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We have measured magnetoresistance of suspended graphene in the Corbino geometry at magnetic fields up
to B = 0.15 T, i.e., in a regime uninfluenced by Shubnikov–de Haas oscillations. The low-temperature relative
magnetoresistance [R(B) − R(0)]/R(0) is strong, approaching 100% at the highest magnetic field studied, with
a quite weak temperature dependence below 30 K. A decrease in the relative magnetoresistance by a factor of
two is found when charge carrier density is increased to |n| � 3 × 1010 cm−2. Furthermore, we find a shift in the
position of the charge neutrality point with increasing magnetic field, which suggests that magnetic field changes
the screening of Coulomb impurities around the Dirac point. The gate dependence of the magnetoresistance
allows us to characterize the role of scattering on long-range (Coulomb impurities, ripples) and short-range
disorder (adatoms, atomic defects), as well as to separate the bulk resistance from the contact one. Based on the
analysis of the magnetoresistance, we propose a more reliable method to extract the bulk mobility, which does
not require prior knowledge of the contact resistance. It is thus demonstrated that studying magnetoresistance in
the Corbino geometry is an extremely valuable tool to characterize high-mobility graphene samples, in particular,
in the vicinity of the Dirac point.

DOI: 10.1103/PhysRevB.104.115432

I. INTRODUCTION

Besides extraordinary physical characteristics, graphene
exhibits superb electrical transport properties [1,2]. Charge
carrier conduction in monolayer graphene can display bal-
listic behavior over several microns, though the mean free
path is often limited by Coulomb scattering and short-range
scatterers [3]. Typically Coulomb scatterers, embedded in
the substrate or caused by fabrication residues, dominate the
transport and short-range scattering becomes important only
at large carrier densities. Using freely suspended graphene
flakes and current annealing [4], however, carrier scattering
resulting from charged impurities and short-range defects can
be minimized, and intrinsic properties of graphene can be
observed. Many of the basic transport properties of graphene
have been revealed using suspended devices. Suspended
graphene in Corbino-ring geometry, for example, has turned
out to be valuable in sensitive investigations of fractional
quantum Hall states in graphene [5].

Magnetoresistance (dependence of resistance on magnetic
field) is a powerful tool for studying basic quantum transport
in monolayer graphene [2,6–9]. Typically, the resistance of
graphene at low temperatures is governed by disorder-induced
scattering, while at higher temperatures electron-electron and
electron-phonon scattering start dominating. Disorder also
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leads to quantum corrections to the conductance and universal
conductance fluctuations; such quantum effects are particu-
larly sensitive to the presence of magnetic field. For classical
magnetoresistance, both linear and quadratic behavior is ex-
pected according to effective medium theory [10,11]. Owing
to strong demand for magnetic field sensors based on magne-
totransport, various ways to generate large magnetoresistance
in graphene have been developed in monolayer [9,12–21] and
multilayer graphene [22,23]. In this work, we demonstrate that
intrinsic behavior of suspended graphene in the Corbino-ring
geometry, which already as such yields a strong magnetoresis-
tance. This magnetoresistance can serve as an efficient tool for
sample characterization as well as it can be used for sensing
purposes. Our work demonstrates a magnetic field sensitivity
on the order of 60 nT/

√
Hz at 4 K in a background field of

0.15 T. For a detailed investigation of noise in the suspended-
graphene Corbino samples studied in the present work, see
Ref. [24].

In the Hall bar geometry, both the transverse and longitu-
dinal bulk conductivities—σxy(B) and σxx(B), respectively—
determine the resistivity ρxx(B). As a result, ρxx(B) turns out
to be independent of the applied magnetic field B in the sim-
plest one-band model. The Corbino-ring measurement setting
for magnetoresistance is special already for this simplest case,
because the Hall conductivity σxy (or the Hall voltage) drops
out from the resistivity. The latter is then obtained just as the
inverse of the longitudinal conductivity ρxx(B) = 1/σxx(B).
In a way, a Corbino disk is equivalent to an infinitely wide
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sample, in which the effect of the sidewalls can be neglected.
The magnetoresistance for generic anisotropic Corbino sam-
ples is calculated in Ref. [25]; in the isotropic case, relevant
to our setup, the resistance of the Corbino sample is expressed
through to the bulk resistivity as

R(B) = 1

2π
ρxx(B) ln

rout

rin
. (1)

Here rin and rout are, respectively, the inner and outer radii of
the disk. The logarithmic geometrical factor in Eq. (1) reflects
the total current conservation in the Corbino disk.

Bulk magnetoresistance measured in disordered graphene
in the Hall-bar geometry may display complex magnetic-field
dependence [26–29] for different sources of disorder poten-
tial; for example, indications of

√
B dependence at small fields

have been reported [30,31]. Our results, on the contrary, dis-
play a strong parabolic (B2) magnetoresistance for arbitrary
disorder, while only small corrections to the B2 dependence
are found for magnetic fields up to 0.1 T.

