
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Prabhu, A. P.; Singh, N. K.; Käpylä, M. J.; Lagg, A.
Inferring magnetic helicity spectrum in spherical domains

Published in:
Astronomy and Astrophysics

DOI:
10.1051/0004-6361/202141101

Published: 01/10/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Prabhu, A. P., Singh, N. K., Käpylä, M. J., & Lagg, A. (2021). Inferring magnetic helicity spectrum in spherical
domains: Method and example applications. Astronomy and Astrophysics, 654, Article 3.
https://doi.org/10.1051/0004-6361/202141101

https://doi.org/10.1051/0004-6361/202141101
https://doi.org/10.1051/0004-6361/202141101


A&A 654, A3 (2021)
https://doi.org/10.1051/0004-6361/202141101
c© A. P. Prabhu et al. 2021

Astronomy
&Astrophysics

Inferring magnetic helicity spectrum in spherical domains: Method
and example applications

A. P. Prabhu1, N. K. Singh2, M. J. Käpylä3,1,4, and A. Lagg1,3

1 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
e-mail: prabhu@mps.mpg.de

2 Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkind, Pune 411007, India
3 Department of Computer Science, Aalto University, PO Box 15400, 00076 Aalto, Finland
4 NORDITA, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 11419 Stockholm, Sweden

Received 15 April 2021 / Accepted 8 July 2021

ABSTRACT

Context. Obtaining observational constraints on the role of turbulent effects for the solar dynamo is a difficult, yet crucial, task. With-
out such knowledge, the full picture of the operation mechanism of the solar dynamo cannot be formed.
Aims. The magnetic helicity spectrum provides important information about the α effect. Here we demonstrate a formalism in spher-
ical geometry to infer magnetic helicity spectra directly from observations of the magnetic field, taking into account the sign change
of magnetic helicity across the Sun’s equator.
Methods. Using an angular correlation function of the magnetic field, we develop a method to infer spectra for magnetic energy and
helicity. The retrieval of the latter relies on a fundamental definition of helicity in terms of linkage of magnetic flux. We apply the
two-scale approach, previously used in Cartesian geometry, to spherical geometry for systems where a sign reversal of helicity is
expected across the equator on both small and large scales.
Results. We test the method by applying it to an analytical model of a fully helical field, and to magneto-hydrodynamic simulations
of a turbulent dynamo. The helicity spectra computed from the vector potential available in the models are in excellent agreement
with the spectra computed solely from the magnetic field using our method. In a next test, we use our method to obtain the helicity
spectrum from a synoptic magnetic field map corresponding to a Carrington rotation. We observe clear signs of a bihelical spectrum
of magnetic helicity, which is in complete accordance to the previously reported spectra in literature from the same map.
Conclusions. Our formalism makes it possible to infer magnetic helicity in spherical geometry, without the necessity of comput-
ing the magnetic vector potential. It has many applications in solar and stellar observations, but can also be used to analyse global
magnetoconvection models of stars and to compare them with observations.

Key words. Sun: magnetic fields – magnetohydrodynamics (MHD) – dynamo – turbulence

1. Introduction

The solenoidal nature of magnetic fields enables us to examine
them in terms of the topology of closed curves (Berger & Field
1984). Helicity integrals in general, and magnetic helicity in
particular, (see Eq. (1)) have been demonstrated to be associ-
ated with the topological properties of field lines (Moffatt 1969,
1978). Magnetic helicity, which characterises the linkage of field
lines, is a topological invariant. In ideal magnetohydrodynam-
ics (MHD) magnetic helicity is conserved (Woltjer 1958), and is
nearly conserved in the limit of large conductivity (Berger 1984).
Thus, magnetic helicity imposes a crucial constraint on the evo-
lution of magnetic fields.

In the case of the Sun, magnetic helicity is often invoked
to investigate many facets of the solar magnetic field. To
name a few examples, it has been suggested as a possible
proxy to quantify the eruptivity of solar active regions (ARs;
Pariat et al. 2017; Thalmann et al. 2019), or as a plausible pre-
dictor of the solar cycle (Hawkes & Berger 2018). The influ-
ence of magnetic helicity on coronal emission, to explain the
observed enhancement in X-ray luminosity with increasing stel-
lar rotation, has also been explored (Warnecke & Peter 2019).
Arguably, magnetic helicity plays the most crucial part in
dynamo theory, which is often called upon to explain the gener-
ation and maintenance of the solar magnetic field (Moffatt 1978;

Brandenburg & Subramanian 2005; Brandenburg 2018; Rincon
2019). Specifically the α effect, occurring in systems with strat-
ification and rotation, is expected to be an important inductive
effect in the solar dynamo. Under isotropic and homogeneous
conditions α is known to be related to the kinetic helicity of
the flow and is a measure of the helical nature of turbulence
within the Sun’s convection zone. It has been shown that the α
effect generates bihelical magnetic fields, that is, magnetic helic-
ity at small and large scales of opposite signs, hence resulting in
no net production of magnetic helicity (Seehafer 1996; Ji 1999;
Yousef & Brandenburg 2003). For the Sun, another sign change
of magnetic helicity is expected across the equator, due to the
combined action of stratification and the Coriolis force break-
ing reflectional symmetry. Thus we have a hemispheric sign rule
(HSR, see Singh et al. 2018, for details). The HSR implies a pos-
itive (negative) sign of magnetic helicity at large (small) scales in
the northern hemisphere and vice versa in southern hemisphere.
Observational evidence for such a sign rule will be an indirect
confirmation of the role played by the α effect in generating
large-scale solar magnetic fields.

