > 1, we observe

that both �p1
and �p2

are non-zero and differentiable

with respect to n. By l’Hôpital’s rule, we have

lim
n!1

�p2

�p1

= lim
n!1

(�p2
)0

(�p1)0

where (�p1
)0 and (�p2

)0 are the first derivatives of �p1

and �p2 with respect to n, respectively. Denote A =p
5n2 � 16n+ 12, we obtained (�p1

)0 and (�p2
)0 (we

have omitted the intermediate steps for brevity) as be-

low:

(�p2
)0 =

�6An+ 10n2 � 38n+ 10A+ 32

2 ln (1� �)A(n� 1)(3n� 4�A)

(�p1
)0 =

�6An� 10n2 + 38n+ 10A� 32

2 ln (1� �)A(n� 1)(3n� 4 +A)

lim
n!1

�p2

�p1

= lim
n!1

(�p2)0

(�p1
)0

=

lim
n!1

�
(�6An+ 10n2 � 38n+ 10A+ 32)

(�6An� 10n2 + 38n+ 10A� 32)

(3n� 4 +A)

(3n� 4�A)

�
Substitute A with

p
5n2 � 16n+ 12, then multiply both

the numerator and the denominator of the first fraction

with 1
n2 , and of the second fraction with 1

n , we have:

lim
n!1

�p2

�p1

= lim
n!1

(�p2
)0

(�p1)0
= lim
n!1

�
�6
q

5� 16
n + 12

n2 + 10� 38
n + 10

n

q
5� 16

n + 12
n2 + 32

n2

�6
q

5� 16
n + 12

n2 � 10 + 38
n + 10

n

q
5� 16

n + 12
n2 � 32

n2

�
(3� 4

n +
q

5� 16
n + 12

n2)

(3� 4
n �

q
5� 16

n + 12
n2)

�

=
(�6
p

5 + 10)� (3 +
p

5)

(�6
p

5� 10)� (3�
p

5)
=
�8
p

5

�8
p

5
= 1:

ut

3.3.3 Illustration and Interpretation of the Analytical

Results

In this subsection, we illustrate how the analytical re-

sults above can be used in practice. In order to do so,

we need to convert between the parameter values in

practice and the corresponding values in the analyti-

cal model. In particular, we consider the conversion of

these parameters: �; �; �; ‘; �.

The conversion of these parameters is based on an

implicit parameter: clock granularity – the time dura-

tion of each clock tick. The clock granularity is a free

parameter with only one constraint: in our model, since

the completion of every operation takes one or multiple

clock ticks, the clock granularity should be reasonably

small.

Consider a distributed program with n = 5 pro-

cesses where their local predicates become true every

10 ms and remain true for 1 ms, the processes send out

messages every 2 ms on average, and the messages are

delivered after 5 ms. Let clock granularity be 1 tick per

µs. Since the local predicates become true every 10,000

clock ticks and remain true for 1,000 clock ticks, we

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 11

have � = 0:0001 and ‘ = 1; 000. The average communi-

cation frequency is one message sent every 2,000 clock

ticks and � = 0:0005. The message delay is � = 5; 000

clock ticks. Using the formula in Lemma 1, we obtain

two inflection points �p1 = 4; 452 clock ticks (4.45 ms)

and �p2
= 21; 272 clock ticks (21.27 ms). Our analyt-

ical model predicts that the monitor precision will be

low if the application assumption �app is less than or

equal 4 ms, and high if the application assumption �app
is higher than or equal 22 ms. Suppose �app = 4 ms

(4,000 clock ticks), using the formula in Theorem 1, we

calculate that the precision of the asynchronous mon-

itor is 0.02. If �app = 30 ms (30,000 clock ticks), the

monitor precision is 0.83.

To understand the notion of sensitivity, consider the

case where the exact value �app is not known. If, how-

ever, we know that �app is between 30 ms and 40 ms,

then we can compute the monitor precision to be be-

tween 0.83 and 0.94; were �app instead between 10 ms

and 20 ms, then the monitor precision would be be-

tween 0.20 and 0.59. In other words, in [�p1
; �p2

] the

change in precision is large.

Moreover, the relative width of the high sensitivity

range
�p2
��p1

�p1
= 3:78. When the number of processes n

increases to 500 (other parameters are unchanged), the

two inflection points shift upward to 51:5 ms and 70:7

ms while the relative width of the high sensitivity range

reduces to 0:37 (cf. Table 2), which is comparable with

the results in Theorem 2.

In Table 2, we also change the clock granularity to

100 µs and to 1 ns, and observe that the calculated

values are practically unchanged. We note that the an-

alytical model is designed with the granularity as small

as possible. However, even when the granularity is 1 µs

or 100 µs, the predicted values of precision and �p1
, �p2

remain (essentially) unchanged.

3.4 Experimental and Simulation Setup

We validated our analytical model using experiments

and simulations. The code and the raw results are avail-

able at [18]. The parameters � and � in the experiments

are measured from the system and the network, while

in the simulations they are configured as input param-

eters. The values of �, �, ‘, n are configured as input

parameters in both the experiments and the simula-

tions as described below. When running experiments,

it is difficult to control the exact value of �; � or ‘.

We describe how we identify these parameters for AWS

experiments later in section 3.6.

For the experiments, we implemented a distributed

application and a monitor to detect satisfaction of a

Input parameters Calculation

n granu-
larity

� ‘
�app

�p1
�p2

�p2
��p1

�p1

preci-
sion

µs per
ms

ms
ms ms ms

5 1
0.1

1 4
4.45 21.27

3.78 0.02

5 1
0.1

1 10
4.45 21.27

3.78 0.20

5 1
0.1

1 20
4.45 21.27

3.78 0.59

5 1
0.1

1 30
4.45 21.27

3.78 0.83

5 1
0.1

1 40
4.45 21.27

3.78 0.94

500
1

0.1
1 80

51.51 70.74
0.37 0.86

5 100
0.1

1 30
4.43 21.16

3.78 0.83

5
0.001 0.1

1 30
4.45 21.27

3.78 0.83

Table 2: Illustration of using the analytical model to

predict the precision and inflection points of asyn-

chronous monitors.

conjunctive predicate in the application. The applica-

tion consists of a main loop in which each process (1)

sends a message with some probability, (2) receives any

messages sent to it, (3) sets the local predicate to be

true with a certain probability, where it stays true for a

certain duration and (4) sleeps for duration lsct (local

sleep computation time) to simulate local computation.

Since a predicate is inherently true for some duration of

time that is longer than a clock tick in the experiment,

it is not possible to conduct point-based experiments

(where it is required that when a local predicate is set

to true it stays true for one clock tick). However, by

setting lsct as small as possible, the interval-based ex-

periments approximate point-based scenarios. If there is

communication in the middle, the interval will be split

as required by the algorithm in [8]. The monitor im-

plements the conjunctive predicate detection algorithm

described in [8]. We use 5 Amazon AWS EC2 t2.micro

machines located at different regions (Ohio-USA, North

Virginia-USA, California-USA, Oregon-USA, and Cen-

tral Canada). The machines run Ubuntu 18.04 operat-

ing system. The clock skew between the AWS machines

synchronized using NTP protocol [16] (measured by

ntpq -p) is between 17 ms and 20 ms. In our experi-

ment, the average message delays between AWS regions

and within an AWS region (measured by ping utility)

are 29 ms and 0:6 ms, respectively.

Besides the experiments, we also use simulations due

to several benefits: (1) the simulations support both

12 Duong Nguyen et al.

point-based and interval-based scenarios while point-

based predicates are not feasible in experiments, (2)

simulations allow control of network latency �, (3) we

observe that the simulation results are consistent with

the experimental results while it is easier to deploy and

faster to obtain results from the simulations than from

the experiments.

In our simulations, in a step, with a certain prob-

ability, a process chooses to advance its clock as long

as the synchrony requirement is not violated. If a pro-

cess does not advance its clock at the given step then

nothing happens at that process. By allowing a sub-

set of processes to take action in one step, we are able

to create scenarios where clocks of different processes

advance at different speeds.

When a process increments its clock, it decides if the

local predicate is true with probability �. Depending on

the type of detection i.e. point-based or interval-based,

the local predicate will remain true for just one instant

(one clock tick) or for a duration of time ‘. Further-

more, when a process advances its clock, it can choose

to send a message to a randomly selected process with

probability �. The delivery time of this message will be

determined by �.

During a simulation/experiment run, we identify

fmon, the number of snapshots identified by the asyn-

chronous monitor algorithm in [8], and f�, the number

of snapshots that are also �-consistent. Then, the pre-

cision of the monitor is f�
fmon

and the false positive rate

is 1� f�
fmon

.

For the simulation length, we run until each process

advances its clock to 100; 000 so that the false posi-

tive rate (and the precision) stabilizes. In particular,

when a new snapshot is identified by the algorithm in

[8] indicating that the given conjunctive predicate is

possibly true, the snapshot may or may not be con-

sistent with synchrony requirements (i.e., may or may

not be a false positive). Hence, initially, the false posi-

tive rate varies substantially. However, when sufficiently

many snapshots are identified over time the false posi-

tive rate converges to a stable value. To validate this, we

considered how the false positive rates vary over time

in different simulations. Figure 5 shows the results for

different values of � while n, �, � and � are fixed. From

these results, we find that the false-positive rate stabi-

lizes fairly quickly. When we vary n, �, � and �, we also

observed a similar stabilizing pattern. Whereas in the

experiments, we observed that the false positive rates

converge to stable values after running for 10 minutes.

-0.5

0

0.5

1

1.5

2

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Fa
ls

e
po

si
tiv

e
ra

te

Time

n = 20

Fig. 5: (Simulation) Point-based asynchronous moni-

tors: convergence of false positive rates over time. Since

precision = 1 � false positive rate, the precision also

converges.

