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Abstract

We start from the Bethe—Goldstone equation (BGE) to derive a simple orbital-dependent correlation
functional—BGE2—which terminates the BGE expansion at the second-order, but retains the self-
consistent coupling of electron-pair correlations. We demonstrate that BGE2 is size consistent and
one-electron ‘self-correlation’ free. The electron-pair correlation coupling ensures the correct H,
dissociation limit and gives a finite correlation energy for any system even if it has a no energy gap.
BGE2 provides a good description of both H, and Hj dissociation, which is regarded as a great
challenge in density functional theory (DFT). We illustrate the behavior of BGE2 analytically by
considering H, in a minimal basis. Our analysis shows that BGE2 captures essential features of the
adiabatic connection path that current state-of-the-art DFT approximations do not.

1. Introduction

Density-functional theory (DFT) is now widely applied in physics, chemistry, materials science and biology. This
success comes from the availability of suitable approximations for the exchange—correlation (xc) functional—
the only quantity that is unknown in Kohn—Sham (KS) DFT. However, despite this unmatched success and the
ubiquitous application of common functionals, all currently available functionals suffer from certain notorious
limitations. For example, all existing functionals fail to correctly describe the dissociations of both H3 and H,,
two very simple molecules [ 1-5]. Solving the Hy /H, dissociation problem will not only lead to a conceptual
understanding of why current functionals fail, but also offer potential pathways to develop better functionals,
and has thus attracted increasing attention [2—-19].

A viable approach in functional development is to learn from wave-function theory in constructing nonlocal
correlation functionals that involve unoccupied KS orbitals and thus stand on the fifth (and currently highest)
rung of Perdew’s Jacob’sladder [7]. A prominent example is second-order Gorling—Levy (GL) perturbation
theory (GL2) [20] that is closely related to second-order Mgllet—Plesset (MP) perturbation theory (MP2) [21-23]
in wave-function theory *. In fact, even MP2 can be viewed as an implicit density functional by means of the
adiabatic connection approach [20, 24, 25]. An important feature of 2nd-order perturbation theories (PT2) such
as GL2 and MP2 is that they are one-electron ‘self-correlation’ free [1, 5], i.e. the correlation is zero for one-
electron systems, and that they are size consistent (i.e. if the system is fragmented into two parts, the total energy
becomes the sum of the two fragments) [26, 27]. Furthermore, PT2 is fully non-local and captures the correct
R decay behaviour at long distances, which is essential to provide an accurate description of weak interactions.

* GL2 differs from MP2 in the employed orbitals. While MP2 is formulated in terms of Hartree—Fock (HF) orbitals, GL is based on KS
orbitals. Therefore, the single-excitation contribution of second-order perturbation theory is nonzero in GL2. In most of current
investigations based on GL2 [6, 7, 30, 31, 36, 106], this single-excitation contribution is not taken into account. In this paper, we refer to
second-order perturbation methods that use the KS orbitals but take only double and not single excitations into account as PT2. We leave the
inclusion of the single-excitation, which are important for weak interactions [51], to future work.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Therefore, PT2 correlation is an ideal building block for fifth-level density functionals, following Perdew’s
nomenclature. This feature has been exploited in a range of promising double-hybrid functionals [28—-36],which
linearly mix generalized gradient approximations, e.g. BLYP [37, 38] or PBE [39], with both exact exchange and
PT2 correlation. The admixture of semi-local exchange and correlation can be viewed as an efficient yet semi-
empirical way to take higher-order perturbative contributions into account that would go beyond PT2 [40, 41].
These double-hybrid functionals provide a satisfactory accuracy for various chemical interactions, but they fail
for systems with small KS energy gaps, e.g. heavily-stretched H, and metallic systems. In such systems, two or
more determinants become degenerate in energy and mean-field theories that rely on a single reference
determinant such as HF or KS—DFT break down. Also, perturbation theory diverges at any order, making it
essential to find an appropriate resummation. Seidl, Perdew and Kurth suggested an empirical adiabatic-
connection (AC) model [20, 24, 25], namely interaction-strength interpolation [ 7], to implicitly resum the
perturbation expansion by using only exact exchange, PT2 correlation and an explicit density functional derived
from the ‘point charge plus continuum’ model in the strong-interaction limit where the coupling constant
parameter goes to infinity [42]. Frequently, the analytic dependence on the coupling constant is approximated
by a Padé formula, whose parameters can be determined either empirically on theoretical grounds [6, 10].
Recently, an explicit density functional in the strong-interaction limit was suggested. It can be constructed from
so-called co-motion functions and captures fully non-local effects in the strong-interaction limit [43].