II. SAMPLE FABRICATION AND CHARACTERIZATION

Our graphene samples were fabricated using a technique
based on lift off resist (LOR) sacrificial layer [32]; details of
the employed process can be found in Ref. [5]. The current
annealing of the samples at low temperature before mea-
surements guaranteed a high maximal field-effect mobility
μmax

FE � 1–2 × 105 cm2/V s; see Sec. SI of the Supplemental
Material (SM), Ref. [33]. Most of the data was measured on
a Corbino disk with inner and outer radii of 0.9 and 2.25 μm,
respectively. A false-color scanning electron microscope pic-
ture of a Corbino sample is displayed in Fig. 1(a), which
is further clarified by the cross sectional view in Fig. 1(b).
The employed two-lead measurement configuration with its
connections is also outlined in Fig. 1(b). The gate capacitance
Cg = 1.5 × 10−5 F/m2 between the suspended graphene and
Si++-doped back gate was obtained using the Landau level
fan diagram [5]. Note that the value of Cg is approximately by
a factor of eight smaller than a typical back gate capacitance
having just a 300-nm-thick SiO2 dielectric. This large differ-
ence arises from the 500-nm vacuum gap due to the thickness
of doubly spun LOR (2 × 250 nm).

In our experiments, we employed standard voltage-biased
measurements and recorded current through the sample over
the bias range of 1–13 mV. These rather large voltages were
chosen in order to measure the low-frequency noise spectra
simultaneously and the resistance noise of our samples was
in the range of δR/R � 2 × 10−5 at 1 Hz. The current was
amplified using a transimpedance amplifier at gain 105 V/A.
Bias-T components facilitated insertion of rf signals to the
sample. For details of the measurement system, see Ref. [34].
In the measurements, both positive and negative bias voltages
V were used. A weak V dependence was removed by extrap-
olating data at V < 0 and at V > 0 down to zero bias: the two
extrapolations differed less than 3%.

First, we characterized the gate voltage dependence of the
resistance R(Vg) of our sample at B = 0 (see lowest curves
in Fig. 2) at two temperatures, T = 4 K and T = 27 K. The
offset of the Dirac point from zero amounted to V D

g (0) �
0.2 V at T = 27 K, and the corresponding residual charge

FIG. 1. (a) Scanning electron microscope image of a suspended
graphene Corbino disk (green part in the center) with 4.5 μm diame-
ter outer Au contact and 1.8 μm diameter inner Au contact; the scale
is given by the white bar. (b) Cross-sectional view of the sample and
its basic two-lead measurement connections. The thicknesses of the
SiO2 and LOR layers amount to 285 nm and 500 nm, respectively.

density was found to be n0 � 8 × 109 cm−2. For T = 4 K,
the zero-B offset of the Dirac point had the opposite sign:
V D

g (0) � −0.2 V. The temperature dependence of the offset
(and, in particular, the change of its sign) can be related to
different concentrations of (quasi)resonant adsorbed atoms;
see below.

Figure 2 includes also our data at small magnetic fields,
B < 0.15 T. For both temperature values, the resistance grows
strongly with B and, simultaneously, there appears a shift of
the maximum value to slightly higher gate voltage V D

g (B).
The data points were joined using cubic spline fits in or-
der to make observed changes with B easier to distinguish.
According to the spline fits, the shift of the Dirac point for
T = 27 K amounts to �Vg = V D

g (B) − V D
g (0) = 5(B/T) V.

Even stronger shift is seen for T = 4 K. In both curves, there
is a finite electron-hole asymmetry. The main contribution to
this asymmetry is through the contact resistance at the leads,
where a pn interface forms, which influences electrons and
holes in graphene differently [35].

The observed shift of the Dirac point with increasing B can
be attributed to changes in screening of charged impurities in
a magnetic field near charge neutrality; see Sec. SII of SM
[33] for more details. In this case, the total charge density
induced on the membrane is less at the Dirac point at finite
B, which would indicate generation of more positive charge
on graphene by the screening. Thus the screening should take
place by positive carriers and the impurities are negatively
charged. In addition, there was a slow shift of the Dirac point
position towards positive Vg over time (on the order of 0.2 V
in one month). It is worth noting that the effect of magnetic
field on screening is suppressed at higher densities and higher
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FIG. 2. Resistance vs Vg at various magnetic fields. (a) 4 K for
magnetic fields from 0 to 0.15 T with 0.005 T step (from bottom to
top); the broken curves are cubic spline interpolations to the data.
(b) 27 K for magnetic fields from 0 to 0.15 T with 0.01 T step (from
bottom to top); the broken curves are cubic spline interpolations. The
gray area marks the region of increased resistance due to a broadened
resonance level at Vg near −2 V (the feature is more pronounced at
T = 4 K).

temperatures. This is in line with the stronger shift of the
resistance maximum at T = 4 K.

One more peculiarity seen in the resistance curves plotted
over the gate voltage is a feature close to −2 V, which is
marked by a gray region for both temperatures shown in
Fig. 2. The resistance around this voltage is somewhat en-
hanced compared to the resistance away from this voltage.
There is no comparable feature at the electron side of the
resistance curve and the feature is stronger for lower tempera-
tures. We attribute this feature to a broadened resonance level
associated with adsorbed local impurities. When the chemical
potential is moved by the gate voltage into the vicinity of this
quasiresonance, the scattering amplitude for such impurities
is enhanced, leading to shorter transport scattering time and,
hence, to the increase in resistance. At the same time, the
broadening of this resonance is sufficiently strong to avoid
truly resonant scattering (as, e.g., in the case of vacancies);
in contrast to infinitely strong impurities (vacancies), the

FIG. 3. Field effect mobility μFE at T = 4 K determined from
the measured differential resistance dV/dI at B = 0. The Dirac point
shift V D

g (0) has been subtracted off from the gate voltage before
calculating the charge carrier density n. The dip in μFE around
n = 0, indicated by a gray shadow, corresponds to the density range
governed by disorder broadening of the Dirac point. The extent of
this range is consistent with the value n∗ given in Table I.

position of the quasiresonance is shifted away from the Dirac
point. Away from the resonant energy, these impurities pro-
duce weak short-ranged disorder.

