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Abstract—This paper deals with positive- and negative-
sequence current control of voltage-source converters. An en-
hanced weak-grid tolerant state-feedback controller design based
on direct pole placement approach is proposed. The controller
is synthesized from a body of literature on multi-frequency
current control of grid converters. The resulting design yields
consistent dynamic performance for varying grid strengths, and
remains stable even under very weak grids. Due to the explicit
parameterization of the pole locations, complex optimization
methods often associated with robust control designs are avoided,
which simplifies the controller design process.

Index Terms—Current control, grid converter, negative se-
quence, state-feedback control, weak grid

I. INTRODUCTION

The ongoing clean energy revolution drives the proliferation
of renewable energy sources in the electric grid. Consequently,
an increasing share of generated power is processed through
power-electronic converters that act as an interface between the
renewable energy sources and the grid. Due to the uncertain
and time-varying nature of the grid impedance, the interfacing
converters should be designed robust to variations in the grid
impedance. Furthermore, as the share of power production
through grid converters increases, demand for additional ancil-
lary services provided by them, e.g., grid fault support, grows.
In recent standards, e.g., [1], features such as positive- and
negative-sequence reactive current support is required from
grid converters under fault conditions.

Several different control strategies for multi-frequency cur-
rent control, which the positive- and negative-sequence current
control is a special case of, have been proposed recently [2]–
[18]. An interesting subset of these controllers are those based
on the state-feedback design, which has been proven effective
and flexible for control of grid converters [4]–[18]. The designs
of such controllers can be roughly divided into direct [4]–[6]
and indirect [7]–[18] pole placement approaches.

In the direct pole placement approaches [4]–[6], the closed-
loop poles are explicitly parameterized, and the state-feedback
gains are computed based on the desired locations. In [4], the
design is based on setting the real parts of the poles equal
while leaving the imaginary parts unmodified. The value of the
real part is determined so as to retain stability under predefined
parameter variations in the filter and grid inductances. While
this approach is simple as the pole placement is determined

by a single parameter, the design is based on relatively mild
variations in the inductance value, and the performance of the
system is not comprehensively analyzed. In [5], a positive-
and negative-sequence current control design is presented
based on a disturbance observer, and an equivalent integrator-
based approach is shown in [6]. These designs focus on the
aspect of dynamic performance under nominal conditions, with
emphasis on the reference tracking. The resulting designs
are shown to tolerate only moderate variations in the grid
inductance [5].

In the indirect pole placement approaches [7]–[18], the
closed-loop poles are placed indirectly by choosing the state-
feedback gains through optimization. Various optimization
methods for computing the state-feedback gains have been
proposed, e.g., linear quadratic regulator (LQR) design [7]–
[11], linear matrix inequality (LMI) optimization [12], [13],
combination of LQR and LMI [14], combination of a genetic
algorithm (GA) and LMI [15], particle swarm optimization
[16], H∞ design [17], and steady-state Kalman filter design
[18]. By examining the collection of pole maps produced by
these methods, a clear trend can be observed. The closed-loop
poles, excluding any resonant poles in the controlled system
and the computational delay pole, tend to be located near their
open-loop locations in the majority of the designs.

Conventionally, maintaining the closed-loop poles adjacent
to their open-loop locations has been considered as a good
design approach, since this maintains the state-feedback gains
and, consequently, the control effort low [19]. Furthermore,
low values of control gains are tied to enhanced system
robustness to parameter variations [20]. On the flipside, when
majority of the poles are near the unit circle, the dynamic
performance tends to be severely hindered as compared to,
e.g., the designs based on direct pole placement approach [4]–
[6]. Consequently, there is a trade-off between robustness to
parameter variations and dynamic performance [19], [20].

Motivated by the glaring similarities between the different
indirect pole placement approaches for multi-frequency cur-
rent controllers, this paper proposes an enhanced direct pole
placement design for positive- and negative-sequence current
control of grid converters. The design is synthesized from the
existing body of literature on multi-frequency current control.
Assuming a dominantly inductive grid impedance, the goal
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Fig. 1. (a) Block diagram of a grid converter equipped with an L filter. CC and PLL are abbreviations of current controller and phase-locked loop, respectively.
Superscript s indicates signals in stationary coordinates. (b) Block diagram of the positive- and negative-sequence state-feedback current controller.

of the design is to achieve high tolerance to grid inductance
variations, resulting in stable operation even under short-circuit
ratio (SCR) of unity, while avoiding the complex optimization
routines typically associated with robust control designs. The
results are validated experimentally with a 12.5-kVA grid
converter.