Magnetic helicity is defined in terms of A, the magnetic vec-
tor potential and the magnetic field, B, as

HM =

∫
A · (∇ × A) d3x =

∫
A · B d3x. (1)
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The first hurdle in inferring magnetic helicity observationally
arises due to the fact that A in Eq. (1) is not an observed
quantity and secondly, the information about B is usually not
known over the entire volume. Given these restrictions, prior
efforts to study the magnetic helicity of ARs used current helic-
ity HC = 〈J · B〉V as a proxy, where J is the current density
and the angle brackets denote volume averages. Addition-
ally the simplifying assumption of a force-free magnetic field
is made (Seehafer 1990; Pevtsov et al. 1995; Bao et al. 1999;
Zhang et al. 2010). If in Eq. (1) B has a non-zero normal
component at the boundary of the integration volume, then the
volume integral cannot be determined in a gauge-invariant man-
ner. This is true for most astrophysical systems including the
Sun. For such situations the concept of relative magnetic helicity
can prove useful (Berger & Field 1984; Finn & Antonsen 1985):
in this approach, helicity is defined with respect to a reference
field, usually a current-free one. Relative magnetic helicity is
often used to analyse solar observations, as is demonstrated in
a recent study by Thalmann et al. (2019). Using nonlinear force-
free field extrapolations as input, these approaches involve an
explicit computation of A making suitable gauge choices. For
a review of these and other related methods see Valori et al.
(2016).

Using a toroidal-poloidal decomposition (Chandrasekhar
1961) of vector fields in spherical geometry, Pipin et al. (2019)
compute the magnetic helicity from solar synoptic maps by
reconstructing A, again making a particular gauge choice. In
their analysis they separate the large and small scales relying on
azimuthal averages, wherein the small-scale magnetic helicity
density includes contributions from all scales except the axisym-
metric mean field, including the large-scale non-axisymmetric
contributions. Lund et al. (2020) also resort to such a decompo-
sition, applying it on stellar data retrieved via Zeeman-Doppler
imaging (ZDI, Semel 1989), although they report large-scale
average magnetic helicity density on stellar surfaces. However,
in these methods, the total value of magnetic helicity density
does not provide us the distribution of helicity, specifically its
sign, over scales.

To study the dynamo problem, for which the segregation
of helicity over spatial scales is expected, methods focused on
inferring spectral distribution of magnetic helicity from observa-
tions are better suited. Zhang et al. (2014, 2016) inferred such
a spectrum of magnetic helicity from local patches, invoking
the two-point correlation tensor for magnetic field in Carte-
sian geometry. Brandenburg et al. (2017) extended this approach
to inhomogeneous systems by using the two-scale analysis of
Roberts & Soward (1975), applicable to cases where magnetic
helicity varies slowly, on a scale somewhat smaller than the scale
of the system. It is important to note that these methods avoid any
issues with a gauge choice by transforming into Fourier space
with the implicit assumption of periodicity. Recently Prior et al.
(2020) demonstrated a wavelet based multi-resolution analysis
to infer magnetic helicity which is applicable for inhomogeneous
systems with non-periodic boundaries. They also avoid comput-
ing the vector potential and thus avoid making a gauge choice
by relying on a topologically meaningful definition of helicity
in terms of B. The investigation of the helicity distribution on
global scales, i.e., over the whole surface of the Sun or other
stars, requires the use of a spherical geometry. To investigate the
helicity distribution over scales on the surface of the Sun or other
stars, the observations are available in spherical geometry. In
this context Brandenburg et al. (2017) regarded their Cartesian
approach as preliminary and highlighted the need to do an anal-
ogous analysis in spherical harmonics. Prior et al. (2020) also

assume a Cartesian volume for their multi-resolution wavelet
decomposition.

In this paper we rely on a similar topological definition of
helicity in terms of linking of B, and adapt it to spherical geom-
etry by using spherical harmonics. Here we extend the Carte-
sian approach of Brandenburg et al. (2017) and do a treatment
of scales based on spherical harmonic degree in contrast to the
approach of Pipin et al. (2019) which is based on azimuthal aver-
aging. Our method is suited for solar and stellar observations,
where photospheric magnetic field observations are available in
spherical geometry via spectropolarimetric inversions or ZDI.
Particularly for the Sun, it also enables access to higher cadence
full disk magnetogram data. It is also readily applicable to solar
and stellar dynamo models, where the induction equation is typ-
ically expressed in B and numerically integrated, to compute
magnetic helicity from such models and compare them with
observations, where A is not available.

This paper is organised as follows: In Sect. 2 we describe
our present method for spherical geometry in the context of the
existing Cartesian framework. In Sect. 3, we test this formalism
against an analytical expression of a magnetic field on a spherical
shell. Moreover, we also apply it to a three-dimensional turbulent
dynamo simulation in spherical geometry. Finally we also apply
a simple modification of our approach to synoptic maps of the
Sun and compare it with previously obtained results. We discuss
the scope of applicability of our formalism to observations in
Sect. 4.