3.5 Simulation Results

3.5.1 Point-based Predicate Simulations

Comparison of analytical model and simulation

results. The analytical model in section 3.3 predicts

that the false positive rate of an asynchronous monitor

has the shape of a logistic function. In Figure 6a, we plot

the graph of false positive rate (which is 1� �(�; n; �))

with n = 20; � = 0:1 (the continuous red curve). We run

simulations with the same n, and � but vary the values

of �, �, �, and plot simulation results in the same figure.

As shown in Figure 6a, the simulation results (the con-

tinuous curves with different markers) agree with the

analytical results (the continuous curve in red).

Sensitivity of the false positive rate of asyn-

chronous monitors to changes in �. The blue dot-

ted line in Figure 6a is the derivative of a simulation

result (with � = 0:1; � = 100), which illustrates how

sensitive the precision (i.e. 1 - false positive rate) of an

asynchronous monitor is with respect to changes in the

clock skew �. We observe that the values of � can be

divided into 3 ranges: a brief range of high false posi-

tives to the left when � is small (� < �p1
), a range of

low false positives to the right when � is large (� > �p2
),

and a short high sensitivity range [�p1; �p2] in the mid-

dle where small changes in the clock skew � changes the

false positive rates significantly, as anticipated by the

analytical model.

Effect of � and �. In Figure 6a we consider

the false positive rates for n = 20; � = 0:10. We con-

sider different values of � = 0:05, 0:1 and � = 10, 100

and compare the simulation results with the analytical

model. The simulation results validate the analytically

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 13

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100 120 140

Fa
ls

e
po

si
tiv

e
ra

te

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

Fa
ls

e
po

si
tiv

e
ra

te

(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

Fa
ls

e
po

si
tiv

e
ra

te

(c)

Fig. 6: (Simulation) Point-based asynchronous monitors. Figure 6a: Comparison of analytical and simulation

results, sensitivity of false positive rate to changes in �, the independence of false positive rate from � and �.

Figures 6b, 6c: Impact of � and n on false positive rates

computed false positive rate. Also, we find that the false

positive rate is (almost) independent of � and �.

Effect of �. In the analytical model, when the local

predicates at the processes become true rarely (value of

� is close to 0), the predicted false positive rate is 1.

And, as the local predicates become true frequently (�

approaches 1), the false positive rate approaches 0 (the

false positive rate is 1 � precision). We validate this

result with Figure 6c. When considering a network of

20 processes, and � is small, say 0:01, the false positive

rate at � = 120 is 97%. By contrast, if � is increased

to 0:05 and 0:08 then the false positive rate at � = 120

decreases to 4% and 0:08% respectively.

Effect of n. The analytical model predicts that

when n increases, the false positive rate increases. This

predication is confirmed in Figures 6b and 6c. Let � =

0:01, when n is small, say 5, the false positive rate at

� = 120 is 38:2%. If n is increased to 20 then the false

positive rate increases to 97%.

3.5.2 Correlated Point-based Predicate Simulations

In the analytical model in Section 3.3 and in the simula-

tion in Section 3.5.1, it was assumed that the probabil-

ity of a local predicate Pi being true was independent

of local predicate Pj being true for any two different

processes i and j. In this section, we consider the case

where the probability of the local predicate being true

on different processes is correlated. While we analyze

some specific approaches to consider correlation below,

we note that our analysis technique is useful for several

other correlations as well.

In the first correlation called PMA (Positively cor-

related with MAjority), the processes are divided into

2 groups. Each process in the first group of size G1 < n

generates local predicates independently with the same

base rate � at each clock tick. A process in the second

group of size G2 = n � G1 has 2 possibilities: either

(1) with probability Pdep, it follows the majority of the

first group or (2) with probability Pind = 1 � Pdep,

14 Duong Nguyen et al.

it chooses the truth value independently by itself with

rate �. The values of G1; G2; Pdep (thus, Pind as well)

are configurable.

In a rough estimation of the false positive rate in

the PMA model, we observe that given that the lo-

cal predicates in group G1 are close enough in a snap-

shot, the chance for the snapshot to be a false pos-

itive would depend on whether the local predicates

in the second group G2 are close enough to the first

group G1 or not. This would, in turn, depend on cases

where local predicates in the group G2 are indepen-

dently generated (if they are dependently generated,

they would be close to the predicates of the first group).

The probability that the instant at which the local pred-

icate independently generated by a process in group

G2 becomes true is at least t apart from the instant

at which the local predicate becomes true for a pro-

cess in G1 follows a geometric distribution which is

(1 � �ind)
t where �ind = Pind � �. Hence, the prob-

ability that all processes of the second group G2 are

within the � distance from the first group is roughly

�PMA(�; n; �) = 1 � (1 � (1 � �ind)�)jG2j, where jG2j
is the number of processes in the group G2. As shown

in Figure 7a, when half of the processes are in G2 and

Pind = 0:5 (thus �ind = �
2), the monitor precision for

PMA is �PMA(�; n; �) � �(�; n2 ;
�
2), which fits with the

simulation.

The above analysis was for the case where jG2j =
n
2 and Pind = 0:5. We note that we have performed

similar analysis for other values of G2 and Pind and

the simulation results matched the expected analytical

results. For example, when (jG2j; Pind) = (2
3n; 0:5), it

corresponds to �(�; 2
3n;

�
2). And, when (jG2j; Pind) =

(n4 ; 0:25), it corresponds to �(�; n4 ;
�
4).

We also consider other correlation models for local

predicates of the processes such as HNMA (Half Nega-

tively correlated with MAjority) and PMAJ (Positively

correlated with MAjority up to index J). The HNMA

model is the similar to PMA where G1 = n
2 ; Pdep = 0:5

with one exception: processes in the second group would

follow the minority of the first group. In the PMAJ

model, process 0 chooses whether its local predicate is

true with probability �. The truth value of local predi-

cate at every remaining process is correlated with local

predicates in its preceding processes (w.r.t. process ID).

In particular, each process j will follow the majority of

its preceding processes (i.e. processes 0; :::; j � 1) with

probability of 0:5; with probability of 0:5, it will change

its local predicate on its own with probability �. As

shown in Figure 7b, 7c, there are parameters that help

our analytical model to estimate the simulation results

of these correlation models under different parameter

settings (e.g. n; �). For example, when we replace (n; �)

in the analytical model (Section 3.3, Corollary 1) by

(n; �2) (respectively, (n4 ;
�
2)), the false positive rate pre-

dicted by the analytical model matches with the false

positive rate of the HNMA (respectively, PMAJ) cor-

relation model obtained by simulations.

3.5.3 Interval-based Predicate Simulations

Point-based scenarios could be generalized to interval-

based scenarios where local predicates are true for a

certain interval of time, ‘. In any practical program,

the value of local predicate Pi is not changing at every

clock tick. Thus, for these programs, local predicates

are expected to be true for an interval.

Simulation results in Figure 8 show that the false

positive rate for interval-based predicate detection in-

creases when � decreases (Figure 8b), or n increases

(Figure 8d), or interval length ‘ decreases (Figure 8e).

The false positive rate is independent of � (Figure 8c).

These observations are compatible with the analytical

model for asynchronous monitors.

For simplicity, we omitted the effect of � in Theorem

1. We discuss it here. Revisiting the proof of Theorem

1, let 0 be the time at which P0 became true. Let e de-

note this event. As done in the proof of Theorem 1, let e

be the earliest event in the hb-consistent snapshot. Let

t1 � 0 be the time when P1 became true. Let f denote

the corresponding event. Theorem 1 evaluated the case

where t1 � � given that t1 � 0. If the message rate is 0

then the value of t1 in the hb-consistent snapshot can

be any non-negative value. On the other hand, if the

message rate is very high, t1 would need to be smaller,

as for larger values of t1 the probability of e happened

before f increases. In other words, as � increases, the
chances of t1 being closer to 0 increases. This increases

the probability of the hb-consistent snapshot also be-

ing �-consistent (i.e. the precision is increased). On the

other hand, as required in [8], sending of a message

causes intervals to be split. The splitting of intervals

reduces the effective length of ‘. As discussed in the an-

alytical and simulation results above, reduced ‘ could

reduce the precision. In practice, we observe that the

overall effect of � is small (cf. Figure 8a).

3.6 AWS Based Experimental Results

Figure 9a presents our experimental results for interval-

based asynchronous monitors on Amazon AWS plat-

form. To compare with the simulation and the analyt-

ical model, we need to identify the values of �; �; �, ‘,

and �. We achieve this as follows. Value of � is deter-

mined by evaluating the number of messages sent in

a given time interval; � is chosen so that the number

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 15

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Fa
ls

e
po

si
tiv

e
ra

te

�

PMA G2=n/2 Pind=0.5
n=10 �=0.10 �=0.10 �=100

Analytical(n/2, �/2)
Simulation

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Fa
ls

e
po

si
tiv

e
ra

te

�

HNMA Distribution
n=20 �=0.10 �=0.10 �=100

Analytical(�,n/2)
Simulation

(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300

Fa
ls

e
po

si
tiv

e
ra

te

�

PMAJ distribution
n=20 �=0.01 �=0.05 �=100

Analytical(�/2,n/4)
Simulation

(c)

Fig. 7: (Simulation) Asynchronous monitors: false positive rates in some correlated point-based scenarios

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 10
0

15
0

20
0

25
0

Fa
ls

e
po

si
tiv

e
ra

te

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Fa
ls

e
po

si
tiv

e
ra

te

(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
0 50 10
0

15
0

20
0

25
0

Fa
ls

e
po

si
tiv

e
ra

te

(c)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Fa
ls

e
po

si
tiv

e
ra

te

(d)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 10
0

15
0

20
0

25
0

30
0

Fa
ls

e
po

si
tiv

e
ra

te

(e)

Fig. 8: (Simulation) Interval-based asynchronous monitors: Impact of �, �, �, n, and ‘ on false positive rate.

of expected messages in that interval matches the ac-

tual number of messages sent during the experiment.