An example of a successful resummation is the particle-hole random-phase approximation (RPA), in which
an infinite number of ‘ring diagrams’ is summed [8, 44—49]. This has been widely recognized as key to make RPA
applicable to small-gap or metallic systems. The RPA method provides the correct H, dissociation limit [2, 15].
Unfortunately, it suffers from a heavy ‘self-correlation’ error for one-electron systems [1-5], and thus yields an
even worse Hj dissociation behaviour than conventional density functionals. In addition, RPA exhibits an
incorrect repulsive ‘bump’ at intermediate H, bond distances. These deficiencies have in the past been attributed
to alack of self-consistency in RPA [2, 5], which was disproved by actual self-consistent calculations [15, 50].
Another widely accepted hypothesis attributes these deficiencies to the lack of higher order diagrams and
spurred considerable beyond-RPA developments in the past few years [3, 16, 18, 19, 51-56]. Other interesting
developments in this realm include reduced density matrix theory [57] or self-consistent Green’s function
frameworks [15, 58]. A successful beyond-RPA method is renormalized second-order perturbation theory
(rPT2), which adds an infinite summation of the second-order exchange diagram of PT2 (termed second order
screened exchange (SOSEX)) [4, 59—61] and renormalized single-excitation (rSE) [51, 62] diagrams on top of
RPA [16]. rPT2 does not diverge for small-gap systems and is free of one-electron ‘self-correlation’. It thus
provides the correct description of one-electron systems including H and individual H atoms, but fails for H,
dissociation if breaking spin symmetry is not allowed [3, 16, 52 and also below]. Further improvements have
been stipulated in the context of the couple-cluster (CC) theory [18, 52—56] or the Bethe—Salpeter equation
[3, 19, 22]. These methods, although proposed from different perspectives, can all be interpreted as attempts to
explicitly introduce more ‘selective summations to infinite order’ in the density functional perturbation
framework. Even though these methods improve over standard RPA schemes with varying degrees of success for
the H; /H, dissociation problem, no improvement to date removes the ‘bump’ while simultaneously yielding
the correct dissociation limit for H; and H,, indicating the difficulty of understanding this problem in any
perturbative framework. In this context, Aggelen et al recently proposed the particle—particle random phase
approximation (pp—RPA). It describes pairing matrix fluctuations by the particle—particle (pp)-propagator, and
can also be viewed as a CC doubles (CCD) restricted to ladder diagrams [55, 56]. The pp-RPA captures the
dissociation limit in H, and eliminates the ‘self-correlation’ error in Hy, but results in a more repulsive ‘bump’
than standard RPA [55].

In this paper, we lay the ground for an efficient orbital-dependent correlation functional based on the Bethe—
Goldstone equation (BGE) [63], which is derived from the correlation of two particles [22]. As the BGE is the
simplest approximation which provides the exact solution for one- and two-electron systems, it is a good
starting point to understand the aforementioned H3 /H, dissociation challenge. In section 2, we formulate the
BGE in the context of DFT through the adiabatic connection approach. In contrast to the normal resummation
strategy in density functional perturbation theory, we propose a new correlation functional by terminating the
BGE expansion at the second order (BGE2). As shown in section 3, this BGE2 approximation gives a good
description of both Hy and H, dissociations, without requiring any higher order connected Goldstone diagrams
that are commonly believed to be necessary. We further analyse BGE2 analytically in the minimal basis H,
model. We show that BGE2 is size-extensive and free of one-electron ‘self-correlation’.
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2. BGE in density functional theory (DFT)

In the AC approach of DFT [20, 24, 25], the non-interacting KS system is connected to the physical system by an
adiabatic path. The density n along the path is fixed to the exact ground-state density. The Hamiltonian for a
family of partially interacting N-electron systems in this path is controlled by a coupling-constant parameter A,
(atomic units are used hereafter unless stated otherwise):

A = H + A(Vie — 9/ = H, + A\A,. (1)

Here, H; is the Hamiltonian of the non-interacting KS system
A~ [ 1
H; = Z[—EV% + Vs(ri):ly (@)
i

where v, () is a multiplicative one-electron potential

Vs(r) = Vext(r) + VH(r) + v (T) + Vc(r) (3)

comprising the external potential (1.4 ) arising from the Coulomb interaction between the electrons and the
nuclei, the Hartree potential (vy ), and the exchange (v,) and correlation (v.) potential. The operator 7, is also
multiplicative and constrained to satisfy 7o = 0 and ¥, = ¥y + 7. Thus, H,_, = H,, while Hj is the
Hamﬂtonian of the fully interacting system. From the perspective of many-body perturbation theory,