2. The method and formalism

2.1. Definitions

We begin by defining the spectra for magnetic energy and helic-
ity on a spherical shell. In such situations it is convenient to use
spherical harmonics, Ym

` (θ, φ), where ` represents the degree and
m the azimuthal order. Thus we can define the spectra of mag-
netic energy as,

2EM(`) =
∑̀

m=−`

b`mi b`m∗i , (2)

where b`mi =
∫

Bi(θ, φ) Ym
` (θ, φ) dΩ is the expansion coefficient

of the ith component of B, i = (r, θ, φ), and the star symbol
(∗) denotes the complex conjugate of the coefficient. On such
a spherical shell we have

∫
dΩ = 4π as the surface area of a unit

sphere. Analogously, following Eq. (1), we can define a spec-
trum of magnetic helicity as

HM(`) =
∑̀

m=−`

1
2

[
a`m∗i b`mi + a`mi b`m∗i

]
. (3)

These spectra can be directly related to the values of magnetic
energy and helicity using Plancherel’s theorem:

EM ≡
1

4π

∫
1
2

B2 dΩ =

∞∑
`=0

EM(`), and (4)

HM ≡
1

4π

∫
A · B dΩ =

∞∑
`=0

HM(`). (5)

As has been demonstrated in Moffatt (1969) and
Berger & Field (1984), for a given field B, we can define
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the magnetic helicity in terms of the linkage of its flux, thus
using the Gauss linking formula:

HM =
1

4π

∫ ∫
B(x) ·

[
B(y) ×

x − y
|x − y|3

]
d3x d3y. (6)

This definition is equivalent to that of Eq. (1) if one adopts
the Coulomb gauge, ∇ · A = 0, and uses the Biot-Savart
law (Moffatt & Ricca 1992; Subramanian & Brandenburg
2006). Subramanian & Brandenburg (2006) demonstrate
how this definition allows for a gauge-invariant, physically
meaningful description of magnetic helicity density.

2.2. Cartesian geometry

(a) Homogeneous case. In this section we first reiterate
the approach delineated in Moffatt (1978) that relates the cor-
relation function of the magnetic field to its energy and helic-
ity in homogeneous conditions. The magnetic energy spectrum,
EM(k), is obtained from 2EM(k) =

∫
δi jM̂i j(k) k dΩ, where

M̂i j(k) is the 2D Fourier transform of the two-point correlation
tensor of the total magnetic field, i.e., Mi j(ξ) = 〈Bi(x)B j(x + ξ)〉,
which depends on the separation ξ between the two points. This
tensor is assumed to be independent of the position vector x
under homogeneous conditions; the brackets denote an ensem-
ble average and k is the conjugate variable to x spanning the
2D Cartesian surface. The scaled magnetic helicity spectrum,
kHM(k), with same dimensions as that of EM(k), is defined as
kHM(k) =

∫
ik̂iεi jk M̂ jk(k) k dΩ, with k̂i = ki/|k| being the unit

vector of k.

(b) Inhomogeneous case. This formalism was extended to
inhomogeneous conditions in Brandenburg et al. (2017). Under
such conditions, for a given magnetic field B(x, t), with x being
the position vector at a time t, its two-point correlation tensor in
Fourier space takes the form of

M̃i j(K, k) =

〈
B̂i

(
k +

1
2

K
)

B̂∗j

(
k −

1
2

K
)〉
. (7)

Here K is the conjugate variable to X = (x′ + x′′)/2, the
slowly varying coordinate, and k the conjugate to x = x′ −
x′′, the distance between the two points around X. For details
see Roberts & Soward (1975), Brandenburg et al. (2017). For
brevity we henceforth omit specifying explicitly the time depen-
dence. Then the spectrum for magnetic energy and helicity are
given by

2ẼM(K, k) =

∫
δi j M̃i j(K, k) k dΩ, (8)

kH̃M(K, k) =

∫
ik̂i εi jk M̃ jk(K, k) k dΩ, (9)

where
∫

dΩ = 2π. Therefore, the trace of M̃i j gives the mag-
netic energy and its skew-symmetric part the magnetic helicity.
Equation (9) is related to the definition of helicity in Eq. (6). The
spectrum is thus computed by the product of magnetic fields that
are shifted by a wavenumber corresponding to the large-scale
modulation of the slowly varying coordinate. We will draw upon
this idea in Sect. 3.2.

2.3. Spherical geometry

(a) Homogeneous case. For a quantity distributed on a
sphere, the use of an angular correlation function to extract its

power spectrum has been demonstrated by Peebles (1973) in the
context of cosmology. Here we apply these principles to an angu-
lar correlation tensor of the total magnetic field vector on the
observed surface of a star. For the magnetic field vector at two
positions Ω1 and Ω2 on a unit sphere, the correlation function is
of the form (see Appendix A for details),

Mi j(χ) =

∫
1

8π2 Bi(Ω1)B j(Ω2)δ(cos χ12 − cos χ) dΩ1 dΩ2, (10)

with Ω = (θ, φ), and θ and φ are the colatitude and azimuth
respectively and χ12 is the angle between the two directions Ω1
and Ω2. Here we assume homogeneity, where Mi j is assumed to
depend only on the separation χ. The delta function ensures the
product is evaluated at the angular separation and the denomina-
tor is needed for normalisation (Peebles 1973). Now, analogous
to the Cartesian case, the spectrum of magnetic energy is given
by the trace of the correlation tensor as (see Appendix B)