For higher temperatures, some adsorbed dirt is thermally
removed form the sample, leading to a less pronounced fea-
ture. This suggests that the role of scattering off short-range
disorder at higher temperatures could be decreased. Below,
based on the analysis of the magnetoresistance curves, we
will discuss this issue in more detail. The dependence of the
concentration of local quasiresonant impurities on tempera-
ture can also explain the T dependence of zero-B shift of the
Dirac point mentioned above. Indeed, at higher temperature
(T = 27 K in Fig. 2), the shift of the chemical potential is
smaller, which is consistent with the above picture of lower
concentration of adsorbed impurities.

In Sec. IV, we deduce charge carrier mobility from the
measured geometric magnetoresistance. For comparison, we
display in Fig. 3 the field-effect mobility defined by μFE =
e−1dσxx/dn, obtained from measurements of differential re-
sistance R(Vg) at the end of the experiments. These data
measured at T = 4 K indicate that, for our sample at a
tiny bias voltage, the maximum mobility for holes μFE �
13 m2/V s is clearly larger than that for electrons μFE �
7 m2/V s. However, at the employed bias voltages 1–10 mV,
the influence of the pn interface at positive gate voltages
appears to be reduced and μFE for electrons and holes be-
comes almost equal. This corresponds to the much weaker
electron-hole asymmetry in Fig. 2. From this strong depen-
dence of the field-effect mobility on the contact resistance we
conclude that this is not a reliable way of characterizing the
bulk mobility of the sample. As we are going to demonstrate
below, the analysis of the magnetoresistance in the Corbino
geometry allows one to extract the genuine value of the bulk
mobility.
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III. THEORETICAL BACKGROUND

Before analyzing the obtained magnetoresistance data,
we present in this section the basic facts about disorder-
dominated transport in graphene (for the hydrodynamic—
collision-dominated—transport, higher temperatures are typ-
ically required than those in our experiment, 50 K < T <

150 K, while phonons become important at yet higher T
[36]). Distinct from conventional electron gases in 2D semi-
conductor heterostructures, graphene displays a linear energy
dispersion relation of the carriers, εk = ±vh̄k. This leads to
the linear-in-energy density of states in clean graphene:

ν0(ε) = N |ε|
2πv2

F h̄2 , (2)

where vF = 106 m/s is the Fermi velocity, ε is the energy
counted from the Dirac point, and N = 4 is the degeneracy
due to spin and valley degrees of freedom. Following from
this density of states, the charge density of carriers is given by

n = N
ε2

F

4π h̄2v2
F

, (3)

where εF is the Fermi energy. A consequence of the linear
dispersion relation is that the cyclotron frequency ωc becomes
energy dependent [2]:

ωc(ε) = eB

mc(ε)
= h̄

mc(ε)
2
B

, (4)

where B is the magnetic field and mc(ε) = ε/v2
F is the cy-

clotron mass, also dependent on the energy, and where we
have defined a magnetic length by 
B = √

h̄/eB.
The linear dispersion relation also influences the scatter-

ing and relaxation rates of charge carriers. We assume that
the major contributions to resistance arise from short-range
scattering (s) and Coulomb scattering (C) and adopt this
mixed-disorder model [37] to describe the magnetoresistance.
For the interpretation of the effect of charged scatterers, one
should keep in mind that graphene is not perfectly flat, but
has ripples [38–40]. The scattering off ripples is similar to
that for charged impurities [36], so that their contribution is
effectively included in our treatment of Coulomb scattering.

We first address scattering on the short-range impurity po-
tential. We limit our discussion to not too high carrier densities
for which the length scale d for random potential variations
is smaller than the carriers’ wavelength and larger than the
interatomic spacing a, i.e., a � d � λ. For such disorder
the intervalley scattering can be disregarded and the quantum
τq and transport τtr scattering times can be estimated using
Fermi’s golden rule [2,41]:

τ s
q (ε) = h̄γs

|ε| , τ s
tr(ε) = 2τ s

q (ε), (5)

where

γs = 2h̄2v2
F

ns
impU

2
0

, (6)

ns
imp is the concentration of short-range impurities, and U0 de-

notes the magnitude of the impurity potential. In what follows,
we will characterize the strength of short-range disorder in the

samples by the parameter γs which is energy independent. The
difference between τtr and τq is caused by the weak scattering
anisotropy which originates from the spinor nature of the wave
functions.

