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Abstract

Gaussian process models are flexible, Bayesian
non-parametric approaches to regression. Prop-
erties of multivariate Gaussians mean that they
can be combined linearly in the manner of addi-
tive models and via a link function (like in gen-
eralized linear models) to handle non-Gaussian
data. However, the link function formalism is
restrictive, link functions are always invertible
and must convert a parameter of interest to an
linear combination of the underlying processes.
There are many likelihoods and models where a
non-linear combination is more appropriate. We
term these more general models Chained Gaus-
sian Processes: the transformation of the GPs
to the likelihood parameters will not generally
be invertible, and that implies that linearisation
would only be possible with multiple (localized)
links, i.e a chain. We develop an approximate
inference procedure for Chained GPs that is scal-
able and applicable to any factorized likelihood.
We demonstrate the approximation on a range of
likelihood functions.

1 Introduction

Gaussian process models are flexible distributions that can
provide priors over non linear functions. They rely on
properties of the multivariate Gaussian for their tractabil-
ity and their non-parametric nature. In particular, the sum
of two functions, drawn from a Gaussian process is also
given by a Gaussian process. Mathematically, if f ⇠
N (µf , kf ) and g ⇠ N (µg, kf ) and we define y = g + f
then properties of multivariate Gaussian give us that y ⇠
N (µf + µg, kf + kg) where µf and µg are deterministic
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functions of a single input, kf and kg are deterministic,
positive semi definite functions of two inputs and y, g and
f are stochastic processes.

This elementary property of the Gaussian process is the
foundation of much of its power. It makes additive mod-
els trivial, and means we can easily combine any process
with Gaussian noise. Naturally, it can be applied recur-
sively, and covariance functions can be designed to reflect
the underlying structure of the problem at hand (e.g. Hens-
man et al. [2013b] uses additive structure to account for
variation in replicate behavior in gene expression).

In practice observations are often non Gaussian. In re-
sponse, statistics has developed the field of generalized lin-
ear models [Nelder and Wedderburn, 1972]. In a gener-
alized linear model a link function is used to connect the
mean function of the Gaussian process with the mean func-
tion of another distribution of interest. For example, the log
link can be used to relate the rate in a Poisson distribution
with our GP, log � = f+g. Or for classification the logistic
distribution can be used to represent the mean probability
of positive outcome, log p

1�p = f + g.

Writing models in terms of the link function captures the
linear nature of the underlying model, but it is somewhat
against the probabilistic approach to modeling where we
consider the generative model of our data. While there’s
nothing wrong with this relationship mathematically, when
we consider the generative model we never apply the link
function directly, we consider the inverse link or transfor-
mation function. For the log link this turns into the expo-
nential, � = exp(f + g). Writing the model in this form
emphasizes the importance that the transformation function
has on the generative model (see e.g. work on warped GPs
[Snelson et al., 2004]). The log link implies a multiplicative
combination of f and g, � = exp(f +g) = exp(f) exp(g),
but in some cases we might wish to consider an additive
model, � = exp(f) + exp(g). Such a model no longer
falls within the class of generalized linear models as there
is no link function that renders the two underlying pro-
cesses additive Gaussian. In this paper we address this is-
sue and use variational approximations to develop a frame-
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work for non-linear combination of the latent processes.
Because these models cannot be written in the form a sin-
gle link function we call this approach “Chained Gaussian
Processes”.

2 Background

Assume we have access to a training dataset of n input-
output observations {(xi, yi)}n

i=1, yi is assumed to be a
noisy realisation of an underlying latent function f = f(x),
i.e. yi = f(xi) + ✏i. For a Gaussian likelihood ✏i ⇠
N

�
µ, �2

�
, xi 2 Rq and yi 2 R. Normally the mean of the

likelihood is assumed to be input dependent and given a GP
prior µ = fi = f(xi) where f(x) ⇠ GP(µf , kg(x,x0)),
and � is fixed at an optimal point. In this case the integrals
required to infer a posterior, p(f |y), are tractable.