II. PRELIMINARIES

Fig. 1(a) shows a three-phase grid converter system con-
nected through an L filter to an electric grid modeled as a dom-
inantly inductive impedance Zs

g(s) and an ideal voltage source
esg. The system is analyzed using space vectors in synchronous
coordinates, e.g., the current is ic = icd + jicq. Signals in
stationary coordinates are denoted with superscript s, e.g., the
converter voltage is us

c = ucα + jucβ .

A. System Model

In the control design stage, the resistive losses are omitted,
i.e., the filter resistance is considered to be zero. Consequently,
the continuous-time model of the L filter in synchronous
coordinates rotating at the angular frequency ωg is given by

d

dt
ic = −jωgic +

1

Lf
uc −

1

Lf
ug (1)

where ug is the voltage at the point of common coupling
(PCC) and Lf is the filter inductance. Assuming that the
pulse-width modulator (PWM) is modeled as a zero-order
hold (ZOH) in stationary coordinates and that the currents are
sampled in synchronism with the PWM, the hold-equivalent
model of the system (1) can be written as

ic(k+1) = φic(k) + γuc(k)− γug(k) (2)

where φ = exp(−jωgTs), γ = φTs/Lf , and Ts is the sam-
pling period. Due to the finiteness of computational resources
available in practical control hardware, a computational delay
of one sample is incurred in the control system, i.e.,

uc(k + 1) = φuc,ref(k) (3)

where φ is a phase angle shift due to the delay. The SCR of
the system is defined as

SCR =
Lb

Lf + Lg
(4)

where Lb is the base value of the inductance and Lg is the
grid inductance. Lb is obtained from the base impedance Zb

and the nominal angular frequency ωg as Lb = Zb/ωg.

B. Positive- and Negative-Sequence Current Control

A block diagram of the positive- and negative-sequence
state-feedback current controller presented in [6] is shown in
Fig. 1(b). In the figure, i+c,ref and i−c,ref are the positive- and
negative-sequence current references, respectively. In accor-
dance with the figure, the control law can be written as

uc,ref(k) = k+t i
+
c,ref(k) + k−t i

−
c,ref(k) + k+i x

+
i (k)

+ k−i x
−
i (k)− k1ic(k)− k2uc(k)

(5)

where k+t and k−t are the reference feedforward gains, k+i
and k−i are the integral gains, and k1 and k2 are the state-
feedback gains. The integral states x+

i and x−i for positive-
and negative sequences, respectively, are defined as [6]

x+
i (k + 1) = x+

i (k) + i+c,ref(k) + k−c i
−
c,ref(k)− ic(k) (6)

x−i (k + 1) = ϕx−i (k) + i−c,ref(k) + k+c i
+
c,ref(k)− ic(k) (7)

where ϕ = exp(−j2ωgTs) and k+c and k−c are the ref-
erence decoupling gains. While these decoupling gains are
atypical, their inclusion is justified, since they can be used
to decouple the positive- and negative-sequence reference-
tracking dynamics, resulting in performance equivalent to a
disturbance-observer-based implementation [6]. In general, the
integral states are used to eliminate the steady-state reference-
tracking error of the positive- and negative-sequence currents
that correspond to the dc and −2ωg frequency components
in synchronous coordinates, respectively [21]. In the analysis,
the possibility of actuator saturation, which tends to result in
integral wind-up, is omitted. However, a realizable-reference
anti-windup is implemented for both integrators in the exper-
iments [22].



Remark 1: Several of the well-established harmonic com-
pensators can be obtained as special cases of (6) and (7). For
example, the reduced-order generalized integrators (ROGIs)
[23] can be realized by selecting k+c = k−c = 0. In addi-
tion, the classical resonator [4] can be realized by selecting
k+i = k−i and k+c = k−c = 0.