The scattering times for charged impurities can be brought
to similar form (see SM [33], Sec. SIII), although the effective
parameter γC is then, in general, a function of the energy
and the Fermi energy, as well as temperature and magnetic
field (through the corresponding dependence of screening of
Coulomb impurities by charged carriers). Below, we mainly
consider sufficiently low temperatures and magnetic fields,
keeping only the energy dependence of γC :

τC
q (ε) = h̄γ ′

C (ε, εF )

|ε| , τC
tr (ε) = 2

h̄γC (ε, εF )

|ε| . (7)

Here γC (ε, εF ) and γ ′
C (ε, εF ) are functions of the ef-

fective coupling (graphene “fine-structure constant”) α =
e2/(h̄vF ε∞), with ε∞ the background dielectric constant; see
SM [33], Sec. SIII. In the absence of a screening environment
and neglecting the renormalization of velocity by Coulomb
interaction, the nominal value of this constant is α0 = 2.2.
However, both the screening and renormalization [2] effects
reduce this value. For intermediate values of α, the relation
τC

tr (ε) ≈ 2τC
q (ε), similar to Eq. (5), holds, but it is no longer

exact.
The conductivity in zero magnetic field in the presence of

only short-range scatterers is given by the Drude formula:

σ D
xx = σ0 = 2e2γs

π h̄
. (8)

By comparing this with the typical conductivity of high-
quality graphene samples, we observe that γs should be of
the order of unity if impurities in high-mobility samples,
such as ours, were short ranged (this estimate corresponds to
measured quantum scattering time at Vg = 10 V and scaled to
our measurement regime).

An important parameter for the magnetoresistance is the
product ωcτ

s
q , which describes the broadening of Landau lev-

els. Since for short-range scatterers both ωc and τ s
q depend on

energy [see Eqs. (4) and (5)], the parameter

x = ωcτ
s
q = γsh̄

2v2
F

ε2
2
B

(9)

can be either small or large, depending on the energy ε [29].
For scattering on Coulomb impurities, the quantum scattering
time decreases linearly with energy ε ∝ √

n, which means
that the parameter x = ωcτ

C
q becomes energy independent.

The parameter x determines the dependence of the density of
states ν(ε) of disordered graphene on magnetic field. Since the
transport scattering time τtr has the same energy dependence
as τq, the same parameter x governs the quasiclassical bending
of particle trajectories in magnetic field.

The general result for the longitudinal conductivity σxx(ε)
is given by Eq. (4.13) of Ref. [41]. Introducing the rela-
tive density of states ν̃(ε) = ν(ε)/ν0(ε), where ν0(ε) is the
zero-field density of states, we write the conductivity kernel
(conductivity of particles at energy ε) in terms of ν̃(ε) as
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follows:

σxx(ε) = σ0
ν̃(ε)2

ν̃(ε)2 + [ωc(ε)τtr(ε)]2
, (10)

where

σ0 = e2v2

2
τtr(εF )ν(εF ) ≡ e2γ N

2π h̄
. (11)

Here, we have introduced the dimensionless disorder strength
γ that has a meaning of a dimensionless conductance per
spin per valley. For the short-range disorder, γ = γ s. In the
presence of both short-range and Coulomb scatterers, the total
transport time is determined by

1

τtr(ε)
= 1

τ s
tr(ε)

+ 1

τC
tr (ε)

, (12)

and γ is related to the total transport scattering time, as given
by Eq. (11).

The finite-temperature conductivity is given by the ker-
nel (10) integrated with the derivative of the Fermi function
nF (ε):

σxx =
∫ ∞

−∞
dε

(
−∂nF (ε)

∂ε

)
σxx(ε), (13)

At zero temperature, the derivative gives the δ function and
the conductivity reduces to Eq. (10) with ε → εF . At zero
magnetic field it is given by σ0 from Eq. (11). The temperature
dependence of the Drude conductivity arises from the energy
dependence in the kernel (10) when the thermal broadening
of the δ function is taken into account. At low temperatures,
kBT � εF , the finite-T corrections to the zero-T result are
small, and the measured conductivity is given approximately
by σxx ≈ σxx(εF , T = 0). Under these conditions, if ν̃0 is in-
dependent of the magnetic field, the conductivity in a finite
magnetic field can be written in the conventional Drude form:

σxx(B) = enμ0

1 + (μ0B)2
, (14)

where μ0 is the mobility at B = 0, i.e.,

μ0 = σxx(B = 0)

ne
. (15)

As can be seen from the calculation of ν̃0(ε) in Refs. [29,42],
corrections to the density of states arising from the finite
magnetic field can be neglected, as long as x � 1, which we
will show is true over a large range of data in the present
experiment.

Comparison with Eq. (10) shows that ωc(ε)τtr(ε)/ν̃0(ε)
corresponds to μ0B. This means that the Drude conductivity
is given by

σxx ≈ e2γ N

2π h̄

1

1 + ( 2eγ
π h̄n

)2
B2

, (16)

which has finite temperature corrections that are detailed in
the SM [33], Sec. SIV. There are also temperature-dependent
quantum corrections to the Drude conductivity, in particular,
those arising from the electron-electron interaction (EEI), as
discussed in Sec. SV of SM [33].

For both short-range and Coulomb impurities, Eq. (10)
then yields a parabolic magnetoresistance in the Corbino ge-
ometry. The Drude resistivity in the Corbino geometry takes a
simple form:

ρxx(B) = 1

σ0
[1 + (μ0B)2]. (17)

According to the Mathiessen rule, the inverse mobility can be
written as a sum of the contributions of different momentum-
relaxing scattering processes,

μ−1
0 = μ−1

C + μ−1
s , (18)

which yields in the zero-T limit

1

μ0
= π h̄n

2eγ
= π h̄n

2e

(
1

γs
+ 1

γC (ε = εF , εF )

)
, (19)

γC (ε = εF , εF ) = n

c(α)nC
imp

, (20)

with c(α) defined in the SM [33], Sec. SIII. One sees that
the contribution of Coulomb scatterers to the inverse mobility
is density independent. On the other hand, the mobility gov-
erned by short-range impurities decreases with charge carrier
density as μs ∝ 1/n. Thus the density dependence of the total
mobility allows one to characterize the role of short-range and
Coulomb impurities in transport.