Ay = — 7)/Alisaperturbation of the non-interaction KS Hamiltonian, which does not change the ground-
state dens1ty n. By using coordinate scaling [20, 25, 64], it was shown that
N
A OEc[n,] _ t OE[n.]
/A= var) + () + > ——"2 a= XL v(r, @) = , 4
V4 ;[ n (1) (r;) Gn(r) (ri, ) Gn(r) (4)

where n, (x, y, z) = a’n(ax, ay, az),and v (r;, ) is the correlation potential of the scaled correlation energy
with respect to the normal density .
In the AC framework [20, 24, 25], the xc functional can be interpreted as the coupling-constant integration

A
Exln] = f drZExlnl 65 [”] f AV, )
where E; A < [n]is the xc functional for a given coupling-constant A [65]
Egeln] = (W T + AVee| U3) — (D, |T| @,) — ABulnl. (6)

V22 is the corresponding xc potential for a given coupling constant \. We can further define the exchange E} [n]
and correlation E. [n] components separately

EX [ = N((®, |Vee| ®) — Enlnl) = AEx[n]
EX[n] = (T |FL| W) — (D, |FL| ®y). ©)

Here U is the ground-state wave-function on the AC path with the coupling constant \, which gives the same
ground-state density 7 as the physical system (A = 1). U) = &, is thus the ground-state wave-function of the
non-interacting KS system. Ey [#]is the Hartree energy

n(rpn(r

EH[T”I] fd 1d ( 1) ( 2) (8)
lr — 72|

which is an explicit functional of the density. Immediately, we have V' = E, 1], as the exchange density

functional E [n] defined in this manner is linear in the coupling constant \. And the corresponding Hartree

potential v is written as

occ

<¢a|vH|¢u> = Z<¢a¢i|¢a¢i> (9)

with the definition of the two-electron four-center integral as
() i(r r)¢;(r
(koo = [dndn TOEIOIAT) (10

|r) — 13|

In contrast, it is in general not possible to obtain the exact E)?C [n] forany A = 0, since the electron—electron
repulsion operator V. appears explicitly in the Hamiltonian, and the ground-state wave-function U cannot be
obtained exactly. This is also true for two-electron systems, although the ground-state wave-function is now just
asimple electron-pair function
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T = Ty, 11

As one of the motivations in this paper is to construct a functional which can provide an accurate description for
both H, and Hj dissociations, we start from the BGE of H, [22], which is derived from the correlation of two
particles, and is thus the exact solution for one- and two-electron systems. The BGE explicitly solves the
Schrodinger equation for each electron pair ab interacting through a perturbation H; (\)

[ﬁs + )\Hl ()\)]\I/ub = Eab \Ilah
[Eap — Hi]Wap = A (V) Wy, (12)
Here, we consider the electron—electron interaction \7ee of electron pair ab explicitly, while leaving the
interaction with the other N-2 electrons on the mean field level ¥4, For two electrons we trivially have ?}* = 0.

However, for more than two electrons we would have to make this approximation explicitly. The resulting
perturbation operator is

() = Ve — D0/ X + 03T (13)

with the definition of )" as

occ

> > (Billee), (14)

i=a,bj=a,b

where {¢,} are the KS orbitals and (¢, ook ¢]> = (¢ D]lo; ¢]> — (& D]l9; ¢;). The KS orbitals can be used to
generate an antisymmetric non-interacting KS electron-pair function

?,(1) ¢, (D)
, (1,2) = —
' 2 | 6@ 6,0
Here the numbers 1 and 2 are a short-hand notation for the tuple of space and spin variables of the first and

second electron, respectively. The corresponding non-interacting Green’s function Gy (1, 2; 1/, 2/; E,;) for this
electron pair ab is

R 1
<¢’ab|vng|¢)ah> = E

L . (15)

(I)ub(l) 2) + Z ugfc (bir(l) 2) + uf? (I)rs(l) 2)

Go(1, 2; 1/, 2"y Egp) =
ab — €a — €p i=ab r Ep—€6—6& r<s Ewp — 6 — &

]\P;"h(l', 2, (16)

where {¢;} are the KS eigenvalues

&= (o; |H| &) = (&; IT| &) + (& vl ¢,). (17)