One extension of this model is the heteroscedastic GP
regression model [Goldberg et al., 1998, Lazaro-Gredilla
and Titsias, 2011], where the noise variance � is depen-
dent on the input. The noise variance can be assigned
a log GP prior, yi ⇠ N

�
f(xi), e

g(xi)
�
, where g(x) =

GP(µg, kg(x,x0)), i.e. a log link function is used. Unfor-
tunately this generalization of the original Gaussian pro-
cess model is not analytically tractable and requires an ap-
proximation to be made. Suggested approximations in-
clude MCMC [Goldberg et al., 1998], variational infer-
ence [Lazaro-Gredilla and Titsias, 2011], Laplace approx-
imation [Vanhatalo et al., 2013] and expectation propaga-
tion [Hernández-Lobato et al., 2014] (EP).

Another generalization of the standard GP is to vary the
scale of the process as a function of the inputs. Adams and
Stegle [2008] suggest a log GP prior for the scale of the pro-
cess giving rise to non-parametric non-stationarity in the
model. Turner and Sahani [2011] took a related approach
to develop probabilistic amplitude demodulation, here the
amplitude (or scale) of the process was given by a Gaussian
process with a link function given by � = log(exp(f)�1).
Finally Tolvanen et al. [2014] assign both the noise vari-
ance and the scale a log GP prior.

Both these two variations on Gaussian process regression
combine processes in a non-linear way within a Gaussian
likelihood, but the idea may be further generalized to sys-
tems that deal with non-Gaussian observation noise.

In this paper we describe a general approach to combining
processes in a non-linear way. We assume that the likeli-
hood factorizes across the data, but is a general non-linear
function of b input dependent latent functions. Our main fo-
cus will be examples of likelihoods with b = 2, f(xi) and
g(xi), such that, p(y|f(xi), g(xi)), though the ideas can
all be generalized to b > 2. Previous work in this domain
include the use of the Laplace approximation [Vanhatalo
et al., 2013], however this method scales poorly, O(b3n3)
and so isn’t applicable to datasets of a moderate size.

To render the model tractable we extend recent advances in
large scale variational inference approaches to GPs [Hens-
man et al., 2013a]. With non-Gaussian likelihoods restric-
tions on the latent function values may differ, and a non-
linear transformation of the latent function, g 2 Rq may be
required. The inference approach builds on work by Hens-
man et al. [2015], that in turn builds on the variational infer-
ence method proposed by Opper and Archambeau [2009].

In other work [Nguyen and Bonilla, 2014] mixtures of
Gaussian latent functions have also been applied for non-
Gaussian likelihoods, we expect such mixture distributions
would also be applicable to our case. More recently this ap-
proach [Dezfouli and Bonilla, 2015] was extended to pro-
vide scalability using sparse methods similar those used in
this work.

3 Chained Gaussian Processes

Our approach to approximate inference in chained GPs
builds on previous work in inducing point methods for
sparse approximations of GPs [Snelson and Ghahramani,
2006, Titsias, 2009, Hensman et al., 2015, 2013a]. Induc-
ing point methods introduce m ‘pseudo inputs’, known as
inducing inputs, at locations Z = {zi}m

i=1. The corre-
sponding function values are given by ui = f(zi). These
inducing inputs points do not effect the marginal of f be-
cause

p(f |X,Z) =

Z
p(f |u,X)p(u|Z)du,

where p(u|Z) = N (u|0,Kuu) and p(f |u,X) =
N

�
f |KfuK

�1
uuu,K↵ � KfuK

�1
uuKuf

�
. The part-

covariances given by Kfu = kf (X,Z) where X is the
locations of f , define the relationship between inducing
variables and the latent function of interest, f . The
marginal likelihood is p(y) =

R
p(y|f)p(f |u)p(u)df du.

To avoid O(n3) computation complexity Titsias [2009]
invokes Jensen’s inequality to obtain a lower bound on
the marginal likelihood log p(y), an approach known as
variational compression. This approximation also forms
the basis of our approach for non-Gaussian models.