Below a certain chemical potential or the corresponding
density n∗, disorder-induced broadening smears the single-
particles energy and the density of states saturates. This
energy scale is given by the self-consistent equation for ε:

h̄

τq(ε∗)
∼ ε∗. (21)

For the mixed disorder model with γs 
 1, we get for the
corresponding density

n∗ ∼ d (α)nC
imp, (22)

where d (α) is given in the SM [33], Sec. SIII. The value of n∗
depends on the density of charged impurities, fine-structure
constant α. We model this saturation effect by performing
the replacement n →

√
n2 + n2

∗ , which effectively interpo-
lates between n at high densities and n∗ at the neutrality
point, in all formulas, when used for plotting or fitting. In
order to keep the notation clear, we do not explicitly write
down this replacement in the main text. Since this replacement
is an approximate interpolation, it describes the behavior of
the density of states (and other observables) at n ∼ n∗ only
qualitatively; see the Appendix for details. Nevertheless, this
simple interpolation function allows us to confidently extract
the system parameters, when the range of densities n 
 n∗ is
included in the fit.

IV. ANALYSIS OF DATA AND RESULTS

The relative magnetoresistance

�R(B)/R(0) = R(B)/R(0) − 1

of our sample at B < 0.15 T is illustrated in Fig. 4, which
depicts the relative resistance R(B)/R(0) as a function of B2

measured at T = 4 K [Fig. 4(a)] and at T = 27 K [Fig. 4(b)].

115432-5



MASAHIRO KAMADA et al. PHYSICAL REVIEW B 104, 115432 (2021)

FIG. 4. (a) Scaled resistance R/R(0) vs B2 at T = 4 K measured
at various gate voltage values Vg between −3 and +3 V (0.8 ×
109 cm−2 < |n| < 3 × 1010 cm−2). The Dirac point corresponds to
Vg � 1 V, the data at which is denoted by lilac symbols in the figure.
The dashed curves are guides for the eye, emphasizing an overall
parabolic magnetoresistance and slight deviations from parabolicity.
(b) Scaled resistance R/R(0) vs B2 at T = 27 K measured at various
gate voltage values between −3 and +3 V. The magnetoresistance at
low fields grows faster at 27 K than at 4 K.

In both data sets, the magnetoresistance is found to be the
strongest at the Dirac point, which is due to the strong de-
pendence of the mobility on the inverse of the density and the
weak (in the case of only short-range scattering—even absent)
dependence of the effective coupling constant on density. Both
data sets are influenced by the growing shift of the Dirac point
�Vg as B increases.

The strength of the measured magnetoresistance depends
only weakly on temperature up to 27 K. However, when
comparing the data at 4 K and 27 K, one observes that the B2

dependence is followed better at 27 K than at 4 K in small
magnetic fields. Qualitatively, this could be a signature of
the increased role of electron-electron scattering [28,29] and
macroscopic inhomogeneities [11,31,43]. In our suspended
graphene sample such inhomogeneities can be due to static
ripples.

The nature of scattering does not appear to play a large
role in the measured magnetoresistance. The parabolic field
dependence is followed for both Coulomb and short-range
impurities in the range of parameters covered: |n| ∼ 0.8–3 ×
1010 cm−2 and T = 4–27 K. In general, the B2 dependence
at small magnetic fields is more closely followed in the 27 K
data. The 4 K data displays deviations from B2 behavior at
B < 30 mT, which may be a sign of coherent behavior and
quantum interference effects, either regular weak localization
type or Corbino-geometry related as predicted for graphene in
Ref. [44]. At the largest magnetic fields around 0.1–0.15 T,
small deviations from B2 dependence become obvious, in par-
ticular near the Dirac point. One can interpret this deviation as
the onset of the Shubnikov–de Haas (SdH) oscillation regime
in the sample [45] that corresponds to x ∼ 1.

On top of this one has to consider the additional con-
tribution Rcont to the measured resistance related to the
contact effects. These contributions are the resistance of the
metal-graphene contacts and the interface resistance of the
contact-doped graphene region. The former contribution is a
microscopic material property, which we take to be constant.
The latter, discussed in Ref. [35], is of the type of the pn-
junction resistance. This contribution to the total resistance
depends on the density of charge carriers in the bulk of
the sample and is the main cause for the usually observed
electron-hole asymmetry in transport measurements. In low
magnetic fields the cyclotron radius is larger than the geo-
metrical length scales characterizing the contact region and,
hence, the overall contact resistance should not show a pro-
nounced magnetic-field dependence.

