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Article

Spatially random modulus and
tensile strength: Contribution
to variability of strain, damage,
and fracture in concrete

Daniel Castillo , Tuan HA Nguyen and
Jarkko Niiranen

Abstract

This paper explores the computational modeling of nonlocal strain, damage, and fracture in concrete, consid-

ering the isolated contribution of two random, spatially variable properties related to the fracture process:

Young’s modulus (E) and tensile strength (ft). Applying a continuum damage model, heterogeneous specimens of

concrete with random and spatially varying E or ft were found to produce substantial differences when

contrasted with traditional homogeneous (non-random) specimens. These differences include variable and

uncertain strain and damage, wandering of the failure paths, and differing (sometimes lower) peak forces,

i.e. increased probabilities of failure in the heterogeneous specimens. It is found that ft variability contributes

more (from 1.7 to up to 4 times more, depending on the parameter) to the overall performance variability of

the concrete than E variability, which has a comparatively lower contribution. Performance is evaluated using (1)

force-displacement response, (2) individual, average, and standard deviation maps of non-local strain and

damage, (3) fracture paths and strain and damage values along the fractures. The modeling methodology

is illustrated for two specimen geometries: a square plate with a circular hole, and an L-shaped plate.

The computational results correlate well with reported experimental data of fracture in concrete specimens.
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Damage, fracture, spatially random, concrete, quasi-brittle, material properties

Introduction

Many engineering and infrastructure materials result from mixing dissimilar components, and con-
sequently they exhibit a probable range of physical and mechanical properties, as well as a natural
degree of randomness. In hydraulic concrete, for instance, rocks, cement, and air all have different
characteristic responses to mechanisms such as load applications, temperature and moisture
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transfer, volume variations due to temperature changes, rates of chemical degradation, and suscep-
tibility to specific environmental agents, among others. The coexistence of such heterogeneity within
the same material plays a vital role in explaining the variability of damage and failure/fracture
processes in concrete. Consequently, we intend to include randomness and heterogeneity (partic-
ularly that of modulus and tensile strength) as a part of a computational model of concrete, to study
how this material performs to damage and failure while producing variable results. We will assess
the random behavior of fracture paths, through analyses of strain and damage occurring in several
concrete specimens, and through the study of the force sustained by this material.

The computational modeling of damage and fracture in cement-based concrete, a quasi-brittle
material, has been approached through discrete and phase-field methods. Discrete methods, such
as the extended finite element method (X-FEM) (Moes and Belytschko, 2002; Moes et al., 1999),
cohesive zone models (CZM) (Ferte et al., 2016; Park and Paulino, 2011), and the virtual crack closure
technique (VCCT) (Irwin, 1957), are based on the theory of linear fracture mechanics to integrate the
discontinuities into the primary field variables; they incorporate fracture through a traction-
separation law. For example, VCCT is used commonly for delamination modeling (Valvo, 2012)
and benchmark configurations such as the composite double cantilever beam; a comparative
approach of the X-FEM, CZM, and VCCT methods can be found in the study by Heidari-Rarani
and Sayedain (2019). Discrete methods are robust for tracking and modeling macro-cracks, but they
require initiations of cracks and ad hoc criteria to predict ongoing crack orientation. These require-
ments may limit the applicability of discrete approaches when, for instance, modeling heterogeneous
materials with relatively complex geometry where multiple cracks may appear, since it may become
difficult or impractical to impose the initial cracks a priori. On the other hand, the family of phase-
field methods (Ambati et al., 2014; 2015; Francfort and Marigo, 1998; Sargado et al., 2018) considers
brittle and ductile fractures as a continuous field where the internal states of material integrity are
described by a “phase” parameter. The fracture propagation in phase-field methods is governed by
minimization of an energy function, implying that diffusive cracks grow along a path which results in
the least potential energy of the structure. Phase-field methods are therefore able to remedy and
alleviate several difficulties of the discrete approaches. Nevertheless, it is important to remark that
these methods require the phase variable to be coupled to the field of primary variables (e.g. displace-
ments), resulting in higher number degrees of freedom, and therefore increased computational effort.

As followed by other studies closer to the behavior of interest herein, the nonlocal continuum
approach is suitable for modeling damage in quasi-brittle and heterogeneous materials such as concrete
(Bazant, 1994; Mazars and Pjaudier-Carbot, 1989). Due to their naturally complex compositions, these
materials exhibit significantly different behaviors under tensile and compressive loading conditions.
Smeared damage approaches (Comi and Perego, 2001; Kuhl et al., 2000) describe the material degra-
dation by distinguishing damage parameters, controlled by separated tensile and compressive strain
components. While highly accurate, they lead to complicated modeling and high computational costs.
To tackle this issue, scalar damage models (Peerlings et al., 1996; Verhoosel et al., 2011) deal with this
complexity by introducing a single damage parameter, which is in turn driven by a scalar nonlocal
equivalent strain value. This variable plays the role of an indicator for the intensity of the strain tensor,
considering different behaviors in tensile and compressive directions. At the same time, the evolving
nature of nonlocal interactions of micro-defects is essential in the modeling of damage propagation
(Pijaudier-Carbot et al., 2004; Simone et al., 2004). The progress of damage in the material is associated
with volume variation in cracks and voids during the fracture process; this phenomenon has been
measured experimentally for concrete using X-ray CT (Yang et al., 2017). Damage propagation has
been addressed analytically by some studies (Giry et al., 2011; Poh and Sun, 2017) which have proposed
appropriate laws to capture the nonlocal interactions precisely. Besides the studies in cement-based
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concrete, the behavior of fracture in polymer concrete, which is not the focus of this article, has also

been addressed by Aliha et al. (2012).
Building from the current state of both challenges and research efforts, Nguyen et al. (2018)

recently presented a model that applies a modified evolving anisotropic non-local gradient param-

eter to accurately calculate non-local interactions of damage micro-processes, thus addressing the

issues mentioned before. This model was initially developed for and applied to homogeneous

materials, and in the present study it has been selected and adapted to consider the heterogeneity

and randomness of the spatially varying material properties of concrete.
Many of the studies on fracture in concrete are based on the principles of micromechanics, and

thus they rely on geometric representations of heterogeneity, i.e. aggregate particles or air voids

embedded in the mortar phase. For instance, recent applications (Heidari-Rarani and Bashandeh-