3.1 Variational Bound

For non-Gaussian likelihoods, even with a single latent pro-
cess the marginal likelihood, p(y), is not tractable, but it
can be lower bounded variationally. We assume that the
latent functions, f = f(x) and g = g(x) are a priori inde-
pendent

p(f ,g|uf ,ug) = p(f |uf )p(g|ug). (1)

The derivation of the variational lower bound then follows
a similar form as [Hensman et al., 2015] with the extension
to multiple latent functions. We begin by writing down our
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log marginal likelihood,

log p(y) = log

Z
p(y|f ,g)p(f ,g|uf ,ug)

⇥ p(uf )p(ug)df dg duf dug

then introduce a variational approximation to the posterior,

p(f ,g,ug,uf |y) ⇡ p(f |uf )p(g|ug)q(uf )q(ug), (2)

where we have made the additional assumption that the la-
tent functions factorize in the variational posterior.

Using Jensen’s inequality and the factorization of the la-
tent functions (1), a variational lower bound can then be
obtained for the log marginal likelihood,

log p(y) = log

Z
p(y|f ,g)p(f |uf )p(g|ug)

⇥ p(uf )p(ug)df dg duf dug

�
Z

q(f)q(g) log p(y|f ,g)df dg

� KL (q(uf ) k p(uf )) � KL (q(ug) k p(ug)) ,
(3)

where q(f) =
R

p(f |uf )q(uf )duf and q(g) =R
p(g|ug)q(ug)dug , and KL (p(a) k p(b)) denotes the KL

divergence between the two distributions. For Gaussian
process priors on the latent functions we recover

p(f |uf ) = N
⇣
f |Kfuf

K�1
ufuf

uf ,K↵ � Q↵

⌘

p(g|ug) = N
⇣
g|KgugK

�1
ugug

ug,Kgg � Qgg

⌘
,

where Q↵ = Kfuf
K�1

ufuf
Kuf f and Qgg =

KgugK
�1
ugug

Kugg. Note that covariances for f and
g, can differ though their inducing input locations, Z, are
shared.

We take q(uf ) and q(ug) to be Gaussian distributions
with variational parameters, q(uf ) = N (uf |µf , Sf ) and
q(ug) = N (ug|µg, Sg). Using the properties of multivari-
ate Gaussians this results in tractable integrals for q(f) and
q(g),

q(f) = N
⇣
f |Kfuf

K�1
ufuf

µf ,K↵ + Q̂↵

⌘
(4)

q(g) = N
⇣
g|Kgug

K�1
ugug

µg,Kgg + Q̂gg

⌘
, (5)

where Q̂↵ = Kfuf
K�1

ufuf
(Sf �Kufuf

)K�1
ufuf

Kuf f and
Q̂gg = Kgug

K�1
ugug

(Sg � Kugug
)K�1

ugug
Kugg.

The KL terms in (3) and their derivative can be com-
puted in closed form and are inexpensive as they are di-
vergence between Gaussians. However, an intractable in-
tegral,

R
q(f)q(g) log p(y|f ,g)df dg, still remains. Since

the likelihood factorizes,

p(y|f ,g) =
Yn

i=1
p(yi|fi,gi),

the problematic integral in (3) also factorizes across data
points, allowing us to use stochastic variational infer-
ence [Hensman et al., 2013a, Hoffman et al., 2013],

Z
q(f)q(g) log p(y|f ,g)df dg

=

Z
q(f)q(g) log

nY

i=1

p(yi|fi,gi)df dg

=
Xn

i=1

Z
q(fi)q(gi) log p(yi|fi,gi)dfi dgi. (6)

We are then left with n, b dimensional Gaussian integrals
over the log-likelihood,

log p(y) �
Xn

i=1

Z
q(fi)q(gi) log p(yi|fi,gi)dfi dgi

� KL (q(uf ) k p(uf )) � KL (q(ug) k p(ug)) .
(7)

The bound will also hold for any additional number of la-
tent functions by assuming they all factorize in the varia-
tional posterior.

The bound decomposes into a sum over data, as such the
n input points can be visited in mini-batches, and the gra-
dients and log-likelihood of each mini-batch can be sub-
sequently summed, this operation can be also be paral-
lelized [Gal et al., 2014]. A single mini-batch can in-
stead be visited obtaining a stochastic gradient for use in
a stochastic optimization [Hensman et al., 2013a, Hoffman
et al., 2013]. This provides the ability to scale to huge
datasets.