III. SYNTHESIZED DIRECT POLE PLACEMENT

The system presented in the previous section is of fourth
order, i.e., there are four poles. These poles can be extracted,
e.g., by formulating a state-space model of (2), (3), (6), and
(7), and computing the eigenvalues of the resulting system
matrix. The open-loop poles are obtained as

p1o = 0 p2o = exp(−jωgTs)

p3o = 1 p4o = exp(−2jωgTs).
(8)

The pole p1o originates from the computational delay (3), the
pole p2o from the L filter (2), and the poles p3o and p4o
from the integrators (6) and (7), respectively. The closed-loop
system, which is obtained by applying the control law (5) on
the open-loop system, can be written as

ic(z) = G+
cl(z)i

+
c,ref(z) +G−cl(z)i

−
c,ref(z)− Ycl(z)ug(z) (9)

where G+
cl(z) and G−cl(z) are the reference-tracking transfer

functions and Ycl(z) is the output admittance from the PCC
voltage ug, which considered as a disturbance. The application
of the control law alters the locations of open-loop poles
(8) based on the choice of the gains k+i ,k

−
i ,k1, and k2.

Consequently, the characteristic polynomial of the closed-loop
system can be written as

D(z) = (z − p1c)(z − p2c)(z − p3c)(z − p4c) (10)

where p1c,2c,3c,4c are the closed-loop pole locations. The
reference-tracking transfer functions G+

cl(z) and G−cl(z) can
be written as

G+
cl(z) =

ic(z)

i+c,ref(z)
=
φγk+t (z − z+1 )(z − z+2 )

D(z)
(11)

G−cl(z) =
ic(z)

i−c,ref(z)
=
φγk−t (z − z−1 )(z − z−2 )

D(z)
(12)

respectively, where z+/−1,2 are the reference-tracking zeros. The
locations of the zeros in (11) depend on the gains k+t and k+c .
Analogously, the locations of the zeros in (12) depend on the
gains k−t and k−c . Closed-form equations for these gains as
functions of the desired zero locations are given in [6]. The
output admittance of the system can be written as

Ycl(z) =
ic(z)

ug(z)
=
φγ(z − zs)(z − 1)(z −ϕ)

D(z)
(13)

where zs is a sampling zero originating from the discretization
of the L filter [20]. The two other static zeros originate from
the integrators, and they locate identically to the open-loop
integrator poles p3o and p4o.

In the following, the proposed direct pole placement design
is presented, starting with the design of reference tracking,

followed by the design of disturbance rejection. Since the
evaluation of system robustness to grid inductance variations
is not possible until all the poles have been selected, an
initial pole parameterization is formulated first. Subsequently,
it is shown that a large set of parameter values for the pole
parameterization results in a robust design.

A. Reference Tracking

Since the two zeros in the reference-tracking transfer func-
tions (11) and (12) can be placed freely, two pole-zero cancel-
lations can be achieved. Consequently, the reference-tracking
dynamics under nominal conditions depend only on the two
remaining poles. In the following, the reference-tracking zeros
z
+/−
1 and z+/−2 are assumed to be placed on the poles p3c

and p4c. This results in reference-tracking transfer functions

G
+/−
cl (z) =

φγk
+/−
t

(z − p1c)(z − p2c)
. (14)

The task is then to define the remaining closed-loop poles
p1c and p2c to completely determine the reference-tracking
dynamics. The approach taken below is based on [5], [6].
However, similar results can also be found in the indirect
designs [13], [15], [17].