Khodaei-Naeini, 2018; Yilmaz and Molinari, 2017) consider the modeling of rocks within the

mortar phase, modeling aggregates as two or three-dimensional ellipses or spheres, and make use

of the theory of cohesive zones to model fracture. Others present a detailed scanning and modeling

of air voids (Han et al., 2018) and apply a crack phase field model to study the development of

damage. For example, an approach using reconstructed microstructures for the study of fracture in

concrete due to freeze-thaw is presented by Dong et al. (2018). Alternative approaches include

discrete elements as well (Suchorzewski et al., 2018). On the other hand, some applications (Guo

et al., 2009) have used innovative techniques to model the material with truss-like elements (i.e.

lattices) achieving a mesoscopic, ‘overall’ description of fatigue damage in concrete; the microstruc-

ture is generated after a picture of a real concrete specimen. Such models of heterogeneous materials

enable the analysis of dynamic responses, the appearance of fracture patterns, and in general they

assess the effect of parameters such as fracture energy, fatigue damage, and aggregate/air void

characteristics (shape, orientation, volume fraction). Particularly, Eliá�s et al. (2015) presents frac-
ture results of concrete beams under three-point-bending with varying notch depths, including no

notch, using a microstructure-based approach to heterogeneity similar to a point to this study.

Both Eliá�s et al. (2015) and the present paper coincide in predicting (1) increased variability in

the response of stochastic models when compared to the experimental results, and (2) lower peak

forces when the specimens are random than when they are not. Additionally, the modeling

approach and simulations herein are performed with the objective of isolating the influence of E

and ft on the variability in performance of concrete.
Perhaps the most important difference between the present study and those mentioned before is

the absence of an aggregate microstructure. Herein, aggregates are not considered explicitly because

the meso-scale discretizing of concrete does not intend to represent individual rock particles.

Conversely, the discretization enables a synthetic representation of the uncertainty of material

properties in space. This uncertainty is reflected later in the variability of the results (Results and

analysis section) and is comparable with data reported experimentally. Heterogeneous models that

consider inclusions are computationally heavy (Chen et al., 2018a; You et al., 2012), and a consid-

erable part of these elevated computational costs goes to considerations regarding the interface and

contact models between the particles and the binder. The methodology presented herein intends to

offer an alternative approach, using repetitive simulations with identical discretization but slight

(random) differences. Not having a microstructure is precisely what makes each simulation man-

ageable enough so that a high number of models can be set up and run, while managing to obtain

results that are representative of the damage and fracture of the material. For an explicit consid-

eration of rock aggregates and heterogeneous effects, the reader is referred to Caro et al. (2018) and

Qin et al. (2020); an alternative homogenization approach can be found in Chen et al. (2018b).
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In this study, we isolate the contribution of modulus (E) and tensile strength (ft) of concrete to the

overall variability in strain, damage, and fracture. To this end, we set up computational specimens of

concrete with spatially random modulus and tensile strength. The random specimens, or plates, are

subjected to controlled displacement boundary conditions that induce damage. We study the force-

displacement response of the random specimens, and we provide an overview of specimen-specific and

overall maps of non-local strain and damage. Finally, we study the variable behavior of fracture paths as

well as the strain and damage values along the fractures. The results from the computational specimens

are compared with experimental data reported previously (Winkler, 2001). The paper presents the meth-

odology for modeling and simulation, followed by the results, analysis, and conclusions of the study.

Methodology

The methodology for modeling the spatial variability of mechanical properties of concrete can be

divided into three steps, as follows:

1. Define the domain geometry and mesh: Two geometries were selected: holed and L-shaped (Step 1.

Geometry and mesh of the domain section).
2. Assign material properties to the mesh (repeat to create specimens): Random, spatially correlated

values of Young’s modulus (E) and tensile strength (ft) are assigned element wise to each of the

finite elements composing the mesh (Step 2. Random material properties section). An array of

random properties represents a “replicate”, i.e. a probable instance of a concrete specimen.

Homogeneous specimens with no variability in E and ft are created as well for comparison.
a. Per geometry, 100 specimens have random E and constant ft. This produces a total of 200

specimens with random E (100 holed, 100 L-shaped).
b. Per geometry, 100 specimens have random ft and constant E. This produces a total of 200

specimens with random ft (100 holed, 100 L-shaped).

3. Simulations: The 400 random specimens from Step 2 are modeled in finite elements (Step 3.

Considerations for FE simulation and modeling of damage section). A controlled displacement is

applied; the holed specimens are subjected to tension, and a nodal displacement is applied

upwards to one corner of the L-shaped specimens. Concrete is modeled quasi-brittle and devel-

ops damage; after a strain threshold is surpassed, it becomes progressively unable to sustain load,

with damage eventually spreading and inducing fracture. The following parameters are obtained

and analyzed: force sustained by the specimens, non-local strains, damage, and fracture paths.

Step 1. Geometry and mesh of the domain

Two geometries of concrete are used as model structures in this study. The first geometry is a holed

plate of side 200mm with a circular inclusion. The second plate geometry is L-shaped, 500mm high.

The meshed geometries are presented in Figure 1. Details about the selection and characteristics of

the geometries are provided next.
To fully capture the effects of nonlocal interactions and strain localization, finer mesh sizes are

required in critical areas where high-gradient values of stress and strain are foreseen, and where

damage concentration and fracture are likely. The meshes were defined after a mesh convergence

analysis with finest element sizes between 2mm (fine) and 5mm (coarse). It was found that a mesh

with an intermediate size of 3mm is within 0.7% of the results of the finest mesh (holed geometry)

and even closer for the L-shaped (within 0.1%). The selected meshes have 4,786 elements (holed
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geometry) and 5,306 elements (L-shaped geometry). The two geometries are created and discretized

using the open-source software Gmsh (Geuzaine and Remacle, 2009).
It can be observed from Figure 1 that the mesh for the holed geometry has an uneven horizontal

distribution for the nodes, i.e. the nodes do not describe a horizontal line where failure is expected.