As H, (equation (2)) is a one-electron operator, it is also possible to reorganize the eigenvalues in terms of each
electron pair ab

b= €+ € = (Dyp |I:Is| Dup) (18)

which could be considered as the zero-order approximation of the electron pair energy E ..
Now we introduce the first approximation to the BGE. We neglect the single excitation contribution, i.e., the
first sum in equation (16)

q)ub(la 2) + ~ q)rs(l) 2)

G0(1> 2) 1/) 2/) Eub) ~
ab — €a — €p r<sEab_Er_€s

J\Ifjb(l’, 2. (19)
As will be discussed in section 4.1, this approximation, together with the other two approximations we will make
later, is essential for achieving an efficient correlation functional which, however, keeps the exact solution for the
H, dissociation limit in the minimal basis.

With this approximation, the electron-pair function W,;, can be written as

\Ijab(L 2)= fdl/dz/GO(L 25 1/: 2/; Eab)Aﬁl(A)(V) zl)q)ab(l/) 2/)

(@ap INEL (V)| W) LR 2(1,2)

Eabffaffb s Eab*frffs

=Dy (1, 2) (D5 [N (V)| W) (20)

Itis convenient to introduce intermediate normalization {®,,|¥,;,) = 1. Together with the expression of the
expectation value of the perturbation energy

Eap — €0 — €= {Qup |NHN)| Wyp) (21)




10P Publishing

NewJ. Phys. 18 (2016) 073026 1Y Zhanget al

the BGE electron pair function ¥,;(1, 2) becomes

unocc ®,.(1, 2
U1, 2) = By (1,2) + 5 — LD

r<s Eup — 6 — ¢

<(I)rs |)\I:Il()\)| \I/ab>- (22)

Since the BGE electron pair function \,;, appears on both sides of this equation, both ¥, and E,,;, (equation (23))
contain an infinite sequence of Goldstone diagrams [22, 23], as one can easily see by inserting equation (22) into
equation (21)

. unoce (& o INEL (V)| B ) DBy [N (V)| T,
Eip—€a— 6= <¢)ab |)\I_Il()‘)| q>ah> + Z < b I i )l >< I i )| b> .

r<s

(23)
Eab — & — €

We now consider the different terms step by step. First, we expand the ;' (\) term on the right-hand side

et () = (D [N (V)| D)
= M@y |Vie + OXF — D1/ A| D). (24)

Itis the first-order correction to the non-interaction electron pair energy ¢, defined in equation (18). Utilizing
the definitions of V) (equation (4)) and 19“1‘{,“: (equation (14)) for the fully-interacting system (A = 1), we have

ISt(l) —< ab |‘?ee + 0;\1/7112 - 9H - ﬁxcl (I)ab>
- <¢ | 26— g - 5 ¢,~>
i=a,b

= el + ¢ (D), (25)

where €% (1) is the corresponding first-order correction of the non-interaction electron energy ¢, for the fully
interacting system. And 7 is the Hartree—Fock like exact exchange operator defined as

occ

(Gul%100) = =D (40064 (26)
i
Together with the the non-interaction electron pair energy ¢, this leads to the electron-pair total energy at
the first-order many-body perturbation level, which contains only the exact exchange. Next we define the BGE
electron-pair correlation energy e5°F () as

eSE(N) = Egp — €0 — & — el (V). (27)

For two electrons, e, BGE (A)is the total correlation energy E. BGE [17](\). For more than two electrons we have to
sum up the the correlatlon energies of all electron pairs:
EXF[n](N) = Y e " (V. (28)
a<b
Finally, the BGE total energy for the fully interacting system (A = 1) becomes
EE)?E qu + Elst(l) + ZeBGE[T’l](l)
a<b

= EEX + EESE[n](1), (29)

where E£X is the exact-exchange total energy in the KS—-DFT framework. BGE is thus exact for one- and two-

electron systems, but approximate for more electrons, because interaction terms between three or more
electrons are missing.
With the definition of 5°F (), equation (23) becomes

unocc /\2< b |H (@] (I>r3>< s |H ()\)| \I/ab>
ethE()\) Z BGEE)\) + elst(/\) 1

_ “ff%% INFL (N | Brs) (D |AH1(A)I )
r<s BGE()\) + ISt()\)

unocc unocc 3 )\H M| Dy s /\1':1 AN)| P )\H PV IRVA
4 SR B DA >< | 1OOT Bpg) {Bpg IAFRD] Yar)