2EM(`) = 2π(2` + 1)
∫

δi jMi j(χ) P`(cos χ) d cosχ, (11)

and the scaled spectrum of magnetic helicity is given by its skew-
symmetric part (see Appendix C),

kHM(`) = 2π
∫

εi jk∇
′
i(P`(cos χ)M jk(χ) d cosχ. (12)

Here, ∇′ ≡ ∂/∂θ2 + (1/ sin θ2) ∂/∂φ2 acts on location Ω2(θ2, φ2),
and χ = χ12 is the angular separation between Ω1 and Ω2; see
Appendix C for a derivation and note that kR ≈ ` + 1/2 by
the Jeans relation where R, taken here as unity, is the radius of
the sphere. We use the general expression given in Eq. (C.4),
which directly determines the linkages of magnetic field lines
to yield the magnetic helicity, and is also applicable to the
inhomogeneous case discussed below. Equation (12), as written
above, may be obtained by first taking the ensemble average of
Eq. (C.4) and then using the homogeneous form of Mi j(χ) given
in Eq. (10).

(b) Inhomogeneous case. We focus here on slow latitudi-
nal variation of magnetic helicity which has opposite signs in the
two hemispheres; see Singh et al. (2018) for the expected HSR
of the Sun. For the magnetic energy spectrum, we continue to use
the homogeneous formulation, specifically Eqs. (10) and (11),
described above. As noted in Appendix C, the two-point corre-
lation function Mi j(Ω, χ) depends on both the position on the
sphere as well as the separation between the two points; Ω here
represents a mean location that lies between the two points. We
note that the formulation in Appendix C yields a general expres-
sion for the magnetic helicity, based on the Gauss linking for-
mula, without making any assumption of homogeneity. We make
use of Eqs. (C.4) and (C.6) to determine the SMHS in both the
homogeneous, with Mi j = Mi j(χ), and the inhomogeneous, with
Mi j = Mi j(Ω, χ), cases. Thus, it is the form of the correlation
function Mi j that allows us to also explore the inhomogeneous
cases.

In exact analogy to the Cartesian case discussed earlier in
Sect. 2.2, we find that the inhomogeneous case corresponds sim-
ply to a shift in the spherical degree ` by, say, L, while deter-
mining the spherical transform of Mi j; see Eqs. (7) and (9) for
the analogy, and Brandenburg (2019) where this generalisation
in the spherical domain was discussed. The scheme to deter-
mine the helicity in this case may be briefly sketched here as:
HM(L, `) ∝ 〈b`mi b∗ `+L,mj 〉, where b`mi and b∗ `+L,mj correspond to
the two components of the magnetic field. We have chosenL = 1
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Fig. 1. Distribution of magnetic helicity density obtained from A,
defined in Eq. (13), and B = αA. The color represents its magni-
tude which has been normalised by the maximum value. This figure
was made using PyVista (Sullivan & Kaszynski 2019). The grey tinge
is simply a shading effect.

in the present study where it corresponds to the large scale mod-
ulation of the magnetic helicity; as P1(cos θ) = cos θ, it naturally
involves a sign change across the equator where θ = π/2. To
show the spectrum of magnetic helicity in the sections below, we
adopt a sign convention that corresponds to the northern hemi-
sphere, where the large-scale fields have positive helicity.

3. Testing the method

To test whether our formalism allows us to infer the spatial dis-
tribution magnetic helicity over a sphere relying only on B, we
subject it to cases where we know both A and B. In Sect. 3.1, we
use an analytical expression of a fully helical magnetic field, and
in Sect. 3.2 a simulated magnetic field generated by a turbulent
dynamo. Finally, we apply it to synoptic vector magnetograms
of the Sun in Sect. 3.3.

3.1. Fully helical field

Chandrasekhar & Kendall (1957) derived general solutions of
the equation ∇ × B = αB, in the context of force-free
magnetic fields for spherical geometry commonly known as
Chandrasekhar-Kendall functions. Here we use these functions,
T = ∇× (φr̂) and S = ∇×T/α, to define the vector potential on a
unit sphere as A = T +S. We expand φ in spherical harmonics as
φ =

∑
`m c`mYm

` (Ω), assume axisymmetry and ignore the radial
dependence of the coefficients c`m while choosing their values in
a random fashion. Thus we have the vector potential as,

A(Ω) =
−1
α

L2φ r̂ −
∂φ

∂θ
φ̂,

=
1
α

∑
`m

`(` + 1)c`mYm
` (θ, φ) r̂ −

∑
`m

c`m
∂

∂θ
Ym
` (θ, φ) φ̂.

(13)

Here, L2 is the angular part of the Laplace operator in spherical
geometry such that L2Ym

` = −`(` + 1)Ym
` and α =

√
`(` + 1).

From this the magnetic field follows as B = ∇ × A = α(T + S).
To evaluate this numerically we use the Python interface of
SHTOOLS (Wieczorek & Meschede 2018). Figure 1 shows the

100 101

degree ℓ

10−6

10−5

10−4

10−3

10−2

10−1

100

(ℓ
+

1/
2)
H

M

Original
SMHS

Fig. 2. Comparison of the original spectrum (red dashed) obtained using
Eq. (3) for the helical magnetic field defined in Sect. 3.1 versus the
spectrum obtained with Eq. (12) with only the knowledge of magnetic
field. Both spectra are normalised to their maximum value.

distribution of magnetic helicity obtained from such a configura-
tion. We apply Eq. (12) only to the magnetic field and compare
the magnetic helicity spectra thus obtained with the one that we
have a ready access. Figure 2 shows that it is possible to retrieve
the spherical magnetic helicity spectrum (SMHS) over all scales
using the angular correlation function to a very high degree.