Contrary to the other open-loop poles that locate on the
unit circle, the pole p1o is located in the origin of the
complex z-plane. The origin is a special point, since no point
from the complex s-plane maps to it through the mapping
z = exp(−sTs) that links the continuous- and discrete-time
complex planes [21]. In fact, the dynamic mode corresponding
to the pole in the origin has the minimum settling time in the
discrete-time domain [20]. Since this pole does not impose
limitations on the bandwidth of the closed-loop system, it is
initially left in its open-loop location, i.e,

p1c = p1o. (15)

As a consequence of this choice, the pole p2c then sets the
bandwidth of reference tracking. Unless the pole is placed
on the real axis, the reference-tracking dynamics will be
oscillatory in nature [21], as non-zero imaginary parts in poles
translate into oscillatory transients. As such transients are not
desirable due to overshoots, the location of p2c is constrained
to the real axis, i.e.,

p2c = exp(−αcTs) (16)

where αc defines the reference-tracking bandwidth.
The resulting reference-tracking dynamics are approxi-

mately of first-order under nominal conditions, and the rise
time of the system with bandwidth αc is defined as tr =
2.2/αc. The two other poles that largely determine the ro-
bustness of the system to grid inductance variations, are
determined in the next section.

B. Disturbance Rejection

Under nominal conditions, the poles p3c and p4c do not
affect the reference-tracking dynamics. Therefore, they can be
used to shape the output admittance (13) of the system, which
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determines the system response to grid-voltage disturbances.
In the indirect pole placement approaches [7]–[18], the corre-
sponding poles tend to be located near the unit circle, close
to the open-loop locations of the integrator poles.

By examining the loop gain of the system, it can be
shown that as the grid inductance increases, the closed-loop
poles traverse towards their open-loop locations. This happens
because as the grid inductance increases, the gain of the system
decreases. Consequently, the effectiveness of the constant-gain
feedback decreases. Since the locus of a pole adjacent to its
open-loop location behaves analogously to the electric field of
a dipole [24], the length of the locus is typically in proportion
to the distance between the pole and its open-loop location,
i.e., short. Consequently, the movements of the pole tend to be
minor for variations in the grid inductance. Placing a pole near
one of the open-loop poles at the unit circle causes a partial
pole-zero cancellation in the output admittance (13), which
effectively reduces the disturbance rejection capability around
the frequencies of the partially canceled zero. In the interest of
maintaining good disturbance rejection for frequencies around
the fundamental frequency, pole placement near the open-loop
negative-sequence integrator pole is considered. To provide
additional flexibility, a radial projection approach is adopted
[21]. The pole p3c is given by

p3c = exp[−(ζ + j
√

1− ζ2)2ωgTs] (17)

where ζ is the damping ratio of the pole. Radial projection
allows for adjusting the real part of the pole while maintaining
a constant natural frequency of −2ωg. The pole p4c, on the
other hand, is given by

p4c = exp(−βcTs) (18)

where βc is a tuning parameter. This choice is based on
preserving the dynamic performance of the system, e.g., in
recovering from grid-voltage disturbaces, while still meeting
the requirement of stability for grid inductance values corre-
sponding to the SCR of unity.

Remark 2: as shown in [25], the introduction of additional
outer loop controllers can have an adverse effect on the sta-
bility of the system. These issues can potentially be alleviated

Fig. 3. Pole map of the two reference designs based on the indirect approach
in [8] (top) and the direct approach in [5] (middle), respectively, and of the
proposed design (bottom). In the proposed pole placement, the parameter
values are selected as ζ = 0.15 and βc = 4αc. Nominal pole locations are
marked in black, with star symbol referring to a double pole.

through reduction of βc, but this analysis is a topic for future
research.

Remark 3: While the filter is assumed purely inductive
above, the findings are equally applicable to systems equipped
with LCL filters instead of an L filter. The additional resonant
poles of the LCL filter could be placed, e.g., by using the
radial projection technique [cf. (17)].

IV. RESULTS

In the following section, the base values are selected as the
nominal values of a 12.5-kVA 50-Hz grid converter system
with in =

√
2·18 A and ub =

√
2/3·400 V. Consequently, the

base impedance becomes Zb = 12.6 Ω. The filter inductance is
Lf = 5 mH (0.12 p.u.) and a switching frequency of fsw = 4
kHz is used. The sampling frequency is fs = 2fsw = 8 kHz.
The bandwidth of the phase-locked loop (PLL) is set to 2 Hz.