This was intentional, to avoid prescribing the expected failure path; such a mesh was tested as part

of modeling trials, and even while variability still emerged, results showed a strong bias due to the

mesh. On the other hand, the finer mesh for the L-shaped geometry is made of squares because

failure is expected to be diagonal.
Two element types are used: the holed geometry is meshed with standard linear triangular finite

elements with three nodes (T3) and the L-shaped geometry is meshed with four-node quadrilateral

elements (Q4). Selecting these standard low-order finite favors simplicity while avoiding stress

oscillation, as introduced in the smoothing gradient damage model (Nguyen et al., 2018).
Overall, the use of the two geometries (one with an inclusion, the other with a concave polygonal

shape), two types of elements (triangular and quadrilateral), and two loading schemes (inducing

different modes of fracture, see Step 3. Considerations for FE simulation and modeling of damage

section) intends to show the versatility of the modeling methodology and its ability to adjust to a

range of domain sizes and geometries, and element types. Additionally, results from the L-shaped

geometry are compared with experimental data (Winkler, 2001) of identical material and test con-

ditions, to support the validity of the model results.

Step 2. Random material properties

Step 2 of the methodology consists of the assignment of random, spatially correlated values of

Young’s modulus (E) and tensile strength (ft) to the meshed specimens. As mentioned before, to

isolate the influence of E and ft on the fracture behavior of concrete, 400 random specimens of

concrete are created as follows, in four sets:

• 100 holed specimens have random E and constant ft¼ 2 MPa.

(a) (b)

m
m 002 50

0 m
m

40 mm 250 mm

0.06 mm

0.5 mm

(holed geometry
to scale)

Figure 1. Meshed geometries and boundary conditions for (a) holed specimen, (b) L-shaped specimen. The domains
are meshed with triangular and quadrilateral finite elements, respectively. Note the difference in size.
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• 100 holed specimens have random ft and constant E¼ 20 GPa.
• 100 L-shaped specimens have random E and constant ft¼ 2.7 MPa (Winkler, 2001).
• 100 L-shaped specimens have random ft and constant E¼ 20 GPa.

To have control over the spatial correlation structure of the random specimens, we use the

methodology of random fields through matrix decomposition (EL-Kadi and Williams, 2000) to

obtain values that are both random and correlated in space. Random fields are selected because they

are a versatile stochastic tool to generate probable random vectors of numbers that are spatially

correlated (Vanmarcke, 1983). These numbers can then be interpreted as values of a mechanical

property of concrete. The assignment of mechanical properties is carried out element wise; that is,

every finite element in the mesh is assigned an individual, unique value of E or ft that is constant

within the boundaries of the finite element. There are 4,786 finite elements in the holed geometry

mesh, and 5,306 elements in the L-shaped geometry mesh. This means that each of the 400 random

specimens has around 5,000 random, normally distributed values of E or ft, effectively enabling the

modeling of concrete as a heterogeneous material. A summary of the random, heterogeneous speci-

mens of concrete is presented in Figure 2.
Instead of the theoretical concrete material with homogeneous mechanical properties used con-

ventionally, we now have specimens that exhibit randomness and spatial variability encompassing a

range of E and ft values. Following are some characteristics that support, from the computational

point of view, this synthetic representation of variability as a valid and convenient representation of

real materials, depicting and encapsulating heterogeneity in an intuitive and manageable way.
Each replicate or random specimen of concrete, i.e. each configuration of E and ft, is unique and

non-repeatable; however, the mean, variance and spatial correlation of E and ft along the specimens

are the same for each of the four “sets”. The average of the random element-wise values of E and ft
is always exact, as is their standard deviation, which was set as 7.5% of the respective average

(standard deviation of E is 1.5GPa, and of ft is 0.15MPa for the holed geometry and 0.2025MPa

for the L-shaped geometry). The distance around any point in the meshes within which the random

values of E or ft are correlated (i.e. the correlation length) was set to 25mm. Both the standard

deviation and the correlation length were selected for further evaluation and comparison with the

variability of the experimental data. Relevant reference data for these parameters is scarce from the

perspective of this modeling approach. The selection of values was therefore guided by typical

aggregate sizes in concrete and preliminary computational testing. Nevertheless, the selection is

considered reasonable as (1) the data will ultimately be contrasted with experimental results, in both

homogeneous and heterogeneous (random) cases, and (2) from the modeling perspective of isolating

the contribution, it is more relevant that these values remain constant among the cases.
Approximately half of the surface area of the random specimens lays below/above the average for

the specimen (either E or ft), as would be expected from a real concrete specimen. In fact, element-wise

values of E on any given specimen may lie anywhere between 15–25GPa, and values of ft between

1.5–2.5MPa (holed geometry) and between 2–3.5MPa (L-shaped geometry), as marked in Figure 2.

This is due both to the normal distribution of the random values and to the uniformity of the

correlation structure throughout the random field. For the same reasons, the specimens contain

relatively distinct ‘weaker’ and ‘stiffer’ areas, i.e. groups of adjacent elements where E or ft are

relatively low or high. Such a computational approach may be more consistent with the laboratory

experience than the traditional homogeneous simplification; for example, on a real specimen of con-

crete these areas could represent high/low air void concentrations, fiber reinforcement or other

inclusions, deficiencies in concrete vibration, uneven presence of water during hardening, or chemical
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degradation, among other phenomena. In particular, the random nature and location of the weakest
and stiffest areas may prove critical for processes of damage and fracture.