If the likelihood is Gaussian these integrals are ana-
lytic [Lazaro-Gredilla and Titsias, 2011], though the noise
variance must be constrained positive via a transformation
of the latent function, e.g an exponent. In this case,
Z

q(fi)q(gi) log p(yi|fi,gi)dfi dgi

=

Z
N

�
fi|mf i, vf i

�
N

�
gi|mgi, vgi

�
log N (yi|fi, egi)

= log N
⇣
yi|mf i, e

mgi�
vgi
2

⌘
� vgi

4
� vf ie

�mgi+
vgi
2

2

where we define mf = Kfuf
K�1

ufuf
µf , vf = K↵ + Q̂↵ ,

mg = Kgug
K�1

ugug
µg , vg = Kgg + Q̂gg. vf i denotes the

ith diagonal element of the matrix with vf along its diago-
nal. It may be possible in this Gaussian case to find the op-
timal q(f) such that the bound collapses to that of Lazaro-
Gredilla and Titsias [2011], however this would not allow
for stochastic optimization. Here we arrive at a sparse ex-
tension, where a Gaussian distribution is assumed for the
posterior over of f , where as previously q(f) has been col-
lapsed out and could take any form. This sparse extension
provides the ability to scale to much larger datasets whilst
maintaining a similar variational lower bound.
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The model is however not restricted to heteroscedastic
Gaussian likelihoods. If the integral (6) and its gradients
can be computed in an unbiased way, any factorizing like-
lihood can be used. This can be seen as a chained Gaus-
sian process. There is no single link function that allows
the specification of this model under the modelling as-
sumptions of a generalised linear model. An example that
will be revisited in the experiments is the beta distribu-
tion, yi ⇠ B(↵, �) where ↵, � 2 R+ and observations
yi 2 (0, 1), xi 2 Rq . Since ↵, � must maintain positive-
ness, then can be assigned log GP priors,

yi ⇠ B(↵ = ef(xi), � = eg(xi)), (8)

where f(x) = GP(µf , kf (x,x0)) and g(x) =
GP(µg, kg(x,x0)). This allows the shape of the beta dis-
tribution to change over time, see Supplementary Material
and section 4.2.2 for an example plots.

Using the variational bound above, all that is required is to
perform a series of n two dimensional quadratures, for both
the log-likelihood and its gradients, a relatively simple task
and computationally feasible when looking at modest batch
sizes. From this example the power and adaptability of the
method should be apparent.

A major strength of this method is that performing this in-
tegral is the only requirement to implement a new noise
model, similarly to [Nguyen and Bonilla, 2014, Hensman
et al., 2015]. Further, since a stochastic optimizer is used
the gradients do not need to be exact. Our implementa-
tions can use off the shelf stochastic optimizer, such as
Adagrad [Duchi et al., 2011] or RMSProp [Tieleman and
Hinton, 2012]. Further, for many likelihoods some por-
tion of these integrals is analytically tractable, reducing the
variance introduced by numerical integration. See supple-
mentary material for an investigation.

3.2 Posterior and Predictive Distributions

Following from (2) it is clear that when the variational
lower bound bound has been maximised with respect to the
variational parameters, p(uf |y) ⇡ q(uf ) and p(ug|y) ⇡
q(ug). The posterior for p(f⇤|y⇤) under this approximation
is

p(f⇤|y⇤) =

Z
p(f⇤|x, f)p(f |uf )p(uf |y)df duf

=

Z
p(f⇤|uf )p(uf |y)duf

⇡
Z

p(f⇤|uf )q(uf )duf = q(f⇤),

where q(f⇤) and q(g⇤) become similar to (4).

Finally, treating each prediction point independently, the
predictive distribution for each data pair {(x⇤

i ,y
⇤
i )}n⇤

i=1 fol-

lows as

p(y⇤
i |yi,xi) =

Z
p(y⇤

i |f⇤i ,g⇤
i )q(f⇤i )q(g⇤

i )df⇤i dg⇤
i .