3.2. Magnetic helicity from simulations of a turbulent dynamo

Another suitable test case is a simulated magnetic field from
a model, where dynamo action occurs in a turbulent fluid in a
spherical domain (r, θ, φ). We employ 3D hydromagnetic simula-
tions of an isothermal gas where turbulence is driven by forcing
the momentum equation with a helical forcing function using
the Pencil Code (Pencil Code Collaboration 2021). Along with
the continuity and momentum equation, the Pencil Code solves
the induction equation for A,

∂A
∂t

= U × B − ηµ0 J − ∇ψ, (14)

where U is the velocity field, η is the magnetic resistivity, ψ is
the electrostatic potential and µ0 is the magnetic permeability.
This formulation ensures the solenoidality of B, thus the vector
potential is readily available with the Pencil Code. Here we use
the resistive gauge, ψ = −η∇ · A, for our simulations.

The simulation domain spans 0.7R0 ≤ r ≤ R0 in radius,
to mimic the convection zones of solar-like stars. Its extent in
colatitude is 2π/5 ≤ θ ≤ 3π/5 and π/2 in the azimuthal direc-
tion, hence our simulation domain is wedge shaped. We use peri-
odic boundary conditions in the azimuthal direction. For veloc-
ity, stress-free and impenetrable boundary conditions are used
for both boundaries in the radial and latitudinal direction. For
the magnetic vector potential, at both latitudinal boundaries and
at the bottom, perfect conductor boundary conditions are used,
whereas at the top boundary a radial field condition is used.
These conditions allow for magnetic helicity fluxes out of the
system.

A more detailed description of the model, including the
forcing function, can be found in Warnecke et al. (2011). How-
ever, there is a key difference, here the simulation domain spans
0.7R0 ≤ r ≤ R0 in radius, and the forcing is applied at all radial
locations. We limit the extent in θ and φ for computational rea-
sons, and resolve our model with a grid of 128 × 256 × 256
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Fig. 3. Profiles of 〈u ·ω〉φt (panel a) and 〈A ·B〉φt (panel b) as a function
of θ. The profiles have been normalised to their maximum value. The
blue dashed line indicates the equator.

points in radius, latitude and longitude, respectively. We apply
the forcing at a length scale ten times smaller than the radial
extent with maximally helical forcing. We produce two differ-
ent models: in Run A we keep the sign of forcing the same for
both hemispheres, corresponding to a negative kinetic helicity
(U · ω with ω = ∇ × U) over the entire domain, while in Run
B we vary its sign with cos(θ), mimicking the hemispheric sign
rule expected for the Sun. In both models, Runs A and B, the
turbulent dynamo generated large-scale magnetic field is non-
axisymmetric.

The magnetic Reynolds number, Rm, a non-dimensional
parameter quantifying the effects magnetic advection to diffu-
sion, is 9.5 for Run A and 19.2 for Run B. The magnetic Prandtl
number, PrM = ν/η, for both runs is unity. Here ν is the kinematic
viscosity. Figure 3a shows the φ- and time-averaged profiles of
kinetic helicity at r1 ≈ 0.81 R0. For Run A it is negative over the
entire domain, and for Run B, it changes sign across the equa-
tor from negative to positive from northern to southern hemi-
sphere. For such helically forced dynamos, the magnetic helicity
is expected to be dominated by large-scale fields and its sign is
expected to be opposite to that of kinetic helicity (Brandenburg
2001). This behaviour is reflected in our simulations as seen in
Fig. 3b for both Runs A and B.

At first we focus on Run A, which is homogeneously forced
and thus our formalism in Sect. 2.3(a), assuming homogene-
ity, is applicable to it. Figure 4a shows the magnetic energy
and scaled helicity spectra obtained directly from the simulation
using the magnetic field and vector potential as input. We use
Eqs. (2) and (3) to compute these spectra. In contrast, the energy
and scaled helicity spectra shown in Fig. 4b are obtained using
only the magnetic field with Eqs. (11) and (12). This shows that
SMHS (Fig. 4b) computed using the angular correlation func-
tion of magnetic field recovers a bihelical spectrum with pos-
itive (negative) sign at large (small) scales, which is in very
good agreement with the actual helicity spectrum of the simu-
lation (Fig. 4a). All spectra are computed at a depth of r1 at one

instance in time, and then averaged over time after the large-
scale field has saturated. We note that the realisability condi-
tion of |HM| ≤ 2r1EM/(` + 1) (Moffatt 1978; Kahniashvili et al.
2013) is met. The energy spectrum shows an approximate `−5/3

behaviour below the injection scale (` ≈ 42). Following Eq. (5),
the ratio of magnetic helicity computed in real space to that of
spectral space is ≈1.06 which points to a reasonable agreement.

As mentioned above, this simulation was done with a choice
of resistive gauge. Therefore, to test the robustness of our results
against the gauge choice made, we performed an additional run
identical to Run A but with a Weyl gauge, ψ = 0. Using the Weyl
gauge, the SMHS (not shown here) retrieved using the angular
correlation function of magnetic field is bihelical. And as above,
the ratio of helicity computed in real space to spectral space is
≈1.03, thus highlighting the gauge-invariance of our approach.