In the holed geometry, fracture is expected along the horizontal direction, besides the circular
inclusion. Focusing on the top, left-most specimen of Figure 2 (Holed geometry, Random E, Plate
1), it can be observed that a relatively stiff area occurred to the right-hand side of the inclusion,
directly across the expected fracture path. Naturally, the development of strains and damage in this
specimen might be affected by this occurrence. Similar phenomena can be observed in other random

E [GPa]

14

26

20
23

17 Plate 1 Plate 2 Plate 3 Plate 100

ft [MPa]

1.40

2.60

2.00
2.30

1.70 Plate 1 Plate 2 Plate 3 Plate 100

E [GPa]

14

26

20
23

17

Plate 1 Plate 2 Plate 3 Plate 100

ft [MPa]

1.80

3.50

2.65
3.08

2.23

Plate 1 Plate 2 Plate 3 Plate 100

25.7 GPa
15.0 GPa

2.50 MPa 1.42 MPa 14.6 GPa

24.2 GPa

1.86 MPa

3.39 MPa

24.4 GPa14.6 GPa

Young’s modulus
E random
ft = 2 MPa

Tensile strength
ft random
E = 20 GPa

Young’s modulus
E random

ft = 2.7 MPa

Tensile strength
ft random
E = 20 GPa

Below average
Above average

Below average
Above average

Holed
geometry

L-shaped
geometry

Figure 2. Random specimens or plates of concrete, displaying spatially correlated values of Young’s modulus (E) or
tensile strength (ft). Values correspond element wise to the finite elements on the mesh (see Figure 1). Minimum and
maximum values of E and ft are marked in some specimens, as well as the regions where the values of E or ft are
below/above the average for the specimen. Note that the holed and the L-shaped geometries are not to scale.
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specimens. The ability to consider such unique, sometimes extreme or critical cases is a key feature

of the modeling methodology presented herein.
In this study, the random fields are constructed following the matrix decomposition technique.

Each realization of a field is composed of random, spatially correlated values. The values are

assigned to target coordinates, in this case, the center of each element. The correlation length of

a random field is a generation parameter, and it holds regardless of the distance between the target

coordinates (i.e. regardless of element size).

Step 3. Considerations for FE simulation and modeling of damage

Step 3 of the methodology consists of the simulation of the 400 random specimens (200 holed,

200L-shaped) using the finite element method. Additional homogeneous specimens are created for

comparison, i.e. with non-random E and ft. The full calculation procedure is depicted as a flow

chart in Figure 3.
The boundary conditions restrict translation and rotation of the bottom edge of the domain,

while prescribed displacements are applied to the top edge (holed geometry) or a corner node

(L-shaped geometry). The boundary conditions and applied displacements can be appreciated in

Figure 1. As observed, they aim to induce damage/fracture mechanisms of pure tension (Mode I)

and mixed. In detail, the boundary conditions are:

• Holed geometry: The lower edge of the specimen is restricted from displacement. A (tensile)

displacement of 0.06 mm is applied upwards, linearly and uniformly to all nodes on the upper

edge. The displacement is equally prescribed for 250 steps. This displacement corresponds to

0.03% of the height of the domain.
• L-shaped geometry: The lower edge of the L-shape is restricted from displacement. A prescribed

displacement of 0.5 mm is applied upwards, in 100 steps, to the bottom node of the ‘free’ right

edge of the L-shape. This displacement corresponds to 0.1% of the height of the domain.

The simulation is performed using the smoothing gradient damage approach (Nguyen et al.,

2018), modeling the internal variable damage (D), which represents the normalized loss of material

integrity in the constitutive relation

r ¼ 1�Dð ÞC : e (1)

where r is the stress tensor, e is the strain tensor, and C is the initial elasticity matrix. The damage

parameter D is in the range 0 � D � 1, where D ¼ 0 for intact material and D ¼ 1 for completely

damaged material. This method is quite suitable to deal with complex systems such as multi-phase

or heterogeneous materials, and it is capable of multi-crack simulation. Also, the method does not

require crack initiation to be defined a priori, nor any additional criteria to prescribe/predict crack

orientation. Instead, damage is automatically triggered in areas where the history value of strain

j ¼ maxðeÞ reaches a threshold j0.
For quasi-brittle materials like concrete, the damage evolution follows the exponential law

(Peerlings et al., 1996)

D ¼ 0
1� j0

j
1� aþ ae�bðj�j0Þ
� � if j < j0;

if j � j0:

(
(2)
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where j is the history value of strain, and j0 is the strain threshold. The parameters a and b are

material-specific; they denote the residual strength (a) and control the slope of the softening damage

curve (b). In multi-dimensional problems, j is a scalar equivalence of the strain tensor e, i.e.

j ¼ maxðeeq eð ÞÞ. The exponential formulation with residual is useful in practice when simulating

Figure 3. Scheme of the damage algorithm for heterogeneous materials.
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damage of quasi-brittle materials. As the damage parameter approaches to, but is not equal to

unity, this ensures a nonsingular stiffness matrix. Among various rules, the modified von Mises

formula (DE Vree et al., 1995) is proved to be effective for capturing quasi-brittle damage:

eeq eð Þ ¼ k� 1

2k 1� 2tð Þ I1 þ
1

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� 1Þ2
1� 2tð Þ2 I

2
1 þ

12k

1� tð Þ2 J2
s

(3)

with t being the Poisson’s ratio, and I1 and J2 the first and second invariants of the strain and

deviatoric strain tensor, respectively. The parameter k is the ratio between the compressive and

tensile strengths of the material, herein chosen as 10 for the concrete.
This study follows a nonlocal approach, where the damage parameter is implicitly driven by an

independent field (non-local equivalent strain �eeq), coupling to the primary field variable (displace-

ments). This is presented in the governing equations,

rrþ b ¼ 0
�eeq �r � ðcrÞ�eeq ¼ eeq

in the domain X

�
(4)

with b denoting the body force, and c an anisotropic gradient parameter which characterizes the

non-local interactions of micro-defects in the material (i.e. cracks, voids). Apart from the damage-

based interaction in Poh and Sun (2017), the anisotropic gradient parameter c is formulated as a

function of the dimensionless strain state eeq, the smoothed principal stresses �r1;2 and the length

scale lc as follows:

c ¼ c1 0
0 c2

� �

c1;2 ¼ j0
maxðj0; eeqÞ

�r1;2

ft

� 	2 l2c
2

(5)

where the smoothed principal stresses �r1;2 are the non-local averaging of the principal stresses r1;2 to
alleviate the stress oscillation when using low-order finite elements (c.f. Nguyen et al. (2018), Step 2.