Likewise, � is computed by observing the number of

times the local predicate became true in the given in-

terval during the experiment and choosing � such that

it matches this number. Value of � is obtained by values

reported by ping service. And, we measured the aver-

age time for which the predicate was actually true and

determine the (effective) value of ‘. Once we obtained

the run, we evaluated it by identifying which snapshots

16 Duong Nguyen et al.

would have been reported for different values of clock

skew �.

As shown in Figure 9a, the prediction based on our

analytical model is compatible with AWS experimental

results and simulation results. The dotted line in Figure

9a is the derivative with respect to � of the false posi-

tive rate obtained in AWS experiments, which informs

the sensitivity of asynchronous monitor precision with

respect to changes in clock skew. We also observe the

high sensitivity range [�p1; �p2] where a small change in

� causes a large difference in the precision of the moni-

tors.

We also note that the derivative in Figure 9a has

been smoothed using Bézier curve since the original

derivative of experimental data contains noises. In Fig-

ure 9b, we compare the original (non-smoothed) deriva-

tive (the green dotted curve) and the smoothed deriva-

tive (the red curve) and observe that the smoothed ver-

sion represents the rate of change in the experimental

data (the blue curve) well.

The sensitivity of asynchronous monitor precision

to different factors such as �, �, �, n, ‘ is illustrated

in Figure 10. To quantify the impact of �, we run one

set of experiments where all machines are located in

the same AWS region (the average latency is 0.6 ms)

and another set of experiments where all machines are

placed in different AWS regions (the average latency

is 29 ms). We observe that the false positive rate of

an asynchronous monitor increases when � decreases

(Figure 10b), or n increases (Figure 10d), or ‘ decreases

(Figure 10e). The false positive rate is independent of

� (Figure 10c) and lsct (Figure 10f). These results are

compatible with the analytical model and simulation

results. Figure 10a shows that � has a neutral impact

on the false positive rate.

Note that lcst corresponds to the scenario where

the process is only performing local computations. We

can view process execution to consist of (1) interactive

phase (where it is involved in inter-process communica-

tion) and (2) local phase (where it does not send/receive

any messages). While such phases are not part of the

analytical model, experimental result shows that having

such phases does not affect the overall precision/recall

of the monitor.

4 Precision, Recall, and Sensitivity of Partially

Synchronous Monitors

In this section, we focus on the following problem:

Problem Statement 2: Suppose we designed

a monitor for an h�mon; �1i-program and applied

it in an h�app; �2i-program, then what is the pre-

cision and recall of the monitor?

In Section 4.1, we discuss the predicate detection

algorithm used by partially synchronous monitors. Sec-

tion 4.2 presents the analytical model for the preci-

sion and recall of partially synchronous monitors in

h�app; �2i-program. Sections 4.3-4.5 present the simula-

tion and experiment results. For partially synchronous

monitors, the parameters used by the analytical model

and the experimental and simulation setup are the

same as those for asynchronous monitors (cf. Sec-

tions 3.1, 3.4).

4.1 Modification of Predicate Detection Algorithm

The predicate detection algorithm used by partially

synchronous monitors is exactly the same algorithm de-

scribed in Section 3.2 with one modification. Specif-

ically, the predicate detection algorithm in this Sec-

tion uses Hybrid Vector Clocks [12] while Garg and

Chase’s algorithm (like the algorithm in Section 3.2)

uses Vector Clocks [7,15]. Hybrid Vector Clocks are

Vector Clocks augmented with the information about

the bound of clock synchronization error �. Thus, when

Vector Clocks are used, the monitor uses the criteria

of hb-consistency (defined in Section 2.4) to determine

whether a global snapshot is consistent; when Hybrid

Vector Clocks are used, the monitor’s decision is based

instead on �-consistency.

4.2 Analytical Model

In the analytical model for partially synchronous mon-

itors, we use the same parameters that have been in-

troduced in Section 3.1. As validated in Section 3, the

value of � is not important. Hence, we only focus on the

relation between �mon and �app.

While asynchronous monitors assume an arbitrary

clock skew (� = 1), partially synchronous monitors

assume that clocks do not differ more than a finite

bound �mon. The monitor’s assumption �mon is based

on its best knowledge about the application’s assump-

tion �app. Nevertheless, the application may implicitly

rely on the assumption that clocks are synchronized to

be within �app, which is difficult to compute and is un-

available to the monitor. Such an application may use

�app with the use of timeouts, or even more implicitly

may rely on database update and cache invalidation

schemes to ensure that no two events that are more

than �app apart can be part of the same global state as

observed by the clients [14].

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 17

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

Fa
ls

e
po

si
tiv

e
ra

te

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Fa
ls

e
po

si
tiv

e
ra

te

Se
ns

iti
vi

ty
 (D

er
iv

at
iv

e)

(b)

Fig. 9: (AWS) Interval-based asynchronous monitors. Figure 9a: Compatibility between analytical model predic-

tion, simulation results, and AWS experiment results. Figure 9b: Comparison between the original derivative of

raw experiment data and its smoothed version

If �app < �mon, then the situation is similar to that

of the asynchronous monitors, where �mon = 1. The

monitor’s recall is always 1 (Observation 3). However,

if �mon is finite then it will reduce the false positives

as this monitor will avoid detecting some snapshot in-

stances where the time difference between the local

predicates being true is too large (> �mon).

If �app > �mon, the situation is reversed, i.e., the

precision will always be 1 (Observation 4). However,

the recall of the monitor would be less than 1, as the

monitor may fail to find some snapshots that are �app-

consistent but not �mon-consistent.

The following theorem identifies the precision and

recall of partially synchronous monitors. (We some-

times use �(�) as a short form of �(�; n; �; ‘) to simplify

the notation in the rest of the paper.)

Theorem 3 When a monitor designed for an

h�mon; �i-program is used to monitor an h�app; �i-
program with n processes where the local predicate Pi
becomes true with probability � and remains true for

duration ‘, the precision and recall of the monitor are

as follows:

Precision =
�(min(�app;�mon))

�(�mon) ,

Recall =
�(min(�app;�mon))

�(�app)

where �(�) = (1� (1� �)�+‘)n�1

Proof We consider the case �app � �mon, then

Recall =
�(min(�app; �mon))

�(�app)
=
�(�app)

�(�app)
= 1

which complies with Observation 3.

We use hg; �i to denote that a snapshot g is �-

consistent. (Consequently, when � =1, hg;1i denotes

that snapshot g is hb-consistent.) By the law of total

probability, we have

P (hg; �i) = P (hg; �i \ hg;1i) + P (hg; �i \ :hg;1i)

The probability P (hg; �i \ :hg;1i) = 0 since if snap-

shot g is not hb-consistent, g is also not �-consistent

(Observation 2). By Theorem 1, the probability

P (hg; �i \ hg;1i) = �(�; n; �; ‘) = (1� (1� �)�+‘)n�1

Thus

P (hg; �i = P (hg; �i \ hg;1i) = �(�; n; �; ‘) = �(�)

The precision of the monitor is the probability

that a �mon-consistent snapshot found by the monitor

is also �app-consistent, which is P (hg; �appijhg; �moni).
Note that every �app-consistent snapshot is also �mon-

consistent (since �app � �mon), thus hg; �appi \ hg; �moni
is equivalent to hg; �appi. Using the formula of condi-

tional probability, we have:

Precision = P (hg; �appijhg; �moni)

=
P (hg; �appi \ hg; �moni)

P (hg; �moni)
=

P (hg; �appi)
P (hg; �moni)

=
�(�app)

�(�mon)
=
�(min(�app; �mon))

�(�mon)

The proof for the case �mon � �app is similar. In

particular:

Precision =
�(min(�app; �mon))

�(�mon)
=
�(�mon)

�(�mon)
= 1

18 Duong Nguyen et al.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

Fa
ls

e
po

si
tiv

e
ra

te

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

Fa
ls

e
po

si
tiv

e
ra

te

(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

Fa
ls

e
po

si
tiv

e
ra

te

(c)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

Fa
ls

e
po

si
tiv

e
ra

te

(d)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

Fa
ls

e
po

si
tiv

e
ra

te

(e)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

10
0

20
0

30
0

40
0

50
0

60
0

Fa
ls

e
po

si
tiv

e
ra

te

(f)

Fig. 10: (AWS) Interval-based asynchronous monitors: Impact of different factors �, �, �, n, ‘ (interval length), and

lsct (local sleep computation time) on false positive rate. We note that the effective values of � and � are closely

approximated. For example, in Figure 10d, the effective values of � = 0:01; � = 0:01 are � = 0:01006; � = 0:01007,

respectively. The effective values of interval length (ilen, ‘) are shown in the figures. 3

The recall of the monitor is the probability that a �app-

consistent snapshot is also �mon-consistent (i.e. the �app-

consistent snapshot is also reported by the monitor),

which is:

Recall =P (hg; �monijhg; �appi) =
P (hg; �moni \ hg; �appi)

P (hg; �appi)

=
P (hg; �moni)
P (hg; �appi)

=
�(�mon)

�(�app)
=
�(min(�app; �mon))

�(�app)

ut

Next, we examine the sensitivity –changes in the

precision and recall of the monitor caused by the

changes in j�app� �monj– of partially synchronous mon-

itors. We visualize the sensitivity of partially syn-

chronous monitors by a diagram named PR-sensitivity

diagram (Precision/Recall-sensitivity diagram). A PR-

3 Recall that in AWS experiments, we cannot control the
precise value of �, ‘ and �, as we cannot control what happens
with the interaction with network and the operating system.
For example, in Figure 10d, we attempted to keep � = 0:01.
However, the effective value of � computed by the number of
messages sent in a given interval was 0.01006. Likewise, we
attempted to keep interval length in Figure 10e to be 80ms.
However, the effective length was 42ms, in part due to the
fact that intervals are split by message send as required in
[8].