For Run B, the inhomogeneous forcing results in magnetic
helicity slowly changing sign as a function of colatitude at
both large and small scales, where Fig. 3a reflects the opposite
signs of helicity at large-scales in the two hemispheres. Such
behaviour is expected in the Sun and other stars. For magnetic
field extracted at r1 from Run B, we applied the formalism pre-
sented in Sect. 2.3(b) and the spectra thus obtained are shown
in Fig. 5. It indeed allows us to extract the bihelical spectrum of
magnetic helicity with signs corresponding to that of the north-
ern hemisphere, even though the helicity changes sign as a func-
tion of latitude. As an additional confirmation, following Eq. (5)
we computed the ratio of helicity in real space to spectral once
again, but computing the magnetic helicity in real space over the
northern hemisphere only. We retrieve a value of ≈1.06 from the
spectrum in Fig. 5 which is again proving the accuracy of our
method.

3.3. Solar observations

As a final test of the applicability of the formalism put forth in
Sect. 2.3(b) to inhomogeneous systems, we apply it on synoptic
vector magnetograms of the Sun, where a change in sign of helic-
ity depending on the hemisphere is expected. Singh et al. (2018)
studied 74 synoptic Carrington rotations (CRs) maps, using the
Cartesian two-scale formalism, based on Vector Spectromagne-
tograph (VSM) data of the SOLIS project (Keller et al. 2003;
Balasubramaniam & Pevtsov 2011). They recovered a bihelical
spectrum in a majority of cases studied. We choose here the
CR 2156 of the same dataset, close the maximum of the solar
cycle 24. This CR was reported to show a clear bihelical spec-
trum, with the signs at large and small scales following the HSR,
like the majority of other CRs during cycle 24. However, it was
found to be peculiar in the sense that it shows higher power and
a positive sign of helicity at intermediate scales, in comparison
to the other CRs where a negative sign of helicity was prominent
at these scales. Singh et al. (2018) interpreted this as a sign of
the dominance of the large-scale magnetic field due to its “reju-
venation” close to the solar maximum.

Even though higher resolution data is available, we chose
here to continue using SOLIS data to enable a better compari-
son. This way we avoid instrumental and data reduction related
differences such as varying instrumental resolution and disam-
biguation methods needed for resolving the 180◦ ambiguity of
the transverse (perpendicular to line-of-sight) component of the
magnetic field. Further details of the SOLIS synoptic map used
here can be found in Singh et al. (2018).

In Fig. 6a, we reproduce Fig. 7 of Singh et al. (2018)
for CR 2156 using the Cartesian two-scale formalism, that is
Eqs. (8) and (9). In panel b of the same figure, we show the
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Fig. 4. Magnetic energy (solid) and scaled helicity spectra (dashed) obtained at a depth of r1 for Run A. Panel a: the energy and helicity spectra
are obtained using the magnetic field and vector potential directly from the simulation data, whereas in panel b, we use the angular correlation
function given by Eq. (10) to evaluate the energy spectra and the SMHS using only the magnetic field data.

magnetic energy and SMHS of the same CR, computed using
Eq. (11) and the steps described in Sect. 2.3(b) respectively. The
spectra shown in these two panels are in very good agreement
and reveal the bihelical nature of the solar magnetic field. The
magnetic helicity for this CR peaks at 209−300 Mm which is
an even larger scale than the 160 Mm reported by Singh et al.
(2018). This lends support to their rejuvenation argument. We
note, however, that SMHS recovers somewhat less power and
energy at the largest scales than the Cartesian approach, and,
consequently, the spectral slope corresponding to lower k is
steeper in the SMHS case, and no longer clearly consistent with
the Kazantsev scaling, k3/2. At the higher wavenumbers, SMHS
shows more power and energy and hence a less steep spectral
slope is observed than in the Cartesian approach.

A contrasting interpretation of the same CR is reported by
Pipin et al. (2019), where they find this CR to be a violation of
HSR. This discrepancy is likely a result of the different defini-
tion of scales. They define small and large scales purely based on
azimuthal averaging and report the small-scale magnetic helic-
ity density of this CR in the southern hemisphere to be nega-
tive. The latter is mainly attributed to the presence of a promi-
nent active region (NOAA 12192) with negative helicity in that
hemisphere (see Fig. 3 of Pipin et al. 2019). Their definition of
small-scale magnetic helicity density also includes large-scale
non-axisymmetric contributions. We regard this definition as
a possible source for the dissimilar interpretations. With our
approach, we demonstrated the possibility to reliably retrieve
magnetic helicity spectra for large-scale non-axisymmetric mag-
netic fields in Sect. 3.2. For this particular CR, the presence of
AR 12192 is seen as increased power at intermediate to large
scales for the SMHS (Fig. 6b), with the sign in agreement with
the low-k (large scale) part of the helicity spectrum. This high-
lights that categorising a CR as a violation of HSR or not is a
delicate issue. SMHS offers a much richer picture, and hence
can be regarded as a better-suited tool for such classification.