Random material properties section). A more direct formulation which does not require nonlocal

integral averaging is also possible (Negi et al., 2020).
The boundary conditions are given as

u ¼ �u on a section of the boundary Cu

r � n ¼ �t on a section of the boundary Ct

r�eeq � n ¼ 0 on the boundary C ¼ Cu þ Ct;

8<
: (6)

where u is the displacement vector, n is the outward normal vector at the boundary, while �u and �t
are the imposed displacement and traction on the boundary. In this way, the influence of non-local

interactions of micro-defects (i.e. low stiffness, ‘weak’ areas, see Step 2. Random material properties

section) can be effectively captured, while maintaining the low order of the basis functions in the

numerical approximation. The threshold where a point of material changes its state from linear
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elastic to strain softening is set as j0¼ ft/E. In this study, this threshold is also unique elementwise

(i.e. different for every element, for every random plate) because ft or E may be random. The plates

are assumed to be in plane stress condition. Additional model variables such as fracture energy

remain unchanged in the model (Nguyen et al., 2018). After preliminary tests, the initial values of

the non-local interaction length scale are adopted as lc ¼ 20mm for the holed specimens and 25mm

for the L-shaped specimens. These values are in line with previous numerical studies (Nguyen et al.,

2018). In the present study, the materially nonlinear damage problems are solved by displacement-

controlled Newton-Raphson method.
The simulations are carried out via a MATLAB in-house finite element code. The code files are

single-threaded and run on a personal computer with an Intel Xeon 1230v5 processor and 16 GB

memory. Under the conditions of this study, one simulation takes approximately 120minutes (holed

geometry) and 60minutes (L-shaped geometry). It is worth mentioning that a corresponding homo-

geneous and heterogeneous geometries have similar running times, i.e. heterogeneity does not add a

cost when running the model, only when building the model.

Results and analysis

The results of the simulations of 200 holed specimens, 200L-shaped specimens, and corresponding

homogeneous specimens of concrete (one per geometry) are divided into three types and presented

as follows:

1. Force-displacement curves: We obtain and report the calculated force-displacement paths of the

random specimens under the applied boundary conditions.
2. Strain and damage: As presented in Step 3. Considerations for FE simulation and modeling of

damage section, the non-local equivalent strain (NLE) drives the development of damage (D) in

the concrete.
3. Fracture: The fracture paths are calculated from the nodes in the mesh where NLE and D are

maximum.

The force-displacement curves are an overall result, i.e. there is a unique response curve per

specimen of concrete. On the other hand, the strain, damage, and fracture paths are spatial

responses calculated per element. We report the maps of NLE and D of selected specimens, as

well as the overall element wise average and standard deviation results at different steps of the

simulation.

Force-displacement curves

Overall results. The force-displacement (F-D) response curves were obtained at the node(s) where the

displacement boundary condition was applied. Each of these curves summarizes the overall behavior

of a specimen of concrete, be it random or homogeneous. A summary of all curves is presented in

Figure 4: the 200 random holed specimens in Figure 4(a), and the 200 random L-shaped specimens in

Figure 4(b). The associated standard deviation of the four sets of curves is shown in Figure 5.
The results of the simulations suggest that the spatial variability of E and ft contributes in

different proportions to the overall variability of force-displacement results. In both holed- and

L-shaped geometries, F-D curves of the random specimens of concrete showed considerably higher

dispersion when the variability was contributed exclusively by ft. We can now quantify the differ-

ence in contribution.
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At the beginning of the simulations the standard deviation (r) of the F-D curves is zero. The F-D

curves are close together, and low variability is expected initially because (a) the concrete is undam-

aged and responding with full integrity, (b) the average values of E and ft are constant among each

set of specimens, and (c) the specimens with random ft show no variability at first, because E is

constant (see Figure 5, dotted curves).
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Figure 4. Force-displacement (F-D) curves for the random specimens of concrete under prescribed displacement.
Each curve represents the response of a specimen. A detail of the peaks of the curves is shown, as well as the
probability density function of the peak force values. (a) Holed geometry, (b) L-shaped geometry.
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In the random-E specimens, r increases slowly and reaches very low values, remaining below

0.2 kN (holed geometry) and 0.05 kN (L-shaped geometry) before displacement at peak force

(DPF) of the homogeneous specimen. On the other hand, variability of the random-ft specimens

(i.e. constant modulus) appears at a displacement �40% of the DPF, a clear indicator that

damage has begun. Here, r increases at a stable rate and considerably more rapidly for

the random-ft than for random-E specimens, reaching 0.40 kN (holed geometry) and 0.13 kN

(L-shaped geometry) at DPF, which is 2.5–3 times more than r of the random-E specimens at the

same displacement. Except for the random-E holed specimens, r of the F-D curves increases mono-

tonically and doubles after DPF.
The dispersion among the F-D curves reached a (local) maximum moments after DPF. At its

highest, this standard deviation represents 3–3.5% (random ft) and �1% (random E) of the force of

a comparable homogeneous specimen. At this point, the contribution of ft to F-D variability was 4

times higher (holed geometry) and 3 times higher (L-shaped geometry) than the specimens with

random E. r decreases after that point, except for the random-ft L-shaped specimens, which reach a

global maximum shortly after (area of maximum dispersion; see Figure 4(b), random-ft around

displacement 0.35mm).
Identical input variability for both geometries induced a greater increase in CV (see Figure 5)

between random-E and random-ft specimens; CV increased 4 times for the holed geometry and 3

times for the L-shaped geometry. Overall, the holed geometry appears to be slightly more sensitive

to the variability of ft than the L-shaped geometry.