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 19

0 50 100 150
0

50

100

150

Fig. 11: (Analytical) An example of a PR-sensitivity

diagram of a partially synchronous monitor.

sensitivity diagram is a contour map of a monitor’s pre-

cision and recall where the two axes of the mapping are

�app and �mon, and each curve is a contour line where

the value of the monitor’s precision/recall is a constant.

The precision (respectively, recall) contours are at the

upper (respectively, lower) half of the diagram where

�app < �mon (respectively, �mon < �app).

Figure 11 is a PR-sensitivity diagram of a partially

synchronous monitor with n = 50; � = 0:1; ‘ = 1.

We observe that the contour lines (for example the

lines where � = 0:5 and � = 0:75) are far apart when

�app=�mon are large and get closer when �app=�mon are

small. This means for small values of �app=�mon, a small

uncertainty in �app (since the application’s assumption

is an unknown variable to the monitor) could change

the precision/recall substantially, whereas for large val-

ues of �app=�mon, a small uncertainty in �app would

leave the precision/recall fairly unaffected. Monitoring

in such a region where �app=�mon are small should be

done carefully so that the monitor precision/recall is

still within an acceptable level.

For the monitor to achieve a precision/recall that is

not less than some desirable threshold �, the relation

between �app and �mon needs to meet some conditions.

The next theorem identifies those conditions so that

the precision/recall of the monitor is within the useful

range [�; 1].

Theorem 4 When an h�app; �i-program with n pro-

cesses where local predicate Pi becomes true with proba-

bility � and remains true for duration ‘, is monitored by

a monitor designed for an h�mon; �i-program, the preci-

sion/recall of the monitor will be at least � if the fol-

lowing conditions hold:

log1��(1� �
+1
n�1h(�; �mon; ‘))

� �app + ‘

� log1��(1� �
�1
n�1h(�; �mon; ‘))

where: h(�; �mon; ‘) = 1� (1� �)�mon+‘

Proof First we consider the case of precision (when

�app � �mon). For the precision at least �, by Theo-

rem 3, we have:

� � Precision =
�(�app)

�(�mon)
=

(1� (1� �)�app+‘)n�1

(1� (1� �)�mon+‘)n�1

, �
1

n�1 � 1� (1� �)�app+‘

1� (1� �)�mon+‘

, �
1

n�1 h(�; �mon; ‘) � 1� (1� �)�app+‘

, (1� �)�app+‘ � 1� �
1

n�1 h(�; �mon; ‘)

Since 0 < 1� � < 1, we have

�app + ‘ � log1��(1� �
1

n�1 h(�; �mon; ‘))

So when

log1��(1� �
1

n�1 h(�; �mon; ‘))� ‘ � �app � �mon

the monitor’s precision is in the range [�; 1] (its recall

is 1).

In case of recall (�mon � �app), we have

� � Recall =
�(�mon)

�(�app)
=

(1� (1� �)�mon+‘)n�1

(1� (1� �)�app+‘)n�1

, �
1

n�1 � 1� (1� �)�mon+‘

1� (1� �)�app+‘

, 1� (1� �)�app+‘ � �
�1
n�1 h(�; �mon; ‘)

, 1� �
�1
n�1 h(�; �mon; ‘) � (1� �)�app+‘

, log1��(1� �
�1
n�1 h(�; �mon; ‘)) � �app + ‘

So when

�mon � �app � log1��(1� �
�1
n�1 h(�; �mon; ‘))� ‘

the monitor’s recall is the range [�; 1] (its precision is

1).

Combining both formulae, the monitor will have its

precision/recall in the range [�; 1] when

log1��(1� �
+1
n�1h(�; �mon; ‘))

� �app + ‘

� log1��(1� �
�1
n�1h(�; �mon; ‘))

ut

20 Duong Nguyen et al.

0 50 100 150
0

50

100

150

Fig. 12: (Analytical) An example of the width function

 (�app). The width changes drastically after the phase

transition.

We note that since the role of �app and �mon are

symmetrical in terms of precision and recall. Specifi-

cally

Precision =
�(�app)

�(�mon)
; Recall =

�(�mon)

�(�app)

Hence, with a calculation similar to the proof of The-

orem 4, we can show that the precision/recall of the

monitor will be at least � when:

log1��(1� �
+1
n�1h(�; �app; ‘))

� �mon + ‘

� log1��(1� �
�1
n�1h(�; �app; ‘))

where: h(�; �app; ‘) = 1� (1� �)�app+‘

In Figure 12, consider a vertical line for a given

�app value. We define the width function (�app) to be

the difference between where the vertical line intersects

�mon = �app and where it intersects the contour line

for recall = �. On the contour where recall = �, the

following condition holds:

�mon = log1��(1� �
1

n�1h(�; �app; ‘))� ‘

For a given �; �; n; ‘ and the description of the width

function above, we have

 (�app) = �app � contour(�app)

where

contour(�app) = log1��(1� �
1

n�1h(�; �app; ‘))� ‘

= log1��(1� �
1

n�1 (1� (1� �)�app+‘))� ‘

We note that the width function (�app) identifies

the margin of error between �app and �mon where both

precision and recall is at least �. Observe that (�app)

decreases when �app decreases. We are interested in how

fast (�app) will change when �app changes. The rate of

change of as �app changes is measured by 0, the first

derivative of with respect to �app. In the next theo-

rem, we identify the inflection point (phase transition

point) of 0.

Theorem 5 Suppose an h�app; �i-program with n pro-

cesses where local predicate Pi becomes true with prob-

ability � and remains true for duration ‘, is monitored

by a monitor designed for an h�mon; �i-program. Let �

be the recall of the monitor (0 < � < 1). Let the width

function (�app) be

 (�app) = �app� log1��(1��
1

n�1 (1� (1��)�app+‘)) + ‘

Let 0 denote the first derivative of (�app) with respect

to �app. Then the inflection point (phase transition) of

 0 is given by the following:

�app = log1��(�
�1
n�1 � 1)� ‘

Proof Similar to the proof of Lemma 1, the inflection

point of 0 is where the third derivative of with re-

spect to �app equals 0.

Let B = 1��, C = �
1

n�1 . We note that these values

are independent from �app. Denote x = �app + ‘. Since

the derivative of x with respect to �app is x0 = 1, the

derivative (or any order) of with respect to x is the
same as the derivative of with respect to �app. So we

will use x as the variable to make the formulas below

easier to follow.

We obtain the first, second, and third derivatives of

 with respect to x (as well as �app) as below:

 =�app � log1��(1� �
1

n�1 (1� (1� �)�app+‘)) + ‘

=x� logB(1� C(1�Bx))

 0 =1� 1

lnB
� (1� C(1�Bx))0

1� C(1�Bx)

=1� C � Bx

1� C + CBx

 00 =� C � lnBBx(1� C + CBx)�BxC lnBBx

(1� C + CBx)2

=� C � lnBBx(1� C + CBx � CBx)

(1� C + CBx)2

=� C(1� C) lnB � Bx

(1� C + CBx)2

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 21

 000 =� C(1� C) lnB�
lnBBx(1�C+CBx)2�Bx2(1�C+CBx)C lnBBx

(1� C + CBx)4

=� C(1� C) lnB�
lnBBx(1� C + CBx)�
(1� C + CBx �Bx2C)

(1� C + CBx)4

=� C(1� C)(lnB)2Bx � (1� C � CBx)

(1� C + CBx)3

Note that 0 < B = 1 � � < 1. Since 0 < � < 1,

0 < C = �
1

n�1 < 1. As a result:

 000 = 0 , 1� C � CBx = 0

) Bx =
1

C
� 1) x = �app + ‘ = logB(

1

C
� 1)

) �app = logB(
1

C
� 1)� ‘ = log1��(�

�1
n�1 � 1)� ‘

ut

4.3 Point-based Predicate Simulations

Figure 13a shows the precision/recall diagram in point-

based simulation. We observe that the contour map is

denser in the area where �app=�mon are small. This con-

firms the analytical prediction that the precision and

recall of partially synchronous monitors for point-based

predicates are highly sensitive when �app is small and

not sensitive when �app is large.

From Figure 13a, we observe that when n increases,

the precision/recall decreases. To see how this relation

is illustrated, in Figure 13a we choose any point on the

precision contour line (below the identity line where

�mon = �app) of n = 20, P = 0:9, and let that point’s

coordinates be ��mon and ��app. For the same point loca-

tion (�mon = ��mon, �app = ��app) but n = 5, we check

the new precision of the monitor. We observe that the

contour line P = 0:9, n = 20 is between the contour

line P = 0:9, n = 5 and the contour line P = 1:0, n = 5

(the identity line). Therefore, a point on contour line

P = 0:9, n = 20 such as (��mon; �
�
app) belongs to some

contour line with n = 5 and precision P somewhere be-

tween 0:9 and 1:0. In other words, when n is decreased

from 20 to 5, the precision increases from 0:9 to some

value between 0:9 and 1:0. A similar observation also

applies for recall.

When processes’ local predicates are correlated, we

observe similar effects of n on precision/recall as shown

in Figure 13b.