This integral is analytically intractable in the general case,
but again can be computed using a series of two dimen-
sional quadrature or simple Monte Carlo sampling.

4 Experiments

To evaluate the effectiveness of our chained GP approxi-
mations we consider a range of real and synthetic datasets.
The performance measure used throughout is the negative
log predictive density (NLPD) on held out data, table 1.1

The results for mean absolute error (MAE) (Supplemen-
tary Material) show comparable results between methods.
5-fold cross-validation is used throughout. The non-linear
optimization of (hyper-) parameters is subject to local min-
ima, as such multiple runs were performed on each fold
with a range of parameter initialisations. The solution ob-
taining the highest log-likelihood on the training data of
each fold was retained. Automatic relevance determination
exponentiated quadratic kernels are used throughout allow-
ing one lengthscale per input dimension, in addition to a
bias kernel.2. In all experiments 100 inducing points were
used and their locations were optimized with respect to the
lower bound of the log marginal likelihood following [Tit-
sias, 2009].

4.1 Heteroscedastic Gaussian

In our introduction we related our ideas to heteroscedastic
GPs. We will first use our approximations to show how
the addition of input dependent noise to a Gaussian pro-
cess regression model effects performance, compared with
a sparse Gaussian process model [Titsias, 2009]. Perfor-
mance is shown to improve as more data is provided as
would be expected, making it clear that both models can
scale with data, though the new model is more flexible
when handling the distributions tails. A sparse Gaussian
process with Gaussian likelihood is chosen in these experi-
ments as a baseline, as a non-sparse Gaussian process can-
not scale to the size of all the experiments.

The Elevator1000 uses a subset of 1, 000 of the Elevator
dataset . In this data the heteroscedastic model (Chained
GP) offers considerable improvement in terms of negative
log predictive density (NLPD) over the sparse GP (Table 1.
Our second experiment with the Gaussian likelihood, Ele-
vator10000, examines scaling of the model. Here a subset
of 10, 000 data points of the Elevator dataset are used, and

1Data used in the experiments can be downloaded via the pods
package: https://github.com/sods/ods

2Code is publically available at: https://github.com/
SheffieldML/ChainedGP
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Data NLPD
G CHG Lt Vt CHt

elevators1000 0.39 ± 0.13 0.1 ± 0.01 NA NA NA
elevators10000 0.07 ± 0.01 0.03 ± 0.02 NA NA NA
motorCorrupt 2.04 ± 0.06 1.79 ± 0.05 1.73 ± 0.05 2.52 ± 0.09 1.7 ± 0.05

boston 0.27 ± 0.02 0.09 ± 0.01 0.23 ± 0.02 0.19 ± 0.02 0.09 ± 0.02

Table 1: Results NLPD over 5 cross-validation folds with 10 replicates each. Models shown in comparison are sparse
Gaussian (G), chained heteroscedastic Gaussian (CHG), Student-t Laplace approximation (Lt), Student-t VB approxima-
tion (Vt), and chained heteroscedastic Student-t (CHt).

G Lt CHG CHt Vt

1

2

3

4

(a) NLPD motor

G Lt CHG CHt Vt
�0.2

0

0.2

0.4

0.6

(b) NLPD Boston

Figure 1: a) NLPD on corrupt motorcycle dataset. b)
NLPD of Boston housing dataset. In NLPD lower is
better, models shown in comparison are sparse Gaus-
sian (G), Student-t Laplace approximation (Lt), Student-t
VB approximation (Vt), chained heteroscedastic Gaussian
(CHG), and chained heteroscedastic Student-t (CHt). Box-
plots show the variation over 5 folds.

performance is improved as expected. Previous models for
heteroscedastic Gaussian process models cannot scale, the
chained GP can implement the heteroscedastic setting and
scale.

4.2 Non-Gaussian Heteroscedastic likelihoods

One of the major strengths of the approximation over pure
scalability, is the ability to use more general non-Gaussian
likelihoods. In this section we will investigate this flexibil-
ity by performing inference with non-standard likelihoods.
This allows models to be specified that correspond to the
modellers belief about the data in a flexible way.