Fig. 2 shows a map of the grid inductance values for which
the system turns unstable as a function of the pole parameters
ζ and βc. Two highly robust regions can be observed around
the points (0.05, 3.5αc) and (0.1, 0.1αc). In the following, an
example tuning based on the choice αc = 2π · 400 rad/s (8
p.u.), ζ = 0.15, and βc = 4αc is employed. A deliberate
choice of avoiding the regions of high robustness in Fig. 2 is
made in order to maintain satisfactory dynamic performance,
while still achieving stable operation for grid inductances
corresponding to a SCR of unity.

This example design is then compared to a direct pole
placement design presented in [5] and an LQR-based indirect
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Fig. 4. Experimental results under nominal conditions (Lg = 0, SCR = 8)
of the proposed design, a reference direct design, [5], and a reference indirect
design [8]. (a) Positive-sequence reference tracking (b) Negative-sequence
reference tracking (c) Symmetric grid-voltage dip of 0.5 p.u. (d) Asymmetric
grid-voltage dip corresponding to a single line-to-ground fault behind a
transformer.

pole placement design presented in [8] that extends on the
work in [26]. For the direct design, the bandwidth of the
dominant pole is selected as αc = 8 p.u. to obtain identical
reference-tracking characteristics under nominal conditions.
For the indirect design based on LQR, the weights are selected

(a)

(b)

(c)

(d)

Fig. 5. Experimental results under weak grid conditions (Lg = 0.92 p.u.,
SCR = 0.96) of the proposed design and a reference indirect design [8]. (a)
Positive-sequence reference tracking (b) Negative-sequence reference tracking
(c) Symmetric grid-voltage dip of 0.5 p.u. (d) Asymmetric grid-voltage dip
corresponding to a single line-to-ground fault behind a transformer.

as Q = diag[35, 0, 30, 15] and R = 1. Fig. 3 shows the pole
maps for these three designs for grid inductance values ranging
from 0 p.u. to 1 p.u. The direct design [5] becomes unstable
already for grid inductance of 0.27 p.u., whereas the proposed
and the indirect design [8] remain stable for the range of
examined grid inductances.



To demonstrate the performance of the proposed pole place-
ment design, a set of experiments are presented in Figs. 4
and 5 for grid inductance values of 0 p.u. (SCR = 8) and
0.92 p.u. (SCR = 0.96), respectively. The direct design [5]
is omitted from Fig. 5, since it is unstable. Both figures
comprise positive- and negative-sequence reference tracking
in subfigures (a) and (b), respectively, and both symmetric
and asymmetric grid-voltage dip in subfigures (c) and (d),
respectively. While the reference-tracking performance of all
designs can be observed comparable under nominal conditions,
the proposed design has better dynamic performance under
weak grid, cf. Figs 5(a) and 5(b), as compared to the indirect
design [8]. The responses to symmetric and asymmetric grid-
voltage dips are also comparable under nominal conditions.
Furthermore, complete cancellation of the negative-sequence
disturbance in the current is achieved irrespective of the grid
inductance. However, a slowly oscillating mode with low
amplitude can be observed in the response of the proposed
design to an asymmetric grid dip. This mode is caused by
the partial pole-zero cancellation of the negative-sequence
integrator pole in the output admittance, and its characteristics
depend on the choice of the damping ratio ζ. Under weak grid
conditions, the proposed design exhibits better symmetric and
asymmetric disturbance rejection as compared to the indirect
design [8].

V. CONCLUSION

This paper presented an enhanced direct pole placement
design for positive- and negative-sequence current control of
grid converters. The pole placement design was synthesized
from the existing body of literature on multi-frequency current
control. The resulting design is robust to grid inductance
variations and achieves comparable dynamic performance rel-
ative to existing state-of-the-art pole placement designs under
nominal strong grid conditions. Furthermore, the proposed
design is simpler than the existing robust pole placement
designs, while providing good dynamic performance under
weak grid conditions.
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[15] G. G. Koch, C. R. D. Osório, H. Pinheiro, R. C. L. F. Oliveira, and V. F.
Montagner, “Design procedure combining linear matrix inequalities and
genetic algorithm for robust control of grid-connected converters,” IEEE
Trans. Ind. Appl., vol. 56, no. 2, pp. 1896–1906, Mar./Apr. 2020.

[16] L. C. Borin, I. Cleveston, G. G. Koch, C. R. D. Osório, E. Mattos, and
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