4.4 Interval-based Predicate AWS Experiments

For scenarios in which we consider intervals where local

predicates are true, the results are presented in Figure

14. We observe that, similar to point-based scenario

simulations, for interval-based predicates the precision

and recall of partially synchronous monitors in the ex-

periments are highly sensitive when �app is small and

not sensitive when �app is large. The interval-based pre-

cision/recall increases when n decreases (Figure 14a), ‘

increases (Figure 14b) as expected.

4.5 Interval-based Predicate Simulations

Figure 15 shows interval-based simulation results for

partially synchronous monitors. Similar to experimen-

tal results in Figure 14 , we observe in the simulation

results that the monitor precision/recall is highly sensi-

tive when �app is small. Furthermore, the monitor’s pre-

cision/recall increases when n decreases (Figure 15a),

or ‘ increases (Figure 15b). These simulation results are

compatible with the analytical model and the experi-

mental results for partially synchronous monitors.

5 Effectiveness of Quasi-Synchronous Monitors

with O(1) Timestamps

Asynchronous monitors considered in Section 3 had a

recall of 1 while their precision was less than 1. Thus,

the natural question is: can we have monitors whose

precision is 1 but recall is less than 1? We consider one

such monitor in this section. While this monitor does

not follow the same algorithm as in [8], we find that the

analytical model for the recall of this monitor is very

similar to the precision and recall in Sections 3 and 4.

We also find that the analytical model is validated by

the simulations and experiments.

To provide a brief motivation of quasi-synchronous

monitors, observe that the analysis in Section 4 can be

instantiated for the case where the program assumes

fully synchronized clocks, i.e., where clock skew is 0.

Although achieving fully synchronized clocks is diffi-

cult/impossible in a distributed program, they offer an

inherent advantage. Specifically, for programs in asyn-

chronous or partially synchronous systems, to identify

whether two events could have happened at the same

time, the monitors need to use techniques such as vec-

tor clocks [7,15] that require O(n) space, where n is the

number of processes. Even though there are attempts to

reduce the size [24,1], the worst-case size is still O(n).

By contrast, for programs in fully synchronous systems,

if two events at two different processes have identical

22 Duong Nguyen et al.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 10
0

12
0

14
0

(a)

0

50

100

150

200

250

300

350

0 50 10
0

15
0

20
0

25
0

30
0

(b)

Fig. 13: (Simulation) Precision and Recall Diagram in point-based predicate detection when processes’ local pred-

icates become true independently (Figure 13a) or in a correlated manner (Figure 13b)

0

100

200

300

400

500

600

700

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

(a)

0

20

40

60

80

100

120

140

160

0 20 40 60 80 10
0

12
0

14
0

(b)

Fig. 14: (AWS) Interval-based Partially Synchronous Monitors: PR diagram and its sensitivity to n (Figure 14a)

and ‘ (denoted as ilen in the Figure 14b)

clock values, the monitors can conclude that they hap-

pened at the same time. In other words, O(1) informa-

tion suffices with fully synchronous clocks.

Although fully synchronous physical clocks are hard

to achieve, we can get simulated clocks (e.g., Hybrid

Logical Clocks (HLC)[12]) that achieve the same prop-

erty, i.e. the ability to conclude that events with the

same timestamp value happened at the same time. Our

goal in this section is to evaluate the effectiveness of

monitors that use HLC in monitoring programs in par-

tially synchronous systems. We denote the monitors

that use such simulated clocks as quasi-synchronous

monitors.

For an application that assumes perfectly synchro-

nized clocks, we can implement the monitoring algo-

rithm as follows: if all local predicates are true at the

same time t, then the conjunction of the local predi-

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 23

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

(a)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

(b)

Fig. 15: (Simulation) Interval-based Partially Synchronous Monitors: Precision and Recall Diagram and the impact

of n (Figure 15a) and ‘ (Figure 15b)

cates is true at t. 4 However, if the application assumed

a clock skew of �app > 0 then the above approach will

suffer from false negatives. In other words, the monitor

may miss instances where the conjunctive predicate is

true. This may happen if events on two processes do

not happen exactly at the same time but are within

the clock skew bound (i.e. within �app of each other in

physical time).

With this motivation, we focus on the following

problem: Given a quasi-synchronous monitor that re-

lies on a simulated clock (which guarantees that two

events with equal clock value are concurrent, i.e. the two

events do not depend upon each other) to determine the

causality among events. If that quasi-synchronous mon-

itor is used to monitor an h�app; �i-program (in which

concurrent events could have their physical timestamps

differ by at most �app), what is the rate of false nega-

tives (or the recall) of the monitor? Since this analysis

depends upon how the simulated clock is implemented

(although not on how the monitoring algorithm itself

is implemented given the simulated clock), we describe

one such simulated clock and identify its effectiveness

in the next section.

4 Note that our analysis is based on the property of the
monitor and, hence, we do not consider how the monitoring
algorithm can be evaluated/implemented most efficiently.

5.1 Simulated Clocks: Hybrid Logical Clocks

Hybrid Logical Clocks (HLC) [12] are one such in-

stance of simulated clocks. HLC combines both physical

clocks and logical clocks [13]. In HLC, each event e is

timestamped with hlc:e = hpt:e; l:e; c:ei, where pt:e is

the physical time, l:e is the logical time and c:e is a

counter. HLC ensures that the logical clock is always

close to the physical clock. Specifically, for any event e,

pt:e � l:e � pt:e+�, where � is the clock skew. HLC also

preserves the property of logical clocks, i.e. for events e

and f , e hb f) hlc:e < hlc:f , where hlc:e < hlc:f iff

(l:e < l:f) _ ((l:e = l:f) ^ (c:e < c:f))).

From the above discussion, if (l:e = l:f)^(c:e = c:f)

then this implies that events e and f are concurrent.

Observe that this is exactly the property required of

simulated clocks 5. In other words, HLC can be used to

monitor conjunction of Pi (0 � i < n) by finding HLC

timestamp t, such that Pi is true at t for every process

i.

Problem Statement 3: If we use an HLC-

based monitor for monitoring an h�app; �i-
program, what is the recall of that monitor?

5 Note that this property is not guaranteed even with phys-
ical clocks, because a message send event and the correspond-
ing message receive event can have equal physical timestamps
due to clock skew, so events with equal physical timestamps
may not be concurrent events.

24 Duong Nguyen et al.

5.2 Analytical Model for Detecting Predicates using

Simulated Clocks (HLC)

In essence, a quasi-synchronous monitor that uses a

simulated clock (HLC) detects a snapshot if and only

if there is a point (HLC timestamp) common to the lo-

cal intervals associated with all processes. As a result,

any snapshot discovered by a quasi-synchronous moni-

tor is always an �app-consistent snapshot, for any value

of �app. In other words, the precision of detection using

a simulated clock is always equal to one. So, we focus

only on recall.

Recall is the probability that an �app-consistent

snapshot will be reported by the quasi-synchronous

monitor. The quasi-synchronous monitor will detect a

snapshot if the clock values of all the processes in the

snapshot are identical. Thus, recall is the same as the

probability that a common clock value is present for

every process in an �app-consistent snapshot. So we can

compute recall as the probability that a snapshot has a

common clock value for all processes, given the proba-

bility that it is an �app-snapshot. To compute the prob-

ability that a snapshot contains a common clock value,

we fix the first event in the first interval (first duration

for which the local predicate is true) that happened at

process 0 at time 0. Then we compute the latest start-

ing point among the intervals at processes 0 < i < n

(i.e. we pick the starting point of the interval that is

farthest from the interval at process 0). The intervals

have a common clock value if and only if the distance

of this latest starting point from time 0 is shorter than

the length of interval ‘. With this notion and using the

same analysis as in the proof of Theorem 1, we present

the following theorem.

Theorem 6 When a quasi-synchronous monitor is

used to monitor an h�app; �i-program with n processes

and their local predicates become true with probability �

and remain true for duration ‘, its recall is:

Recall =
�(‘)

�(�app + ‘)

Where

�(x) = (1� (1� �)x)n�1

Note that the formula for Recall can be rewritten

using the formula � from Theorem 3 where Recall =
�(0)

�(�app) , where �(�) = (1� (1� �)�+‘)n�1 and values of

�; n and ‘ are implicitly provided. In other words, the

recall of the quasi-synchronous monitor is essentially

same as a partially synchronous monitor that assumed

perfect clock synchronization (i.e., �mon = 0).

By taking the derivatives of the recall with respect

to �, ‘, and n, we observe that the value of recall is

improved when � or ‘ increases, or n decreases.

Given that we can compute the recall of quasi-

synchronous monitoring, we also want to know when

the majority of true snapshots are found by a quasi-

synchronous monitor. That is, given an application con-

figuration, we want to compute the necessary condition

such that the recall is at least 0.5.

�(‘)

�(�app + ‘)
� 0:5

Solving the above inequality by simple algebraic ma-

nipulation we have the following corollary.

Corollary 3 With a quasi-synchronous monitor, the

recall is at least 0.5 if and only if the following inequal-

ity holds:

‘ � log1��(
21=(n�1) � 1

21=(n�1) � (1� �)�app
)

, �app � log1��(1� 2n�1(1� (1� �)‘)� ‘

5.3 Simulation Results for Detecting Predicates with

Simulated Clocks

E�ect of interval length. Figure 16 shows our re-

sults when a quasi-synchronous monitor is used to

monitor an h�app; �i-program with �app = 10; � =

5; n = 3; � = 0:03; � = 0:01, and the interval length

‘ is varied from 1 to 150. From this figure, we ob-

serve that quasi-synchronous monitors are not effec-

tive when the interval length is small. For example,

when ‘ = 1 (point-based predicate), about 9% of all

�app-consistent snapshots (actual violations) are de-

tected. However, as the interval length increases, the

quasi-synchronous monitor is able to detect more �app-

consistent snapshots. This is expected, because as the

interval length increases, so does the chance that a com-

mon HLC timestamp is found in all the local intervals of

an �app-consistent snapshot. Consequently, the chance

that the �app-consistent snapshot is detected by the

quasi-synchronous monitor increases. When the interval

length is at least 20, the recall of the quasi-synchronous

monitor is greater than 0.5, i.e. the monitor is able to

report at least half of the application’s violations. More-

over, the simulation results (red line) are very close to

the analytical prediction (blue dotted line), which val-

idates our analytical model.