4. Discussion

Our aim with this study was to extend the Cartesian formalism
for inferring spectral distributions of magnetic energy and helic-
ity using the two-point correlation tensor to spherical geometry.
The need for this was alluded to in Brandenburg (2018), since the
analysis of Brandenburg et al. (2017) maps the magnetic field
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Fig. 5. Magnetic energy (solid) and scaled helicity spectra (dashed) for
Run B. For the energy spectrum, we continue to use Eqs. (10) and (11),
whereas the SMHS in this case is obtained by the inhomogeneous for-
mulation discussed in Sect. 2.3(b) (see Appendix C for a derivation).

vector data from solar observations to a 2D Cartesian surface.
Apart from loosening this restriction, going to spherical geome-
try additionally allows us to infer helicity spectra directly from
full disk magnetograms, instead of waiting for the build-up of a
synoptic map for one Carrington rotation. Analogously, using
ZDI based magnetic field observations (for example Vidotto
2016) such spectra can also be retrieved for other stars limit-
ing to lower spherical harmonic degree, similar to the study of
Lund et al. (2020) who reported average magnetic helicity den-
sity using stellar ZDI data. It also enables comparison with state-
of-the-art dynamo models of the Sun or stars, which mostly solve
the induction equation for B. Using our formalism one can read-
ily compute magnetic helicity spectra without explicitly com-
puting A. For most of the above mentioned observations and
models, a change in sign of kinetic and magnetic helicity across
the equator, owing to stratification and rotation breaking reflec-
tional symmetry, is expected. Our formalism in Sect. 2.3(b) (also
suggested by Brandenburg 2019) by correlating fields at spher-
ical harmonic degrees shifted by one, is particularly suited for
such cases. Our tests in Sects. 3.2 and 3.3 confirm its applicabil-
ity to inhomogeneous systems. Thus we can confirm and extend
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Fig. 6. Magnetic energy (solid) and scaled helicity (dashed) spectra for CR 2156 obtained using SOLIS/VSM data. Panel a: we have reproduced
Fig. 7 of Singh et al. (2018) using. Panel b: magnetic and SHMS obtained using the angular correlation function in spherical geometry, see
Sect. 2.3. Both plots are shown as a function of wavenumber using the Jeans relation kRS ≈ ` + 1/2, where RS is the solar radius taken to be
approximately 700 Mm. To enable a better comparison between the figures we have plotted E?

M(`) = RSEM(`) and H?
M(`) = RSHM(`) in panel b.

findings of previous studies focusing on the HSR, reported, e.g.,
in Singh et al. (2018), Pipin et al. (2019).

Cross-helicity is also expected to play a role in gen-
erating large-scale magnetic fields (Yokoi 2013). Previ-
ous studies have determined cross-helicity from observations
(Zhang & Brandenburg 2018, and references therein) mostly
with the line-of-sight component of the velocity field. How-
ever, information about the full velocity field vector can also be
obtained for a significant portion of the full disk as demonstrated
in Rincon et al. (2017). This velocity field vector can be used
with our method to infer cross-helicity spectra (u · b).

5. Conclusions

In order to investigate the mechanisms responsible for large-
scale magnetic fields present in the Sun and other stars, having a
knowledge of magnetic helicity and specifically its distribution
over scales is important. In this study, we demonstrate an exten-
sion of an existing Cartesian formalism, relying on the two-point
correlation tensor of the magnetic field, to spherical geometry.
This allows us access to magnetic helicity spectra by appealing
to a more fundamental definition of helicity in terms of the link-
age of the magnetic field lines, and circumvents the need to com-
pute the magnetic vector potential. We tested this approach on a
variety of illustrative examples before demonstrating its appli-
cation to the solar vector synoptic maps. This enables an exten-
sive analysis of different datasets from different instruments, to
vet the robustness of the bihelical nature of solar magnetic field
against instrumental effects.

Our approach naturally captures the bihelicity of the mag-
netic field in each hemisphere, and also the slow modulation
of the helicity as a function of latitude. This is relevant for the
Sun, where magnetic helicity on both large and small scales is
expected to change sign across the equator. The true nature of
the helicity distribution over the whole sphere is revealed, and a
potential contamination of power and sign of the helicity from
both hemispheres is avoided. Such a contamination could eas-
ily lead to an apparent violation of the HSR even when the rule
is obeyed. The method discussed here remedies this, and it is
expected to find applications in systems involving such rich dis-
tribution of magnetic helicity.
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Appendix A: Spherical correlation function

Here we show a brief derivation of how the magnetic energy
and magnetic helicity spectra can be extracted from the two-
point angular correlation function. We note that we are inter-
ested to determine these spectra from the measurements of
vector magnetic field from the surface of a sphere, e.g., the
Sun. We may write the following expression for the two-point
angular correlation function under the homogeneous conditions
(Peebles 1973):

Mi j(χ) =

!
Bi(Ω1)B j(Ω2)δ(cos χ12 − cos χ) dΩ1 dΩ2!