We first investigate an extension of the Student-t likelihood
that endows it with an input-dependent scale parameter.
This is straightforward in the chained GP paradigm.

The corrupt motorcycle dataset is an artificial modification
to the benchmark motorcycle dataset [Silverman, 1985]
and shows the models capabilities more clearly. The orig-
inal motorcycle dataset has had 25 of its data randomly
corrupted with Gaussian noise of N (0, 3), simulating spu-
rious accelerometer readings. We hope that our method
will be robust and ignore such outlying values. An input-
dependent mean, µ, is set alongside an input dependent
scale which must be positive, �. A constant degrees of free-

dom parameter ⌫, is initalized to 4.0 and then is optimized
to its MAP solution.

yi ⇠ St(µ = f(xi), �
2 = eg(xi), ⌫) (9)

where f(x) = GP(µf , kf (x,x0)) and g(x) =
GP(µg, kg(x,x0)). This provides a heteroscedastic exten-
sion to the Student-t likelihood. We compare the model
with a Gaussian process with homogeneous Student-t like-
lihood, approximated variationally [Hensman et al., 2015]
and the Laplace approximation. Figure 2 shows the im-
proved quality of the error bars with the chained het-
eroscedastic Student-t model. Learning a model with
heavy tails allows outliers to be ignored, and so its input de-
pendent variance can be collapsed around just points close
to the underlying function, which in this case is known
to be well modelled with a heteroscedastic Gaussian pro-
cess [Lazaro-Gredilla and Titsias, 2011, Goldberg et al.,
1998]. It is also interesting to note the heteroscedastic
Gaussian’s performance, although not able to completely
ignore outliers the model has learnt a very short length-
scale. This renders the prior over the scale parameter
independent across the data, meaning that the resulting
likelihood is more akin to a scale-mixture of Gaussians
(which endows appropriate robustness characteristics). The
main difference is that the scale-mixture is based on a log-
Gaussian prior, as opposed to the Student-t which is based
on an inverse Gamma.

Figure 1 shows the NLPD on the corrupt motorcycle
dataset and Boston housing dataset. The Boston hous-
ing dataset shows the median house prices throughout the
Boston area, quantified by 506 data points, with 13 ex-
planatory input variables [Kuß, 2006]. We find that the
chained heteroscedastic Gaussian process model already
outperforms the Student-t model on this dataset, and the
additional ability to use heavier tails in the chained Student-
t is not used. This ability to regress back to an already pow-
erful model is a useful property of the chained Student-t
model.

4.2.1 Survival Analysis

Survival analysis focuses on the analysis of time-to-event
data. This data arises frequently in clinical trials, though
it is also commonly found in failure tests within engineer-
ing. In these settings it is common to observe censoring.
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Figure 2: Corrupted motorcycle dataset, fitted with a Gaussian process model with a Gaussian likelihood, a Gaussian
process with input dependent noise (heteroscedastic) with a Gaussian likelihood, and a Gaussian process with Student-t
likelihood, with an input dependent shape parameter. The mean is shown in solid and the variance is shown as dotted
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Figure 3: Twitter sentiment from the UK general election modelled using a heteroscedastic beta distribution. The timing
of the exit poll is marked and is followed by a night of tweets as election counts come in. Other night time periods have a
reduced volume of tweets and a corresponding increase in sentiment variance. Ticks on the x-axis indicate midnight.

Censoring occurs when an event is only observed to exist
between two times, but no further information is available.
For right-censoring, the most common type of censoring,
the event time T 2 [t,1).

A common model to analyse this type of data is an accel-
erated failure time model. This suggests that the distribu-
tion of when an random event, T , may occur, is multiplica-
tively effected by some function of the covariates, f(x),
thus accelerating or retarding time; akin to notion of dog
years. In a generalized linear model we may write this as
log T = log T0 + log f(x), where T is the random vari-
able for failure time of the individual with covariates x,
and T0 follows a parametric distribution describing a non-
accelerated failure time.