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 25
R

ec
al

l o
f Q

ua
si

-s
yn

ch
ro

no
us

 m
on

ito
r

Fig. 16: (Simulation) Analytical Model vs. Simulation

Results: The impact of interval size on the recall of

a quasi-synchronous monitor. We note that the mea-

surement on the y-axis is also equal to the ratio be-

tween the number of snapshots detected by the quasi-

synchronous monitor and the number of snapshots de-

tected by the partially synchronous monitor that as-

sumes �mon = �app

5.4 Experimental Results for Detecting Predicates

with Simulated Clocks

We experimentally validated the analytical model for

quasi-synchronous monitors (see [19] for source code

and results). We used the same application and experi-

mental setup of Section 3.4. The experiment parameters

(�; �; �; �; ‘) are measured as described in Section 3.6.

In these experiments, the effective interval lengths

cannot be increased arbitrarily because when a mes-

sage is sent or received within an interval, the interval

is split, as required by the algorithm in [8], thus re-

ducing the effective interval length. (Note that this is

not an issue with simulations, as the interval length is

just a parameter.) For this reason, for � = 0:03 (the

same parameter used in simulation), we were able to

run the experiments with effective interval length of ap-

proximately 20 ms. To achieve a higher effective inter-

val length, we have conducted experiments for smaller

values of �. Figure 17 shows that the results obtained

on AWS are compatible with the prediction of the an-

alytical model. The inset in Figure 17a magnifies the

results of our attempts to increase the interval length

by keeping local predicates true for longer than 20 ms.

However, because of the interval split that occurs when-

ever a message is sent or received, the effective inter-

val length we achieved in these experiments was still

approximately 20 ms. Nevertheless, the recall values

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

R
ec

al
l o

f Q
ua

si
-s

yn
ch

ro
no

us
 M

on
ito

r

E

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200

R
ec

al
l o

f Q
ua

si
-s

yn
ch

ro
no

us
 M

on
ito

r

E

(b)

Fig. 17: (AWS) Analytical Model vs. AWS-based Ex-

perimental Results: The impact of interval size on the
recall of a quasi-synchronous monitor. The value of �

in Figures 17a and 17b is 0.03 and 0.001, respectively.

in these cases were close to the analytical prediction.

We also observe that (as in Section 5.3 and Figure 16)

when the interval length increases, the recall of quasi-

synchronous monitors improves.

5.5 Detecting Partial Conjunctive Predicates With

Quasi-Synchronous Monitors

In the earlier discussion of Section 5, we considered the

case where the predicate being monitored is a conjunc-

tive predicate involving all n processes. Now, we con-

sider the case where the predicate being detected in-

volves only a subset of p processes, p � n. Instances of

using such partial conjunctive predicates include sce-

26 Duong Nguyen et al.

p Fraction of snapshots detected
by quasi-synchronous monitor

2 0.79
3 0.68
4 0.60
5 0.42

Table 3: Partial conjunctive predicate detection by

quasi-synchronous monitor in a partially synchronous

program with 5 processes, � = 0:01; � = 10; � = 5; � =

0:03, and p is the number of processes involved in the

partial conjunctive predicate.

narios where the monitor needs to check if a token is

possessed by more than one process at the same time.

We analyze the effectiveness of quasi-synchronous

monitors in detecting such predicates. We expect quasi-

synchronous monitors to perform better when the pred-

icate involves a smaller number of processes. We exam-

ine the effectiveness of quasi-synchronous monitors by

simulations where an h�app; �i-program with n processes

is monitored simultaneously by a quasi-synchronous

monitor and a partially synchronous monitor to de-

tect (snapshot) instances where a partial predicate in-

volving p (p � n) processes is true. The simulation re-

sults are presented in Table 3. When p = n the quasi-

synchronous monitor detected about half of the num-

ber of snapshots (where the global predicate is true)

that were identified by the partially synchronous mon-

itor. As p decreased, the number of snapshots (where

the partial predicate is satisfied) detected by the quasi-

synchronous monitor started to approach the number of

snapshots detected by the partially synchronous moni-

tor.

5.6 Quasi-Synchronous vs. Partially Synchronous

Monitoring

The formula of recall in Theorem 6 can also be in-

terpreted as the ratio between the detection capacity

of a quasi-synchronous monitor and the detection ca-

pacity of a partially synchronous monitor that assumes

�mon = �app. This ratio is also present in Figure 16.

Figure 16 and the results in Section 5.5 suggest that

quasi-synchronous monitors are able to achieve half of

(or even close to) the recall of partially synchronous

monitors in some scenarios where the interval length

is large or the predicate of interest involves a small

subset of processes. These results are notable when

we know that partially synchronous monitors require

vector clocks (size O(n) in worst cases) whereas quasi-

synchronous monitors use scalar clocks (size O(1)). De-

ploying a quasi-synchronous monitor is expected to be

simpler than a partially synchronous monitor. However,

we can observe that even with such scalar clocks, quasi-

synchronous monitors are able to provide high detection

coverage. By utilizing the analytical model, one can es-

timate the recall of quasi-synchronous monitors and de-

termine whether such a monitor should be deployed.

6 Related Work

In distributed programs, processes execute with lim-

ited information about other processes. This further im-

plies that the program developers/operators also have

limited visibility and information about the program.

Monitoring/tracing and predicate detection tools are

important components of large-scale distributed pro-

grams as they provide valuable information to the de-

velopers/operators about their programs under execu-

tion.

Monitoring large-scale web-services and cloud

computing systems. Dapper [21] is Google’s produc-

tion distributed programs tracing infrastructure. The

primary application for Dapper is performance mon-

itoring to identify the sources of tail latency at scale.

Making the program scalable and reducing performance

overhead was facilitated by the use of adaptive sam-

pling. The Dapper team found that a sample of just

one out of thousands of requests provides sufficient in-

formation for many common uses of the tracing data.

Facebook’s Mystery Machine [3] has goals similar to

Google’s Dapper. Both use similar methods, however,

Mystery Machine tries to accomplish the task relying on

less instrumentation than Google Dapper. The novelty

of Mystery Machine is that it tries to infer the compo-

nent call graph implicitly via mining the logs, whereas

Google Dapper instruments each call in a meticulous

manner and explicitly obtains the entire call graph.

Predicate detection with vector clocks. Lot

of work has been done on predicate detection (e.g.,

Marzullo & Neiger [4] WDAG 1991, Verissimo [23]

1993), using vector clock (VC) timestamped events

sorted via happened-before (hb) relationship. The work

in [4] not only defined Definitely and Possibly detection

modalities, but also provided algorithms for predicate

detection using VC for these modalities. The authors

in [4] also showed that information about clock syn-

chronization (i.e., �) can be translated into additional

happened-before constraints and fed into the predicate

detection algorithm to take into account clock syn-

chronization behavior and avoiding false positives in

VC-only-based predicate detection. However, they did

not investigate the rates of false positives with respect

to mismatch in clock synchronization assumptions and

event occurrence rates.

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 27

Predicate detection with physical clocks and

NTP synchronization. For programs in partially

synchronized systems, Stoller [22] investigated global

predicate detection using NTP clocks, showing that us-

ing NTP synchronized physical clocks provide some

benefits over using VC in terms of the complexity

of predicate detection. The worst-case complexity for

predicate detection using hb captured by VC is
(En),

where E is the maximum number of events executed

by each process, and n is the number of processes.

With some assumptions on the inter-event spacing be-

ing larger than clock synchronization uncertainty, it is

possible to have worst-case time complexity for physical

clock based predicate detection to be O(3nEn2) — lin-

ear in E. Our work is similar to [22], in that we too mon-

itor programs in partially synchronous systems. Fur-

ther, we use Hybrid Vector Clock and Hybrid Logical

Clock, similar to Dapper [21] and Mystery Machine [3].

The main goal of our work, however, is different from

that of these previous efforts. In [22], the objective is to

improve the performance of existing predicate detection

algorithms by utilizing the information on clock syn-

chronization to reduce complexity and overhead. The

goal in [3,21] is also performance: they aim to reduce

overhead and achieve scalable monitoring by using dif-

ferent sampling or modeling methods. By contrast, our

goal is to study the effect of clock synchronization (and

other factors as well) on the accuracy (precision, recall)

of the monitors, independent of the choice of predicate

detection algorithm used by the monitors.

Predicate detection in programs in partially

synchronous systems. The duality of the literature

on monitoring predicates forces one to make a binary

choice beforehand: To go with either VC-based or phys-

ical clock-based timestamping and detection [12,6]. Hy-

brid Vector Clocks (HVC) obviate this duality. While

VC is of �(N) [2], thanks to loosely-synchronized clock

assumption, it is possible with HVC to keep the sizes

of HVC small, to be a couple of entries at each process

[24]. HVC captures the communications in the times-

tamps and provides the best of VC and physical clock

worlds.

All existing work discussed in this section rely on

specific clock synchronization assumptions when mon-

itoring or while performing predicate detection. They

do not consider scenarios where the clock synchroniza-

tion uncertainty of the application is unknown or where

there are mismatches in the clock synchronization as-

sumptions made by the application and the monitoring

algorithm. In this paper, we focused on such scenar-

ios and analyzed the effect of mismatches in the clock

synchronization assumptions on the effectiveness (pre-

cision/recall) of the monitor.

