Du, Luojun

Comment on “Disentangling Orbital and Valley Hall Effects in Bilayers of Transition Metal Dichalcogenides” ()

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.127.149701

Published: 01/10/2021

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
https://doi.org/10.1103/PhysRevLett.127.149701

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Comment on “Disentangling Orbital and Valley Hall Effects in Bilayers of Transition Metal Dichalcogenides”

In their Letter [1], the authors claimed that in bilayer MoS$_2$, the valley-Hall effect (VHE) vanishes, while the orbital-Hall effect (OHE) has a sizable orbital-Hall conductivity. Consequently, the authors concluded that OHE in bilayer MoS$_2$ can be distinguished from VHE, in contrast to the monolayer case that OHE are entangled with VHE. In this Comment, we show that this is not the case. In fact, hidden VHE with nonvanishing valley-Hall conductivity in each monolayer can occur in bilayer MoS$_2$. Although the net valley-Hall conductivity is zero, the hidden VHE in bilayer MoS$_2$ can contribute to a net valley orbital angular momentum current, resulting in entangled OHE and hidden VHE.

Figure 1(a) shows the schematic of VHE of monolayer MoS$_2$. When an in-plane electric field (E) is applied, carriers in the K and $-K$ valleys flow in opposing transverse directions and accumulate on sample edges [2–4]. When the entire device in Fig. 1(a), including both sample and E, is rotated by 180° around the z axis, the direction of valley currents would be switched [Fig. 1(b)]. When reversing E in Fig. 1(b) (keeping sample orientation unchanged), carriers in the K and $-K$ valleys would be transformed to accumulate on upper or lower edges [Fig. 1(c)]. Comparing Figs. 1(a) and 1(c), we can know that the 180° sample rotation does not affect the valley current.

Since interlayer hopping vanishes (e.g., conduction-band edges) or is virtually suppressed due to the strong spin-orbit interaction (e.g., valence-band edges), bilayer MoS$_2$ can be regarded as a mere superposition of two decoupled monolayers when we focus on the $\pm K$ valleys [5,6]. Consequently, we can imagine that nonvanishing Berry curvature and VHE can occur in both upper and lower layers of bilayer MoS$_2$. It is worth noting that nonvanishing Berry curvature localized in the upper or lower layer (referred to as hidden Berry curvature) has been revealed in bilayer MoS$_2$ by theory [7] and in bulk WSe$_2$ through experiments [8]. Because the lower layer in bilayer MoS$_2$ is a 180° rotation of the upper layer [Fig. 1(d)], the $K(-K)$ valley of the lower layer is equivalent to $-K (K)$ of the upper layer [Fig. 1(e)], such as the same Berry-curve and valley-magnetic moment [5,6,9,10]. Consequently, when applying an in-plane E, carriers in the $K (-K)$ valley of the upper (lower) layer flow in the same transverse direction; while carriers in the $-K (K)$ valley of the upper (lower) layer flow in another direction [Fig. 1(f)]. Since in each transverse direction, K and $-K$ valleys contribute the equal current, the net valley current is nil. Rather than being intrinsically absent (nonvanishing valley current exists in each monolayer), the zero net valley current would instead be concealed by compensation. This is dubbed as hidden VHE, a concept akin to hidden spin polarization [11,12], hidden Berry curvature [8], and hidden orbital polarization [13,14]. Remarkably, hidden VHE in bilayer MoS$_2$ can contribute to a net valley orbital angular momentum current, because carriers with the same valley magnetic moment (e.g., K of the upper layer and $-K$ of the lower layer) flow in the same direction. Moreover, owing to the contributions from both the upper and lower layers, the transverse valley orbital angular momentum current in bilayer MoS$_2$ should be essentially twice that in the monolayer case. Such a transverse valley orbital angular momentum current in bilayer MoS$_2$ may be responsible for the sizable Kerr rotation or nonlocal resistance signal.

FIG. 1. (a)–(c) Schematics of VHE of monolayer MoS$_2$. Compared to (a), both monolayer MoS$_2$ and E in (b) are rotated 180°. E in (c) is rotated 180°, compared to (b). (d) Bilayer MoS$_2$ crystal structure. (e) Band structure of decoupled bilayer MoS$_2$. The spin splitting of the conduction band is magnified for clarity. (f) Hidden VHE in bilayer MoS$_2$. Left panels in (a)–(c) represent the crystal orientations.
previously observed at zero gate voltage [15,16]. Overall, hidden VHE with net transverse valley orbital angular momentum current exists in 2H-stacked bilayer MoS$_2$, and thus OHE cannot be distinguished from it.

We thank Yanchong Zhao and Zhipei Sun for valuable discussions. We gratefully acknowledge the financial support from Academy of Finland (Grant No. 333099).

Luojun Du
Department of Electronics and Nanoengineering
Aalto University
Tietotie 3 FI-02150, Finland

Received 14 April 2021; accepted 23 August 2021; published 1 October 2021
DOI: 10.1103/PhysRevLett.127.149701