To account for censoring the cumulative distribution needs
to be computable and event times are restricted to be posi-
tive. A common parametric distribution for T0 that fulfills
these restrictions is the log-logistic distribution, with the

median being some function of the covariates, f(x). This
however is restrictive as the shape of failure time distri-
bution is assumed to be the same for all patients. We relax
this assumption by allowing the shape parameter of the log-
logistic distribution to vary with response to the input,

yi ⇠ LL(↵ = ef(xi), � = eg(xi)),

where f(x) = GP(µf , kf (x,x0)) and g(x) =
GP(µg, kg(x,x0)). This allows both skewed unimodal and
exponential shaped distributions for the failure time distri-
bution depending on the individual, as shown in Figure 4.
Again there is no associated link-function in this case, and
the model can be modelled as a chained-survival model.

Table 2 shows the models performance a real and synthetic
datasets. The leukemia dataset [Henderson et al., 2002]
contains censored event times for 1043 leukemia patients
and is known to have non-linear responses certain covari-
ates [Gelman et al., 2013]. We find little advantage from
using the chained-survival model, but as usual the model is
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Figure 4: Resulting model on synthetic survival dataset.
Shows variation of median survival time and shape of log-
logistic distribution, in response to differing covariate in-
formation. Background colour shows the chained-survivals
predictions, coloured dots show ground truth. Lower fig-
ures show associated failure time distributions and hazards
for two different synthetic patients. Shapes can be both
unimodal or exponential.

Data NLPD
G LSurv VSurv CHSurv

leuk 4.03 ± .08 1.57 ± .01 1.57 ± .01 1.56 ± .01
Surv 5.45 ± .06 2.52 ± .02 2.52 ± .02 2.16 ± .02

Table 2: Results NLPD over 5 cross-validation folds with
10 replicates each. Models shown in comparison are sparse
Gaussian (G), survival Laplace approximation (LSurv),
survival VB approximation (VSurv), chained heteroscedas-
tic survival (CHSurv).

robust such that performance isn’t degraded in this case.
We additionally show the results on a synthetic dataset
where the shape parameter is known to vary with response
to the input, in this case an increase in performance is seen.
See Appendix A.5 for more details on the model and syn-
thetic dataset.

4.2.2 Twitter Sentiment Analysis in the UK Election

The final experiment shows the adaptability of the model
even further, on a novel dataset and with a novel het-
eroscedastic model. We consider sentiment in the UK gen-
eral election, focussing on tweets tagged as supporters of
the Labour party. We used a sentiment analysis tagging
system3 to evaluate the positiveness of 105,396 tweets con-
taining hashtags relating to recent the major political par-
ties, over the run in to the UK 2015 general election. We are

3Available from https://www.twinword.com/

interested in modeling the distribution of positive sentiment
as a function of time. The sentiment value is constrained to
be to be between zero and one, and we do not believe the
distribution of tweets through time to be necessarily uni-
modal. A natural likelihood to use in this case is the beta
likelihood. This allows us to accommodate bathtub shaped
distributions, indicating tweets are either extremely posi-
tive or extremely negative. We then allow the distribution
over tweets to be heterogenous throughout time by using
Gaussian process models for each parameter of the beta dis-
tribution, yi ⇠ B(↵ = ef(xi), � = eg(xi)), where f(x) =
GP(µf , kf (x,x0)) and g(x) = GP(µg, kg(x,x0)).

The upper section of Figure 3 shows the data and the prob-
ability of each sentiment value throughout time. The lower
part shows the corresponding mean and variance functions
induced by the above parameterization. This year’s general
election was particularly interesting: polls throughout the
election showed it to be a close race between the two major
parties, Conservative and Labour. But at the end of polling
an exit poll was released that predicted an outright win for
the Conservatives. This exit poll proved accurate and is as-
sociated with a corresponding dip in the sentiment of the
tweets. Other interesting aspects of the analysis include the
reduction in number of tweets during the night and the cor-
responding increase in the variance of our estimates.