The parabolic magnetoresistance is associated with the
bulk contribution, whereas the total resistance includes the
contact resistance: R = Rbulk + Rcont, where Rbulk describes
the disorder-induced bulk resistance and Rcont the contact
contribution. Since Rcont depends on the gate voltage, the
normalized magnetoresistance shown in Fig. 4 is not partic-
ularly convenient for extracting the density dependence of the
mobility. Indeed, the value of R(B = 0) in the denominator of
the scaled magnetoresistance is not equal to Rbulk(B = 0) in
front of the B-dependent term coming from Eq. (17), so that
the coefficient in front of the B2 term in the scaled magnetore-
sistance is not equal to μ2

0.
To overcome this complication caused by the contact resis-

tance, we have employed a fitting function of the form

R(B) − R(0) = MB2 (23)

of the total resistance, where we have a single fitting pa-
rameter M fully determined by the properties of the bulk of
the sample. According to Eq. (17) we have M = Rbulk(0)μ2

0,

where Rbulk(0) describes bulk resistance at zero field and μ0 is
the mobility. We recall that Rbulk(0) is different from the mea-
sured R(0) because the latter includes the contact contribution.
There is no mechanism leading to a strong magnetic-field
dependence of the contact resistance in the range of magnetic
fields where no skipping orbits (or edge states) appear at the
interfaces between the sample and the leads. The fact that
we are able to consistently fit the observed magnetoresistance
using our model in a wide range of gate voltages supports this
argument.
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TABLE I. Parameters extracted from the fit of the data. These
parameters are used in all following plots.

T = 4 K T = 27 K

γs 9.6 38.2
n∗ (m−2) 1.7 × 1014 1.8 × 1014

c(α)nC
imp (m−2) 1.1 × 1014 0.88 × 1014

Since magnetoresistance is related to mobility, the data can
be employed to derive information on the impurity scattering
in our sample from the obtained fitting parameter M, which is
given by

M = Rbulk(0)μ2
0 = γ

π2h̄n2
ln

rout

rin

= 1

π2h̄n2

(
1

γs
+ c(α)nc

imp

n

)−1

ln
rout

rin
. (24)

In order to include the disorder-induced saturation of the
density of states, we replace n with

√
n2 + n2∗ in the fitting

function, and then extract γs, n∗, and the effective concen-
tration of Coulomb impurities c(α)nC

imp. We fit our data over
the full measured voltage range, with all the results being
electron-hole averaged. The values we extract from these fits
are shown in Table I.

Notably, the energy corresponding to n∗ is ε∗ ≈ 9 meV,
which is larger than the energies corresponding to 4 K and
27 K, which are 0.3 meV and 2.3 meV, respectively, so that
finite-T corrections are small, even for 27 K. Moreover, the
value of n∗ is consistent with the region corresponding to dis-
order broadening of the Dirac point in the field effect mobility
shown in Fig. 3. In Fig. 5, we show a comparison of the shifted
magnetoresistance and the corresponding fit by the theoretical
curves obtained from Eq. (17) for various values of the gate
voltage difference

U = Vg − V D
g

relative to the gate voltage V D
g corresponding to the Dirac

point, with the fitting parameters from Table I. Voltage U and
density n are connected by the capacitance as n = CgU/e.

With the parameters obtained from fitting the magnetore-
sistance curves, we get the mobility from Eq. (19), see Fig. 6,
where the inverse mobility μ−1

0 is displayed as a function of
gate voltage difference U . A clear minimum is found at the
Dirac point (maximum for the mobility). The slope of the
inverse mobility away from the Dirac point is determined by
the strength of short-range scatterers γs. We observe that, at
T = 27 K, the mobility varies only very slightly as a function
of the gate voltage. This indicates that the role of short-range
impurities is suppressed at higher temperature. Possibly, with
increasing temperature, residual dirt (adsorbed atoms) is re-
moved from the sample.

For comparison, the insets in Fig. 6 show the mobility μ̃0

that could be naively extracted from the formula R(B)/R(0) =
1 + μ̃2

0B2. As mentioned above, this quantity is not the gen-
uine bulk mobility μ0, since μ̃0 includes the effect of the
contact resistance. Note that μ̃0 reveals the electron-hole
asymmetry. Moreover, we rather clearly see a feature on the

FIG. 5. Non-normalized magnetoresistance R(B) − R(0) for 4 K
in (a) and 27 K in (b) for various values of U . The points are
obtained after shifting the gate voltage by V D

g . The dashed lines
correspond to the fitted function Eq. (23) and solid lines to theoretical
zero-temperature magnetoresistance, Eq. (17), calculated using the
parameters from Table I. Since these parameters are obtained at finite
temperature and are electron-hole averaged, the dashed and solid
lines do not exactly coincide for the same values of the gate voltage.

hole side, stemming from the feature in the resistance men-
tioned at Vg = −2V in Fig. 2. Since we extract this from the
shifted data, Vg = −2V is mapped to different U for each
magnetic field and thus this feature is not as clearly localized
anymore. Mobility obtained this way is lower, since it is
affected by the contact-resistance contribution.

Thus, looking at the deduced impurity scattering strengths
from the obtained mobilities, our magnetoresistance data
should reflect effects related to both Coulomb and short-range
scatterers. Note that our Hall mobility is slightly smaller than
the field-effect mobility obtained using R(Vg), which yields
approximately 105 cm2/V s near Dirac point for the aver-
age mobility of electrons and holes. The value of mobility
extracted from the analysis of the magnetoresistance is con-
sistent with the field-effect mobility.