δ(cos χ12 − cos χ) dΩ1 dΩ2
, (A.1)

where χ12 is the angle between the directions Ω1 = Ω1(θ1, φ1)
and Ω2 = Ω2(θ2, φ2) which are the position vectors of the two
points on the spherical surface; θ’s and φ’s represent the colati-
tude and azimuth, respectively. The homogeneity is ensured by
the delta function in Eq. (A.1) where the correlation function
depends only on the angular separation χ, and the angular inte-
grals yield an average over the sphere. The normalisation in the
denominator may be determined by expanding the delta function
in Eq. (A.1) in terms of the Legendre Polynomials as

δ(cos χ12 − cos χ) =
∑
`

a`P`(cos χ12). (A.2)

Writing the orthonormality condition for P` as∫ 1

−1
P`(cosα)P`′ (cosα) d cosα =

2δ``′
2` + 1

, (A.3)

the coefficients a` are found to be

a` =
2` + 1

2
P`(cos χ), (A.4)

giving

δ(cos χ12 − cos χ) =
∑
`

2` + 1
2

P`(cos χ)P`(cos χ12). (A.5)

By expanding P`(cos χ12) in terms of the spherical harmonics as

P`(cos χ12) =
4π

2` + 1

∑̀
m=−`

Ym
` (Ω1)Ym∗

` (Ω2), (A.6)

we find, after straightforward algebra, that"
δ(cos χ12 − cos χ) dΩ1 dΩ2 = 8π2, (A.7)

for which, we have used
√

4πY0
0 = 1,

∫
Ym
` (Ω) dΩ =

√
4πδ`0δm0

and P0(cos χ) = 1. This gives Eq. (10).

Appendix B: Magnetic energy spectrum

Analogous to the Fourier case, we can define the magnetic
energy spectrum, which gives a distribution of the magnetic
energy over `, as

2EM(`) = 2π(2` + 1)
∫ 1

−1
δi jMi j(χ)P`(cos χ) d cosχ, (B.1)

which essentially depends on the trace of the two-point func-
tion, Tr[Mi j(χ)] = δi jMi j. Equation (B.1) may be understood by

first expanding this trace as δi jMi j(χ) =
∑
` c`P`(cos χ), and then

determining the coefficient c` in a standard way, which gives

c` =
2` + 1

2

∫ 1

−1
δi jMi j(χ)P`(cos χ) d cosχ (B.2)

By defining the magnetic energy spectrum, EM(`), in terms of
c` as 2EM(`) = 4πc`, we arrive at Eq. (B.1) which, after using
Eq. (10) together with Eqs. (A.5), (A.6), and (A.3), gives the
following simple expression for the energy spectrum:

2EM(`) =
∑̀

m=−`

(b`mr )2 + (b`mθ )2 + (b`mφ )2, (B.3)

where b`mi =
∫

Bi(Ω)Ym∗
` (Ω) dΩ is the expansion coefficient of

the ith component of the magnetic field B.

Appendix C: Magnetic helicity spectrum

The Gauss linking formula yields the magnetic helicity directly
in terms of the magnetic field B(x) by determining the flux-
linkages:

HM =
1

4π

"
x − y
|x − y|3

·
[
B(x) × B(y)

]
d3x d3y. (C.1)

Here x and y are the position vectors of two points on the surface
of a sphere. Using

x − y
|x − y|3

= ∇y
1

|x − y|
, and

1
|x − y|

=
1
R

∞∑
`=0

P`(cos χ), (C.2)

with R, χ, and P` being, respectively, the radius of the sphere, the
angle between x and y, and the Legendre polynomial of degree
`, we rewrite the expression for the magnetic helicity,

HM =

∞∑
`=0

HM(`) (C.3)

where

HM(`) =
1

2` + 1

"
∇
′

 ∑̀
m=−`

Ym
` (Ω)Ym∗

` (Ω′)

 ·
·
[
B(Ω) × B(Ω′)

]
dΩ dΩ′ (C.4)

for which, we assumed a unit sphere (R = 1) and expanded the
Legendre polynomials in terms of the spherical harmonics as

P`(cos χ) =
4π

2` + 1

∑̀
m=−`

Ym
` (θ, φ)Ym∗

` (θ′, φ′). (C.5)

Directions Ω = Ω(θ, φ) and Ω′ = Ω′(θ′, φ′) correspond to the
position vectors x and y, respectively, with dΩ = sin θ dθ dφ
and dΩ′ = sin θ′ dθ′ dφ′. Employing the Jeans relation which
expresses the wavenumber k on the surface of the sphere of
radius R (assumed as unity here) in terms of the spherical har-
monic degree ` by kR =

√
`(` + 1) ≈ ` + 1/2, we can write

kHM(`) = (` + 1/2)HM(`). (C.6)

Thus the scaled magnetic helicity spectrum, kHM(`), which
has the same dimensions as for the magnetic energy spectrum,
EM(`), may be determined by using equations (C.4) and (C.6).
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It is important to note that Eq. (C.4) provides a general
expression for the magnetic helicity, and thus, in its current
form, it does not make any assumption of homogeneity. This
same equation may be used for both homogeneous and inho-
mogeneous cases by suitably writing the two-point function Mi j
which naturally appears when we take an ensemble average of
Eq. (C.4). We take (i) Mi j = Mi j(χ) for homogeneous case in
which it depends only on the angular separation (χ) between the
two points, and (ii) Mi j = Mi j(Ω, χ) for inhomogeneous case
where Mi j depends also on the position (Ω) on the surface of the

sphere. In weakly inhomogeneous turbulence, which appears to
be more relevant in the solar context, Mi j is expected to vary
rapidly with χ while showing a slow variation with position Ω
on the sphere. Here we are more interested in only the latitu-
dinal variation which involves a sign change of magnetic helic-
ity across the equator, simultaneously at both, small and large,
length scales.

To numerically evaluate the integrals in Eq. (C.4) we use the
vectorial generalisation of spherical harmonics implemented in
the SHTns library (Schaeffer 2013).
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