4.2.3 Decomposition of Poisson Processes

The intensity, �(x), of a Poisson process can be modelled
as the product of two positive latent functions, exp(f(x))
and exp(g(x)), as a generalrised linear model,

log(�) = f(x) + g(x)

y ⇠ Poisson(� = exp(f + g) = exp(f(x)) exp(g(x))),

using a log link function.

Instead imagine we form a new process by combining two
different underlying Poisson processes through addition.
The superposition property of Poissons means that the re-
sulting process is also Poisson with rates given by the sum
of the underlying rates.

To model this via a Gaussian process we have to assume
that the intensity of the resulting Poisson, �(x) is a sum of
two positive functions exp(f(x)) and exp(g(x)),

y ⇠ Poisson(� = exp(f(x)) + exp(g(x))), (10)

there is no link function representation for this model, it
takes the form of a chained-GP.

Focusing purely on the generative model of the data, the
lack of an link function does not present an issue. Figure 5
shows a simple demonstration of the idea in a simulated
data set.

Using an additive model for the rate rather than a multi-
plicative model for counting processes has been discussed
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Figure 5: Even with 350 data we can start to see the differ-
entiation of the addition of a long lengthscale positive pro-
cess and a short lengthscale positive process. Red crosses
denote observations, dotted lines are the true latent func-
tions generating the data using Eq (10), the solid line and
associated error bars are the approximate posterior predic-
tions, q(f⇤), q(g⇤), of the latent processes.

previously in the context of linear models for survival anal-
ysis, with promising results Lin and Ying [1995].

To illustrate the model on real data we considered homi-
cide data in Chicago. Taking data from http://
homicides.redeyechicago.com/ (see also Lin-
derman and Adams [2014]) we aggregated data into three
months periods by zip code. We considered an additive
Poisson process with a particular structure for the covari-
ance functions. We constructed a rate of the form:

⇤(x, t) = �1(x)µ1(t) + �2(x)µ2(t)

where �1(x) = exp(f1(x)), �2(x) = exp(g1(x)), µ1(t) =
exp(f2(t)) and µ2(t) = exp(g2(t)) where f1(x), g1(x)
are spatial GPs and f2(t) and g2(t) are temporal GPs.
The overall rate decomposes into two separable rate func-
tions, but the overall rate function is not separable. We
have a sum of separable [Álvarez et al., 2012] rate func-
tions. This structure allows us to decompose the homicide
map into separate spatial maps that each evolve at differ-
ent time rates. We selected one spatial map with a length
scale of 0.04 and one spatial map with a length scale of
0.09. The time scales and variances of the temporal rate
functions were optimized by maximum likelihood. The re-
sults are shown in Figure 6. The long length scale process
hardly fluctuates across time, whereas the short lengthscale
process, which represents more localized homicide activ-
ity, fluctuates across the seasons with scaled increases of
around 1.25 deaths per month per zip code. This decom-
position is possible and interpretable due to the structured
underlying nature of the GPs inside the chained model.

Figure 6: Homicide rate maps for Chicago. The short
length scale spatial process, �1(x) (above-left) is multi-
plied in the model by a temporal process, µ1(t) (below-
left) which fluctuates with passing seasons. Contours of
spatial process are plotted as deaths per month per zip code
area. Error bars on temporal processes are at 5th and 95th
percentile. The longer length scale spatial process, �2(x)
(above-right) has been modeled with little to no fluctuation
temporally µ2(t) (below-right).

5 Conclusions

We have introduced “Chained Gaussian Process” models.
They allow us to make predictions which are based on
a non-linear combination of underlying latent functions.
This gives a far more flexible formalism than the gener-
alized linear models that are classically applied in this do-
main.

Chained Gaussian processes are a general formalism and
therefore are intractable in the base case. We derived an
approximation framework that is applicable for any factor-
ized likelihood. For the cases we considered, involving two
latent functions, the approximation made use of two dimen-
sional Gauss-Hermite quadrature. We speculated that when
the idea is extended to higher numbers of latent functions
it may be necessary to resort to Monte Carlo sampling.

Our approximation is highly scalable through the use of
stochastic variational inference. This enables the full range
of standard stochastic optimizers to be applied in the frame-
work.
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