Peak force values. The behavior of the peak force values sustained by the random specimens is

consistent with the previous analysis of dispersion of the F-D curves. Random-ft specimens con-

tribute considerably more to overall variability than random-E. When the variability was contrib-

uted exclusively by ft, the coefficient of variation (CV) of the peak forces increased from 0.48% to

1.42% (holed geometry) and from 0.70% to 1.63% (L-shaped geometry) compared to random-E

specimens; suggesting that ft contributed 2-3 times more than E to the variability of peak forces. The

right-hand side of Figure 4 presents the frequency histogram and calculated probability density

function (pdf) for the peak forces.
Some observations can be made from these results. Based on this analysis alone, the probability

that a random specimen resisted a maximum (peak) force lower than a homogeneous specimen was

57% (holed geometry) and 59% (L-shaped geometry) for random E. When only ft contributed to
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variability, this probability increased to 74% (holed geometry) and remained similar at 60% (L-

shaped geometry). Remarkably, the probability was not 50% in any case. In fact, while this calcu-

lation can be fine-tuned with a larger number of simulations, it was consistently greater than 50%

for both geometries and random properties. These results suggest that a material model that con-

siders random, spatially variable properties (in other words, heterogeneity) will estimate in average

a lower response, i.e. increased probability of failure than if the material was homogeneous. This

can be observed when comparing the average of the random F-D curves with the homogeneous

curve around the peak forces; the random-average was lower, if only slightly, for both geometries

and random properties.
An associated variability in peak force displacements was also observed. Displacement values are

discrete due to the steps of the simulation. Nevertheless, the displacements at peak force showed a CV of

0.97–1.13% (random E) and 1.68-2.47% (random ft); 1.7-2 times greater due to ft variability. The

maximum difference between the maximum and minimum occurring displacements at peak force

amounted to �4% (random E) and �10% (random ft) of the DPF. No correlation was found between

peak force sustained, and the maximum-to-minimum difference of E or ft for the random specimens.

Comparison with reported experimental results. Considering the resources required to perform and instru-

ment laboratory tests of concrete damage and fracture, it is complicated to obtain extensive fracture

data of concrete that is suitable for variability analyses. In fact, offering a computational alternative to

this situation is one of the motivations of the present study. For example, recent results on crack

propagation tests on concrete have been reported (Carpiuc-Prisacari et al., 2019), building an exper-

imental database and including tests with crack bifurcations. This data was measured with advanced

equipment, and digital image correlation techniques were used to capture displacement fields.
In the present study, we refer to results previously reported in the literature for L-shaped speci-

mens of concrete under tension. The geometry, boundary and loading conditions, and material

parameters of the L-shaped specimens of the present study were obtained from Winkler (2001).

Figure 6 superimposes the range of experimental results (shaded area) as reported by Meschke and

Dumstorff (2007), with corresponding data from our simulations; i.e. 200L-shaped specimens. X-

FEM results with the same geometry and load configuration (Meschke and Dumstorff, 2007) are

also presented for comparison. Meschke and Dumstorff (2007) obtained a Young’s modulus of

25.86GPa. However, this value seems to be overestimated, as the elastic structural response is out of

the experimental zone. For this reason, herein we selected E as 20GPa to fit the force-displacement

curve in the middle of the experimental zone for the homogeneous plate (see Failure paths section).
As seen in the figure, the range of potential responses encompassed in this study is in line with

experimental results. Even the more variable curves from the random- ft specimens lie mostly within

the bounds of the experimental range; random-E specimens do almost entirely. The wider range

attained by the experimental data suggests that higher input values of variability may be assumed

than those proposed in the present study (7.5% CV for E and ft, see Step 2. Random material

properties section) to represent the natural spatial variability of concrete. Some parameters like the

correlation length may be maintained, as there is limited validation data. The post-failure behavior

fits well with the data from the experiments, reaffirming the validity of the damage model used in

this study. The similarity also extends to the fracture paths (see later Figure 12(a)).

Strain and damage

Selected random specimens and homogeneous results. Figures 7 and 8 present the maps of non-local

equivalent strain (NLE) and damage (D) for selected random specimens of concrete, as well as the
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results from the homogeneous specimens. The homogeneous response is contrasted with the

element-wise average of the random-E and random-ft cases.
We can first contrast the homogeneous results with some of the selected random specimens.

The same specimens from Figure 2, i.e. plates 1, 2 and 3 were selected for Figures 7 and 8. In the

homogeneous holed specimen (Figure 7(e)), strain and damage concentrate along a horizontal line

besides the inclusion; the maps of values are almost completely symmetric. Observing the random-E

specimens (Figure 7(a)) some slight asymmetries start to be noticed. While the maps look quite

similar, all the element values of NLE and D differ from the homogeneous results, because the

underlying E and ft values are random (see Figure 2). For example, the maximum values are unique

and now appear distinctively to one or the other side of the inclusion. As it was the case with the

previous F-D results, the Young’s modulus appears to have a relatively lower contribution to

overall variability.
On the other hand, differences in the strain and damage configurations are much more noticeable

in the random-ft specimens (Figure 7(b)). Here, characteristic values such as maxima differ consid-

erably from the homogeneous (and from their counterpart on the other side of the inclusion).

The highly strained and damaged areas, or failure paths, are not necessarily horizontal, nor do

they have the same general direction at both sides of the inclusion. This ability to ‘wander’ is due to

the modeling of spatial variability in the properties of concrete. While unique and different, the

values of strain and damage of the random specimens still remain within the same order of mag-

nitude of the homogeneous results.
Similar results were obtained for the L-shaped specimens (Figure 8), where the failure path

extends diagonally upwards, away from the inner corner. Overall, the failure paths presented

random maxima and inclination; again, variability was lesser for the random-E specimens. Given

the larger scale of the L-shaped geometry and its boundary conditions, the associated strains

reached a magnitude about five times greater than those of the holed geometry; holed specimens

reached slightly lower overall values of damage. The difference in scale between the size of the
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Figure 2. (b) Selected random-ft specimens, same from Figure 2. (c) Element-wise average (l) for 100 random-E
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Figure 8. Maps of non-local equivalent strain NLE, and damage D for the L-shaped geometry (detail). The current
displacement is presented on the force-displacement curve, top left. (a) Selected random-E specimens, same from
Figure 2. (b) Selected random-ft specimens, same from Figure 2. (c) Element-wise average (l) for 100 random-E
specimens and (d) 100 random-ft specimens. (e) Homogeneous specimen. Maximum values are marked. Deformation
factor is 0.
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geometries, as well as the boundary conditions specific to each geometry, can be appreciated in

Figure 1. To see the differences among the individual random specimens more clearly it is better to

plot NLE and D profiles (see Failure paths section).