7 Summary of the Main Results and Their

Implications

In this section, we briefly provide an overview of our

results. We also identify the implications of this work

in monitoring distributed programs.

Precision, recall, and sensitivity of asynchronous

monitors. We presented an analytical model that

characterizes the precision of a monitor when the appli-

cation assumes a specific clock skew �app but the mon-

itor assumes that clock skew can grow unbounded. In

this scenario, the monitor can only suffer from false pos-

itives: The monitor has perfect recall (i.e., there are no

false negatives) but suffers from a lack of precision.

Our analytical results identified two parameters �p1

and �p2 that help classify the precision of an asyn-

chronous monitor into three regions based on the value

of the application’s clock synchronization assumption

�app. The monitor’s precision will be low in the first re-

gion, i.e., if 0 < �app < �p1 . In the third region which

corresponds to �p2
< �app < 1, the precision is high.

Furthermore, in these two regions the monitor’s preci-

sion is not sensitive, i.e. changes in �app do not signif-

icantly affect the precision. By contrast, in the second

region the range of �p1
� �app � �p2

is mapped to a

broad range of precision, and a small change in �app
has a substantial impact on the monitor’s precision. If

we know that �app is in the first or in the third region

(although we do not know the exact value of �app), we

can estimate the precision of the asynchronous moni-

tor well. On the other hand, if we know that �app is

in the second region but do not know its exact value,

the precision of the monitor is highly uncertain. An-

other interesting observation in this context was that

the relative width of the high sensitivity range
�p2
��p1

�p1

approaches 0 when the number of processes n!1.

We also examined the impact of other factors such

as the number of processes n, communication frequency

�, communication delay �, and the length ‘ and rate

� of local predicate truthification. We find that asyn-

chronous monitors will deliver a lower precision when �

decreases, or n increases, or ‘ decreases. On the other

hand, the effect of � and � on the precision of the mon-

itor is neutral or small.

Precision, recall, and sensitivity of partially syn-

chronous monitors. We also considered the case of

partially synchronous monitors, where the monitor as-

sumes that the clocks are synchronized to be within

�mon, which is different from �app since the precise

clock synchronization assumption of the application

is unknown to the monitor. We found that for small

�app=�mon there is a trade-off between precision, recall,

28 Duong Nguyen et al.

and sensitivity. If the monitor tries to achieve very high

precision and recall (say at 95%) at the same time,

the precision/recall is also highly sensitive to changes

in �app. For large �app=�mon, the trade-off dilutes, i.e.

the monitor is able to provide high precision and recall

while being relatively insensitive to the uncertainty of

�app.

A partially synchronous monitor has similar char-

acteristics as the asynchronous counterpart in terms of

the impact of system parameters n; �; �; ‘; �.

We validated the analytical results for asynchronous

and partially synchronous monitors with simulations

and experiments on Amazon Web Services (AWS) plat-

form. Our simulation and experimental results agree

with the analytical prediction.

Relating precision and the mismatch in clock

synchronization assumptions. To further illustrate

the implication of the previous results for partially syn-

chronous monitors, we analyze concrete examples. Ta-

ble 4 contains examples of (�app; �mon) pairs for different

precision requirements. In these examples, there are 5

application processes where the local predicate becomes

true roughly every 20 ms and remains true for approxi-

mately 1ms. If the application relied on the assumption

that clocks are synchronized to be within 20 ms then

the precision will be at least 50% if the monitor assumes

that the clock synchronization is within 20� 28:66ms.

Thus, if the mismatch between the assumption made by

application and monitor is within 43.3% margin then at

least half of the errors identified by the monitor are ac-

tual errors.

Furthermore, if the monitor relies on the assumption

that clocks can differ by at most 49.34 ms then preci-
sion is 25%. In other words, if the mismatch between

application and monitor assumptions is about 146.7%

then at least a quarter of the errors identified by the

monitor are actual errors.

For the same configurations, if the application re-

lied on 10 ms clock synchronization assumption, in

order to achieve the precision of 50% (or 25%), the

monitor assumption must be within 10 � 12:99ms (or

10� 17:24ms), i.e. within 29.9% (or 72.4%) margin.

The reduced relative margin as the application as-

sumes a smaller clock synchronization illustrates the

higher sensitivity of precision (as well as recall) when

�app is small.

Next, we also consider the case where the applica-

tion assumption is not precisely known. As an illustra-

tion, consider the same application in Table 4. Suppose

the monitor knows that the application is assuming that

clocks are synchronized to be within 15 – 25 ms. How-

ever, the precise assumption is not known. If the mon-

itor assumes that clocks are synchronized to be within

�app
Precision = 50% Precision = 25%
�mon margin �mon margin

20 ms 28.66 ms 43.3% 49.34 ms 146.7%
10 ms 12.99 ms 29.9% 17.24 ms 72.4%

Table 4: Illustration for the mismatch margin between

�mon and �app at different precision requirements. The

number of processes (n) is 5, frequency of local predi-

cate to become true (�) is every 20 ms, each local pred-

icate remains true (‘) for 1 ms, margin =
j�mon��appj

�app
.

The higher precision sensitivity as �app small is illus-

trated by the reduced margin value.

15ms, there is a potential false negative rate of 67%.

On the other hand, if the monitor assumes that clocks

are synchronized to be within 25ms, there is a potential

false positive rate of 67%. Furthermore, if the monitor

assumes that clocks are synchronized to be within 20ms

then there is a possibility of 49% false positives or and

36% false negatives. Depending upon the specific appli-

cation needs, the monitor can choose the right trade-off

for the application.

Precision, recall, and sensitivity of quasi-

synchronous monitors. Quasi-synchronous monitors

are partially synchronous monitors with the additional

condition that if two events have the same physical

clock value then they could have possibly happened at

the same time. Adopting a quasi-synchronous model

allows us to obviate the need for using O(n) sized vec-

tor clocks [7,15] and instead use inexpensive O(1) sized

clocks (e.g. hybrid logical clocks [12]) for predicate de-

tection/monitoring. When the monitors designed for

programs in quasi-synchronous systems (�mon = 0)

are used for programs in partially synchronous systems

(�app is finite), they have perfect precision but suffer

from false negatives (they miss some valid instances of

predicate satisfaction).

We presented an analytical model as well as sim-

ulation/experimental results to characterize the effec-

tiveness of such quasi-synchronous monitors. The effec-

tiveness of quasi-synchronous monitors depends on sev-

eral factors. For example, their recall is improved when

� increases or ‘ increases or n decreases. We also ob-

served that when monitoring partial conjunctive pred-

icates (i.e. predicates involving a subset of processes),

quasi-synchronous monitors achieve better recall when

the predicates involve a smaller number of processes.

Finally, for a convenient overall view of the paper,

Table 5 summarizes the main contents discussed in the

paper and their corresponding sections.

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 29

Table 5: Summary of the results in the paper

Interval-based Point-based

Asynchronous Monitors
(�mon = 1, �app < 1).

Section 3

Analytical
Precision Section 3.3 Section 3.3

Recall = 1:0 = 1:0

Sensitivity Section 3.3 Section 3.3

Simulation

Precision Section 3.5.3 Section 3.5.1

Recall = 1:0 = 1:0

Sensitivity Section 3.5.3 Section 3.5.1

Impact of other factors,
e.g �; �; n; ‘; �

Section 3.5.3 Section 3.5.1

Experiments

Precision Section 3.6 See table note 1

Recall = 1:0 = 1:0

Sensitivity Section 3.6 See table note 1

Impact of �; �; n; ‘; � Section 3.6 See table note 1

Partially Synchronous Moni-
tors (�mon < 1, �app < 1).

Section 4

Analytical
Precision Section 4.2 Section 4.2

Recall Section 4.2 Section 4.2

Sensitivity Section 4.2 Section 4.2

Simulation

Precision Section 4.5 Section 4.3

Recall Section 4.5 Section 4.3

Sensitivity Section 4.5 Section 4.3

Impact of n; ‘ Section 4.5 Section 4.3

Experiments

Precision Section 4.4 See table note 1

Recall Section 4.4 See table note 1

Sensitivity Section 4.4 See table note 1

Impact of n; ‘ Section 4.4 See table note 1

Quasi Synchronous Monitors
(Using HLC).

Section 5

Analytical
Precision = 1:0 = 1:0

Recall Section 5.2 Section 5.2

Sensitivity Section 5.2 Section 5.2

Simulation
Precision = 1:0 = 1:0

Recall Section 5.3 Section 5.3

Sensitivity Section 5.3 Section 5.3

Experiments
Precision = 1:0 = 1:0

Recall Section 5.4 Section 5.4

Sensitivity Section 5.4 Section 5.4

1 Table note 1: Since the predicates are inherently true for some duration of time in AWS experiment, experiments
for point-based are not feasible. However, in the experiment, we also make interval length as small as possible
to approximate point-based scenarios. The results are in Section 3.6. We also note that the AWS experiment
results are similar to the simulation results in Section 3.5.1

8 Conclusion

Due to their inherent nature of concurrency and lack

of total order among events, designing distributed pro-

grams is error-prone. For this reason, in addition to

static analysis techniques, it is desirable to monitor

them so that one can report violations that may oc-

cur due to race conditions even if those race conditions

resolved favorably in the given run. For this reason,

monitoring them at runtime is crucial.

An issue that complicates monitoring is that dis-

tributed programs are often designed with assumptions

related to clock synchronization among relevant nodes.