Subtracting the disorder-induced bulk resistance with the
parameters obtained from the measured magnetoresistance,
we get access to the overall contact resistance, which is shown
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FIG. 6. (a) Electron-hole averaged inverse mobility, Eq. (19), de-
rived using the parameters extracted from the 4 K magnetoresistance
data. (b) Mobility naively extracted from the scaled shifted magne-
toresistance as R(B)/R(0) = 1 + μ̃2

0B2: this includes the contribution
of the contact resistance. (c) Inverse mobility derived from the 27 K
data. Panel (d) as in (b) for 27 K. The parameters are given in Table I.

in Fig. 7. The obtained value of the contact resistance is
somewhat higher than the one reported for similar samples in
the Corbino geometry, which can be related to the fact that the
sample has been cooled down several times and the contact
structure on top of LOR resist is not very rigid around room
temperature.

V. DISCUSSION AND CONCLUSIONS

In summary, we have investigated geometric magnetotore-
sistance in suspended graphene Corbino ring at low tempera-
tures. The quadratic magnetoresistance �R(B)/R(0) ∝ B2 is
strong, approaching 100% at the highest magnetic field stud-
ied of 0.15 T at the Dirac point, with quite small temperature
dependence below 30 K. This is comparable, in this range of
magnetic fields, with the “extraordinary magnetoresistance”
in encapsulated graphene in a disk geometry observed at room
temperature in Ref. [9] (although the physical mechanism
behind the low-temperature strong magnetoresistance is dif-
ferent). The relative magnetoresistance decreases with charge

FIG. 7. Zero-B resistance at T = 4 K in (a) and T = 27 K in (b).
Blue curves: the measured resistance. Orange curves: the zero-T bulk
resistance calculated from Eq. (1) with the electron-hole averaged
parameters from the fit (Table I). Green curves: the contact resistance
which is obtained as the difference of the total measured resistance
and the theoretical value of the bulk resistance. Note that the contact
resistance is actually larger than the bulk contribution, as expected
for high-mobility samples.

density and, at |n| � 3 × 10−10 cm−2, it is already reduced by
a factor of two.

The simple zero-temperature analysis appears to be
sufficient to explain the main features of the measured mag-
netoresistance. The quadratic magnetic field dependence is
followed for both short-range and charged scatterers. The gate
dependence of the magnetoresistance allows one to estimate
the partial contributions of the short-range and long-range
impurity scattering to the mobility. In particular, away from
the Dirac point, the gate-voltage dependence of the mobility
is entirely determined by the short-range component of the
impurity potential. At the same time, we see that transport
around the neutrality point is dominated by scattering on long-
range disorder (Coulomb impurities or ripples). However, no
fundamental difference is observed between Coulomb and
short range in terms of the magnetic-field dependence of the
resistance.
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We find that the mobility extracted from the parabolic
magnetoresistance is sufficiently high (of the order of
105 cm2/V s), which is in agreement with previous estimates
for similar (slightly cleaner) samples used for studying the
quantum Hall effect, including the fractional quantum Hall
effect. It is worth noting that, somewhat counterintuitively, the
mobility is found to be higher at higher T . This can be related
to the technological process of preparing the sample, where
the concentration of adsorbed atoms depends on temperature.
The total measured resistance is given by the sum of the
bulk and contact contributions. We see that, in our geometry,
the contact resistance is even higher than the bulk resistance,
which is consistent with the high quality of the sample.

We emphasize that knowledge on the contact resistance is
essential in the analysis of our geometric magnetoresistance.
According to Eq. (24), the measured magnetoresistance is
proportional to Rbulkμ

2
0B2, where Rbulk = R − Rcont. If we em-

ployed R instead of Rbulk, we would overestimate the reduction
of μ0 obtained from the magnetoresistance data as a function
of gate voltage. For example, naively fitting the normalized
data in Fig. 4(b) we would deduce a reduction in μ2 by a factor
of two, while from Fig. 6(b) we obtain only <13% reduction
in μ2. Thus, in the former case, the strength of the short-range
scattering would appear almost three times larger than in the
correct analysis.

In the vicinity of the Dirac point at 4 K, we find a high
sensitivity of resistance variation with respect to magnetic
field dR/dB = 12.5 k�/T at B = 0.15 T. According to our
current-noise measurements [24] yielding SI = 10−23 A2/Hz
at 1 kHz for the same sample at 10 μA, we may estimate a
magnetic field sensitivity of 60 nT/

√
Hz for our device at 4 K.

This sensitivity is excellent when compared with graphene
Hall magnetometers, since our result is on par with magnetic
field sensitivities of devices working in 20 times larger mag-
netic fields [46].

To conclude, the analysis of graphene magnetoresistance at
different values of the gate voltage in the Corbino geometry al-
lowed us to extract information about scattering mechanisms
in the sample, and to separate the bulk and contact contri-
butions to the resistance. The strong magnetoresistance of
Corbino geometry at low magnetic fields appears to be a very
powerful tool of characterization of the graphene samples. As
an outlook, it will be very interesting to investigate experi-
mentally and theoretically the magnetoresistance of graphene
in this geometry at elevated temperatures, when electronic
hydrodynamic effects become pronounced.
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APPENDIX: VICINITY OF THE DIRAC POINT
AND DETAILS OF THE FITTING

As seen in Fig. 2, the resistance does not diverge at
the Dirac point, as would be expected from combining the
resistivity ρ0 = 1/σ0 from Eq. (11) with the effective γ from
SM [33] (Sec. SIII) using γC as expressed in Eq. (20). The
reason for this is the saturation of the density of states close
to the Dirac point due to disorder [2,42]. Below a certain
chemical potential μ∗, the quasiparticle pole in the Green’s
function is effectively absent, and all quantities should be
fixed below this value. The relevant scale for this behavior
is given by Eq. (21). In order to determine the changes this
induces and find Eq. (22), we discuss here how to find the
relevant scale μ∗ from the condition

h̄

2τq(μ∗)
= μ∗. (A1)

Below μ∗, the density of states saturates, while it is not af-
fected for larger energies, i.e.,

ν(ε) =
{
ν∗, |ε| � μ∗,
ν0(ε), |ε| 
 μ∗.