Maps of element wise average (l) and standard deviation (r) NLE and D. A useful way to summarize the

results of the many random specimens that compose each set is to average NLE and D responses of

the 100 random specimens, element by element. This generates a corresponding element wise map

(l) of averaged responses (holed geometry Figure 7(c) and (d); L-shaped geometry Figure 8(c)

and (d)). Such a map presents a summary of the essential characteristics of the strain/damage

maps of the 100 random specimens.
The homogeneous specimens were assigned the same average Young’s modulus and tensile

strength than the random specimens. Therefore, the homogeneous and average maps of NLE/D

are similar for both configurations. This similarity (1) highlights the consistency of the methodol-

ogy, which “tends” towards the traditional homogeneous results, and (2) validates that the number

of random realizations used in this study is reasonable. Perhaps the most important observation

from these maps is that the maxima for NLE and D was lower for the random specimens than for

the homogeneous. Maxima of the random specimens was in average �1% lower for damage, and

for strains it was �3% lower (random-ft) and �1% lower (random-E). This behavior is analogous

to that of peak forces (see Force-displacement curves section).
Perhaps more interesting is the element wise map of standard deviation (r). The correspond-

ing element-wise standard deviation maps of NLE and D are presented in Figure 9 and

Figure 10 for the holed and L-shaped geometries respectively, at four displacement steps.

In a homogeneous holed domain (Figure 9) there is little uncertainty that the strains and

subsequent damage will initiate at the side “ends” of the inclusion and propagate horizontally.

The r fields offer additional information; in the random specimens, there is a range of elements

around the inclusion where critical strain concentrations may potentially lead to failure initia-

tion, depending on the spatial configuration of the properties. Thus, particularly for the

random- ft specimens, strain and damage do not initiate always in the same element/location.

Meanwhile, failure initiation in the L-shaped geometry is highly localized due to the shape of

the domain (Figure 10).
While the areas of high concentrations of strains and damage develop and propagate on the

specimens, i.e. the failure paths observed in the average (l) maps, they are surrounded by areas of

high uncertainty in strains and damage. These areas of high uncertainty are thinner and more

concentrated for the strains than for the damage; except for the random-E holed specimens, strains

are “cornered” between two straight paths of high uncertainty. Damage is surrounded by a well-

defined “front” of high uncertainty which advances as the displacement is applied. Overall, during

the fracture propagation, areas of high uncertainty have a greater extension for damage than for

strains. Also, areas of high uncertainty in strains do not correspond with areas of high uncertainty

in damage.
As seen before, variability was considerably higher when only ft was random; the maximum

standard deviation for damage and strain was 3-5 times higher (holed geometry) and 2.5–3 times

higher (L-shaped geometry) for random- ft than random-E. The peak standard deviations of the

strains were 5–10 times higher for the L-shaped than for the holed specimens. On the other hand,

the standard deviation of damage had similar peak values for the holed- and L-shaped specimens

(values were higher for the holed geometry), suggesting that the processes of damage development

may have similar levels of uncertainty among these two geometries.
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Figure 9. Maps of element-wise standard deviation (r) of non-local equivalent strain NLE and damage D for the
holed geometry (detail). (a) 100 random-E specimens and (b) 100 random-ft specimens. The associated displacements
are presented in the force-displacement curve.
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Failure paths

To better examine, summarize and quantify the behavior of the failure paths, they were isolated
from each of the random specimens. Failure paths were defined by connecting the nodes
with maximum strain (NLE) at each displacement step; the paths coincide for the maxima of
NLE and D. The isolated failure paths corresponding to all specimens, along with the values
of NLE and D along each path, are presented in Figure 11 (holed geometry) and Figure 12
(L-shaped geometry).

It was noted before that the random-E specimens showed little variability; this was also the case
for the fracture in the holed geometry. While the random-E failure paths (Figure 11(a)) do show
some variability, they are mainly straight and deviate little from the horizontal. However, in the
random-ft specimens, the failure paths wandered away from their initial location, following random
directions and zigzagging outwards. Path orientations were approximately normal, and they deviate
around �10� from the horizontal; they are centered around the path described by the homogeneous
specimen. Their general orientation was independent to the left and to the right side of the inclusion.
As shown by the NLE and D profiles (Figure 11(b) and (c)), even with low wandering of the
fracture, strain and damage are effectively variable along the failure path, particularly toward the
outer edges of the specimen.
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For the random- ft specimens, the average location of the failure paths is presented along their

standard deviation in the vertical coordinate (Figure 11(a)). The plus/minus curves describe a

“trumpet” shape within which fracture was most likely to occur. Conceivably, the variability select-

ed to describe the concrete properties could be correlated to different ranges spanned by these

curves. While the mesh itself is not coarse, it was not completely horizontal so as not to bias the

development of fracture. Therefore, the homogeneous failure path presents a slight but noticeable

undulation due to the mesh (continuous line). Interestingly, the average path from the random

specimens is almost straight; i.e. a smooth failure path was calculated from the average of the

random specimens. This path is closer to the theoretical than that from the homogeneous specimen.

Due to the averaging of several specimens, the methodology of random, spatially variable material

properties can overcome mesh-related limitations.
Similar observations can be extracted from the L-shaped specimens (Figure 12); slightly more

variability was observed here when only the modulus was random, but again ft contributed con-

siderably more to overall variability. The orientation of the failure path in the L-shaped specimens

varied from 10� to 15� (random E), and this range increased to 5� to 20� (random ft), effectively

describing an area of high probability of fracture around the homogeneous path. Average fracture
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and D are plotted at the displacement step shown in the force-displacement curve.
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paths are again smoother than the homogeneous path, and they coincide for random-E and

random-ft. The results were compared with fracture paths of L-shaped concrete specimens

(Winkler, 2001) and X-FEM results (Meschke and Dumstorff, 2007) (Figure 12(a), right-hand

side); the paths described by the computational random specimens are in line with the real fracture

paths. Results from the computational model are seen to adjust adequately and represent reason-

ably well the wandering, shape, and overall orientation of real fracture in specimens of concrete.