These assumptions allow one to design efficient pro-

grams by reducing the need for explicit communica-

tion. If these assumptions are not precisely known to

the monitor, it would result in the monitor report-

ing false positives (phantom errors) or false negatives

(miss errors). Especially when applications are designed

with implicit assumptions or where the exact assump-

tions are unknown to the monitor, these errors are in-

evitable. This paper focuses on quantitative analysis of

these errors based on the potential mismatch between

assumptions made by the application and the assump-

tions made by the monitor.

We considered three types of monitors (1) asyn-

chronous monitors, (2) partially synchronous monitors

and (3) quasi-synchronous monitors. The first category

30 Duong Nguyen et al.

of monitors provides perfect recall (no false negatives)

but suffers from imperfect precision (existence of false

positives). The third category of monitors provides per-

fect precision and imperfect recall. And, the second cat-

egory allows one to have a trade-off between different

precision and recall. Specifically, by changing the as-

sumptions made by the monitor we can increase preci-

sion at the cost of recall and vice versa.

The monitors considered in this paper focused on

detecting satisfaction of a global predicate P which is

of the form
V
Pi, where Pi is a local predicate at pro-

cess i. If P denotes violation of a safety requirement in

a safety-critical system, one would generally require the

monitor to have a perfect recall (no false negatives) but

would be willing to tolerate imperfect precision. Asyn-

chronous monitors or partially synchronous monitors

with a high value of clock skew assumption would be

suitable in this context. The work from this paper will

allow users to identify the expected level of false posi-

tives in this context so that the designer can select the

right monitor based on the uncertainties in the clock

skew assumptions made by the application.

On the other hand, if P denotes a relatively sta-

ble predicate related to application performance then

one would generally require the monitor to have per-

fect precision (no false positives) and imperfect recall.

For example, if P denotes unbalanced workloads on dif-

ferent machines then it is expected that if the mismatch

occurs, it will be present for a certain duration. In that

case, having false negatives would be acceptable, as the

mismatch in the load will be eventually detected and

reported. Moreover, in the event that it resolves on its

own, that would be acceptable as well. However, having

(significant) false positives would mean that the system

is taking unnecessary actions to correct the problem

that may not actually exist. Based on the acceptable

level of false negatives, the designer can select either

quasi-synchronous monitors or partially synchronous

monitors that assume a small clock skew.

Our analysis also identifies the highly sensitive re-

gion for the monitor. Here, a small change in the appli-

cation assumption can cause substantial change in pre-

cision and/or recall. In terms of using the monitor, if

possible, this region should be avoided. In other words,

if the designer finds that the monitor is in the highly

sensitive region then the designer needs to take more ef-

forts to ensure that application assumptions are known

precisely. On the other hand, in other (not highly sen-

sitive) regions, uncertainty in the application assump-

tions is not as harmful. In the context of asynchronous

monitors, we find that this region of high sensitivity is

relatively small when the number of processes is large.

There are several future extensions of these results.

One extension is to evaluate the error probability for

more complex predicates in terms of conjunctive predi-

cate detection. Here, if the predicate was �1 _ �2 there

is a possibility that even if �1 is detected incorrectly, �2

may still be true, causing detection of �1 _ �2. Apart

from conjunctive predicates, it is an open question if

similar error probabilities hold for distributed runtime

verification for linear temporal logic (LTL) such as in

[17]. Another future extension is to consider the case for

specific instances of monitors which have potential in-

built errors introduced for the sake of efficiency during

monitoring. We are also interested in developing ana-

lytical models for the scenarios where the truthification

of local predicates is correlated.

Acknowledgements This work is supported in part by NSF
CNS-1329807, NSF CNS-1318678, NSF XPS-1533870, and
NSF XPS-1533802.

Conflict of interest

The authors declare that they have no conflict of inter-

est.

References

1. Almeida, J.B., Almeida, P.S., Baquero, C.: Bounded ver-
sion vectors. In: R. Guerraoui (ed.) Distributed Comput-
ing, 18th International Conference, DISC 2004, Amster-
dam, The Netherlands, October 4-7, 2004, Proceedings,
Lecture Notes in Computer Science, vol. 3274, pp. 102–
116. Springer (2004)

2. Charron-Bost, B.: Concerning the size of logical clocks
in distributed systems. Inf. Process. Lett. 39(1), 11–16
(1991)

3. Chow, M., Meisner, D., Flinn, J., Peek, D., Wenisch, T.:
The mystery machine: End-to-end performance analysis
of large-scale internet services. In: 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pp. 217–231 (2014)

4. Cooper, R., Marzullo, K.: Consistent detection of global
predicates. In: Proceedings of the ACM/ONR Workshop
on Parallel and Distributed Debugging, Santa Cruz, Cal-
ifornia, USA, May 20-21, 1991, pp. 167–174 (1991)

5. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost,
C., Furman, J.J., Ghemawat, S., Gubarev, A., Heiser,
C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E.,
Li, H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D.,
Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szymaniak, M.,
Taylor, C., Wang, R., Woodford, D.: Spanner: Google’s
globally-distributed database. In: Proceedings of the 10th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pp. 251–264. USENIX Associ-
ation, Berkeley, CA, USA (2012). URL http://dl.acm.

org/citation.cfm?id=2387880.2387905

6. Demirbas, M., Kulkarni, S.: Beyond truetime: Using aug-
mentedtime for improving google spanner. LADIS ’13:

http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dl.acm.org/citation.cfm?id=2387880.2387905

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Programs 31

7th Workshop on Large-Scale Distributed Systems and
Middleware (2013)

7. Fidge, J.: Timestamps in message-passing systems that
preserve the partial ordering. Proceedings of the 11th
Australian Computer Science Conference 10(1), 56–66
(1988)

8. Garg, V.K., Chase, C.: Distributed algorithms for detect-
ing conjunctive predicates. International Conference on
Distributed Computing Systems pp. 423–430 (1995)

9. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan,
H.: An application-specific protocol architecture for wire-
less microsensor networks. IEEE Transactions on Wire-
less Communications 1(4), 660–670 (2002)

10. Kandris, D., Tsioumas, P., Tzes, A., Nikolakopoulos, G.,
Vergados, D.D.: Power conservation through energy effi-
cient routing in wireless sensor networks. Sensors 9(9),
7320–7342 (2009)

11. Kulkarni, S.S., Arumugam, M.: Infuse: A TDMA based
data dissemination protocol for sensor networks. IJDSN
2(1), 55–78 (2006)

12. Kulkarni, S.S., Demirbas, M., Madappa, D., Avva, B.,
Leone, M.: Logical physical clocks. In: 18th Interna-
tional Conference on Principles of Distributed Systems
OPODIS 2014, vol. 8878, pp. 17–32 (2014)

13. Lamport, L.: Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM 21(7),
558–565 (1978)

14. Lu, H., Veeraraghavan, K., Ajoux, P., Hunt, J., Song,
Y.J., Tobagus, W., Kumar, S., Lloyd, W.: Existential
consistency: measuring and understanding consistency at
facebook. In: Proceedings of the 25th Symposium on Op-
erating Systems Principles, pp. 295–310. ACM (2015)

15. Mattern, F.: Virtual time and global states of distributed
systems. Parallel and Distributed Algorithms pp. 215–
226 (1989)

16. Mills, D.: A brief history of ntp time: Memoirs of an in-
ternet timekeeper. ACM SIGCOMM Computer Commu-
nication Review 33(2), 9–21 (2003)

17. Mostafa, M., Bonakdarpour, B.: Decentralized runtime
verification of LTL specifications in distributed systems.
In: 2015 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2015, Hyderabad, India,
May 25-29, 2015, pp. 494–503 (2015). DOI 10.1109/
IPDPS.2015.95. URL https://doi.org/10.1109/IPDPS.

2015.95
18. Nguyen, D.: Supplementary materials (source code and

raw experimental results) for the paper Precision, Recall,
and Sensitivity of Monitoring Partially Synchronous Dis-
tributed Programs (2020). DOI 10.5281/zenodo.3778190.
URL https://doi.org/10.5281/zenodo.3778190

19. Nguyen, D.: Quasi-asynchronous Monitors: Supplemen-
tary materials (source code and raw experimental re-
sults) for the paper Precision, Recall, and Sensitivity of
Monitoring Partially Synchronous Distributed Programs
(2021). DOI 10.5281/zenodo.4557924. URL https:

//doi.org/10.5281/zenodo.4557924
20. Nguyen, D.N., Charapko, A., Kulkarni, S.S., Demirbas,

M.: Using weaker consistency models with monitoring
and recovery for improving performance of key-value
stores. J. Braz. Comp. Soc. 25(1), 10:1–10:25 (2019)

21. Sigelman, B., Barroso, L., Burrows, M., Stephenson, P.,
Plakal, M., Beaver, D., Jaspan, S., Shanbhag, C.: Dapper,
a large-scale distributed systems tracing infrastructure.
Tech. rep., Google, Inc. (2010). URL http://research.

google.com/archive/papers/dapper-2010-1.pdf
22. Stoller, S.: Detecting global predicates in distributed sys-

tems with clocks. Distributed Computing 13(2), 85–98
(2000)

23. Verissimo, P.: Real-time communication. Distributed
Systems 2 (1993)

24. Yingchareonthawornchai, S., Kulkarni, S.S., Demirbas,
M.: Analysis of bounds on hybrid vector clocks. In:
OPODIS 2015, December 14-17, 2015, Rennes, France,
pp. 34:1–34:17 (2015). DOI 10.4230/LIPIcs.OPODIS.
2015.34. URL http://dx.doi.org/10.4230/LIPIcs.

OPODIS.2015.34

https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.5281/zenodo.3778190
https://doi.org/10.5281/zenodo.4557924
https://doi.org/10.5281/zenodo.4557924
http://research.google.com/archive/papers/dapper-2010-1.pdf
http://research.google.com/archive/papers/dapper-2010-1.pdf
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.34
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.34