(A2)

This value enters directly into the calculation of all scattering
rates Eq. (S2) of SM [33]; it also directly determines the
screening radius in the Coulomb impurity case Eq. (S7) of
SM [33]. While it is clear that Eq. (S2) of SM [33] is only true
if the density of states is not strongly broadened, the idea is to
approach the crossover from the side of large energies, where
this is the case. We can then calculate the Coulomb scattering
rates as follows:

1

τC
tr (μ)

= π2

4
h̄3v4

F nC
impc(α)

{ ν∗
μ2∗

, μ � μ∗,
ν0(μ)
μ2 , μ 
 μ∗,

(A3)

1

τC
q (μ)

= π2

4
h̄3v4

F nC
impd (α)

{ ν∗
μ2∗

, μ � μ∗,
ν0(μ)
μ2 , μ 
 μ∗,

(A4)

and, in a similar fashion, we get for short-range scatterers

1

τ s
tr(μ)

= 1

γs

π h̄v2
F

4

{
ν∗, μ � μ∗,
ν0(μ), μ 
 μ∗,

(A5)

1

τ s
q (μ)

= 1

γs

π h̄v2
F

2

{
ν∗, μ � μ∗,
ν0(μ), μ 
 μ∗.

(A6)

By assuming that the expression for μ 
 μ∗ is still rea-
sonably close for μ ∼ μ∗ and using both short-range and
Coulomb impurities in Eq. (A1) we find

μ∗ =
√

π

2
v2h̄2d (α)

nC
imp

2 − 1/γs
, n∗ = d (α)nC

imp

4 − 2/γs
, (A7)

which leads to the approximation Eq. (22). This value depends
on the density of charged impurities and γs. The effective γ

can then be extracted from the definition of γ , Eq. (11). We see
that the density of states actually drops out; only the influence
of ν(ε) on the electronic density (via μ2) is relevant. We find
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the required asymptotics

1

γ
= 1

γs
+

⎧⎨
⎩

c(α)nC
imp

n∗
, n � n∗,

c(α)nC
imp

n , n 
 n∗,
(A8)

which we phenomenologically fulfill by tweaking the relation
between density and chemical potential in graphene to

√
n2 + n2∗ = N

μ2

4π h̄2v2
, (A9)

and consequently we replace n by
√

n2 + n2∗ in all fits and
plots, as mentioned in the main text.

Using the general conductivity formula (16) with the finite
disorder broadening, Eq. (A9), we get the broadened form of
Eq. (19) and Eq. (20):

1

μ0
≈ π h̄

2e

(√
n2 + n2∗

γs
+ c(α)nC

imp

)
(A10)

FIG. 8. Effective disorder parameter 1/γ defined by Eq. (A11)
and its two parts 1/γC and 1/γs for T = 4 K (a) and T = 27 K (b).
The parameter γ is smaller for 4 K, which means that disorder is
stronger at lower temperatures. The parameters are given in Table I.

and

1

γ
= 1

γs
+ c(α)nC

imp√
n2 + n2∗

. (A11)

Let us now discuss how the fits are performed and obtain
the parameters for Table I. The first step is to remove the Dirac
point shift as discussed in the SM [33], Sec. SII. In practice,
we do not employ the inhomogeneous shift introduced there,
but rather just shift the curves as a whole, such that the
maximum is at zero voltage. From the cubic spline through
the measured data points, we read off the resistance values at
the original voltages and additionally all half integer ones for
27 K.

We then fit the obtained magnetoresistances R(B) − R(0)
over the whole measured range of B with the fit function
Eq. (23) for all gate voltages. From the thus obtained param-
eter M we extract all parameters of the theory according to
Eq. (24). We fit the magnetoresistance with three parameters

FIG. 9. (a) Conductivity at B = 0 T, Eq. (11), derived using the
parameters extracted from the 4 K magnetoresistance data. (b) Zero-
field conductivity derived from the 27 K data. The blue curve is the
result for our mixed disorder model and the orange one for γs = ∞,
i.e., no short-range scatterers. The parameters are given in Table I;
additionally, we used α = 1.3 to determine nC

imp.
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γs, c(α)nC
imp, and n∗, expressing M as follows:

1

M
= π2h̄(n2 + n2

∗)

[
1

γs
+ c(α)nC

imp√
n2 + n2∗

]
. (A12)

A plot of the resulting effective disorder parameters γ for the
two temperatures is shown in Fig. 8.

In order to summarize the effect of the two different types
of impurities, in Fig. 9 we show the zero-field conductivity σ0

determined by Eq. (11) for both our mixed disorder model
and a Coulomb-impurity model. Already at experimentally
accessible density ratios n/nC

imp ≈ 2 we observe the sublinear
conductivity due to short-range scatterers discussed in
Ref. [37].
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