As stated previously, the force-displacement profiles also compare well (see Figure 6). Additionally,

the average-random results for both geometries are comparable with the homogeneous response.

The random results are distributed “around” the homogeneous case, which supports their validity.

Summary and closing remarks

Overall summary, main comments

In this paper, we used a methodology to assign spatially correlated random values of Young’s

modulus (E) and tensile strength (ft) to specimens of concrete, thus introducing randomness

and spatial variability to the computational model. Two geometries were modeled (holed and L-

shaped), as well as two types of linear finite elements (triangular and quadrilateral), and two loading

schemes (edge displacement for the holed geometry, node displacement for the L-shaped geometry)

inducing two different failure modes. The results of the simulations suggest, consistently, that spa-

tial variability of ft contributes more than E to the overall variability of concrete performance in

terms of overall force-displacement, strain, damage, and fracture.
Straightforward differences appeared in the strain and damage configurations of the random

specimens. Contrary to a homogeneous specimen, randomness in the spatial distribution of material

properties leaded to strain, damage and fracture/failure in wandering and uncertain paths, with

differing values and location of maxima. Perhaps most importantly, the results from the random L-

shaped specimens were comparable and reasonably within the ranges of reported experimental

results. This suggests that the model presented in this study is useful for representing and modeling

uncertainty-related performance of concrete and other quasi-brittle materials. We believe this also

adds validity to the results for the holed plate specimens, as well as to the parameters that were

selected herein for modeling the concrete.

Specific conclusions

• Tensile strength (ft) contributed greatly to overall variability in performance. Among others, ft
contribution to the variability of peak forces sustained by the concrete specimens was 2–3 times

greater than that of E alone, and it was 1.7–2 times greater for the associated displacements.
• In spatial terms, the maximum standard deviation of the strain (NLE) and the damage (D) in the

specimens was 3-5 times higher (holed geometry) and 2.5–3 times higher (L-shaped geometry) for

random-ft than random-E.
• ft variability increased the span of potential fracture orientation relative to E variability. In holed

specimens, the increase went from 0 (horizontal fracture, random E) to �10� (random ft), and in

L-shaped specimens from 10–15� (random E) to 5–20� (random ft). The associated area of high

probability of failure widened accordingly.
• Fracture wandering was mostly affected by ft variability, although E variability by itself was able

to contribute to some extent to wandering depending on the loading configuration.
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• The random specimens were more likely to sustain a lower peak force than a corresponding

homogeneous specimen; random specimens therefore predicted an increased probability of fail-

ure. These results suggest that considering heterogeneity and randomness may favor the appear-

ance of critical cases for concentration and development of strain and damage in the material.
• Areas of high uncertainty of strains (NLE) and damage (D) did not have coincident locations.
• It was found that damage was uncertain over a greater area than the strains, and that areas where

uncertainty was high for strains were smaller and closer to the failure path than the areas of high

uncertainty of damage.
• The random failure paths were gathered and used to define areas of high probability for failure

occurrence. These areas lie within one standard deviation (in space) from the average response.

The variability of E and ft may be correlated proportionally with the width of these areas.

In turn, the average failure path coincides with that of the homogeneous response.
• It was found that the holed configuration may be slightly more sensitive than the L-shaped

configuration to the variability of ft.
• No correlation was found between the maximum force sustained by a specimen, and the

maximum-to-minimum value of E or ft occurring on that specimen.

Closing remarks

The methodology is versatile and especially well-suited to assess the individual contribution of

parameters to fracture variability. Potentially, more variables could be studied such as the correla-

tion length, length scale, damage parameters, and fracture energy. The parameters relevant to

fracture can also be modeled as random in pairs (i.e. E and ft random at the same time), with or

without correlation. However, such modeling would limit the possibility of isolating the contribu-

tion of the parameters to variability.
In general, the selection of the model parameter values (including standard deviation and cor-

relation length) could be seen as an iterative process to represent the material of interest. At first,

representative values should be selected from existing literature and experience. After analyzing the

results, the values can be adjusted depending on the response relative to the experimental data. For

example, herein it is expected that higher standard deviation (of E, of ft) would lead to greater

spread and wandering of fracture; this has been the case after some preliminary testing, as well as

for higher length scales. In this way it is also possible to identify parameters that are not contrib-

uting significantly to variability.
It is of great interest to engineers and practitioners to understand and gain insight into the spatial

variability of the properties of concrete, since it will affect and restrict the adequate performance of

the structures. The results of this study show that the methodology can be potentially applied to a

variety of domain geometries, sizes, element types, and loading schemes. Features like the manage-

ment of uneven spatial distribution of mechanical properties, the ability to overcome restrictions

imposed by the mesh, and the consideration of extreme and unique propensities to failure, are the

kind of modeling considerations that make this modeling methodology powerful, i.e. it is able to go

beyond what can be considered in a laboratory setting. Additionally, the methodology presented

herein offers an alternative to give insight and complement (expensive) laboratory results, with

(relatively inexpensive) computational models; this was one of the motivations of pursuing compu-

tational analyses as presented herein.
Another mechanism that could be potentially modeled using this approach is bridging. Bridging

refers to agents such as fibers opposing the opening of cracks (Le et al., 2019). Bridging can be

modeled implicitly in the continuum damage approach employed in this article. Such a phenomenon
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may be caused by aggregates as well (Simon and Chandra Kishen, 2016). Parameters such as

fracture energy and nonlocal interaction are responsible to control these effects. Being stochastic,

these values would represent the uneven distribution of i.e. fibers along the cement paste. Modeling

of fracture in domains with inclusions is also a relevant problem in rock fracture mechanics

(Janiszewski et al., 2019).
The development of damage in hydraulic concrete, a quasi-brittle material, is a relevant and

current issue in infrastructure research. In this context, the results reported herein represent an

advance in the study and consideration of the significant role of spatial variability in damage/

fracture processes in concrete. None of the previous information would be available from an anal-

ysis that included only homogeneous specimens. Fracture processes are random in nature, and while

traditional representations of homogeneous materials are useful, greater knowledge can only be

attained by introducing randomness into the analysis.
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