= pTa (et OV F e (V) — A et (V) + e (V) — Aelh
— 30)

where Aely = €, + ¢, — €, — €. The second term on the third line of equation (30) emerges when we replace
W,;, by equation (22). This expansion reveals that the BGE correlation energy contains an infinite summation of a
sequence of Goldstone pair diagrams [22, 23]. Therefore, this sequence of Goldstone diagrams contains only two
hole lines, representing the electron pair ab, and the infinite summation goes through all the ladder diagrams

5
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@@%

Figure 1. The Goldstone diagrams in the BGE are an infinite sequence of particle—particle ladder diagrams (pp-ladder) [22]. The
squiggly lines refer to the bare Coulomb interaction.

over two particle lines (see figure 1). In other words, the intermediate pairs always propagate as electrons [22].
Conversely, equation (30) has to be solved self-consistently, as the electron-pair energy E,, depends on itself.
As alluded to before, the BGE accounts for the correlation of two electrons and thus provides the exact
solution for one- and two-electron systems. However, equation (30) is not exact, because we omitted the single
excitations at the very beginning. Nonetheless, our approximation should still be able to capture the subtle
(near)-degeneracy static correlation effects at H, dissociation and eliminate the one-electron ‘self-correlation’
error as does the configuration-interaction method with double excitations (CID) or the CCD method. As
mentioned above, the electron-pair correlation with all ladder diagrams can also be introduced from pairing
matrix fluctuation in the pp-RPA [56]. Nesbet [66] has demonstrated that BGE is equivalent to the so-called
independent electron-pair approximation (IEPA) in quantum chemistry [23], which can be considered as an
intermediate approximation between CID and MP2. However, we prefer to keep the BGE acronym
(equation (30)) as it is more compact and easily linked to an expansion of Goldstone diagrams [23, 67, 68] which
is helpful for further discussions (figure 1).

3. The second-order BGE approximation

3.1. Derivation of BGE2

The BGE electron-pair correlation energy e5°F in equation (30) contains an infinite sequence of particle—
particle ladder diagrams (pp-ladder resummanon), as shown in figure 1, because the BGE wave function W,; also
appears on the right-hand side of the equation. In addition, equation (30) should be solved iteratively as e5°F
appears on both sides of the equation (e, -coupling effect). These two mechanisms cooperate to deliver an
accurate description of exchange and correlation in one- and two-electron systems. It has been argued that an
explicit (or implicit) resummation of a selected series of diagrams (e.g., the pp-ladder resummation shown in
figure 1) is necessary to remove the divergence at degeneracies of any finite-order perturbation theory

[7,8, 16, 19, 47]. However, in this work we will show that the same effect can be achieved by the e,;,-coupling
effect at finite orders of perturbation theory. This allows us to terminate the BGE expansion at the second order,
aslong as we retain the e,,-coupling effect. This second-order BGE (BGE2) is the second approximation we
make:

E .

&N |< ab Iﬁl()\)l (I)rs>|2

BGE2
A
W= Lm0+ dron -

iy )\2 |< ab |‘/ee| (I)rs>|2

= Z BGE2

r<s €ab ()‘) + EISt(A)

o N (¢, ylle, b, >|
= . 31
Z BN + el () — .

Here we have utilized the fact that both #XF and 7, are one-electron operators, which do not contribute to the
expectation value between the ground state and a double excitation.

We will show in section 4.1 that BGE2 only dissociates H, in a minimal basis correctly, if we remove e} from
the denominator. So in the following we drop eJ;'. This is our final approximation:

unocc )\2 2
220 3 BGléj;j;bnwﬂ _

r<s €ab

(32)

eB3CE2 (\) now appears as a simple sum-over-state formula that is similar to standard PT2 and thus exhibits the
same computational scaling. We will again need to sum all electron pairs to obtain the full BGE2 correlation
energy EBSF2 ()\) for systems with more than two electrons

6
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EBCEZ()) = fefﬁz(». (33)

a<b

A distinct advantage of equation (32) is that the dependence on the coupling constant A is now simple and well-
defined. Following equation (5) we can easily obtain the BGE2 electron-pair correlation potential v5= (\) as

VbeEZ ()\) — “fic 2\ | <¢u¢b”¢r¢s> |2

BGE2
r<s €ab ()‘) - Af’;sb

BGE2
N PR O ) (34)
2 €.h ()\) — Afab
and then for a many electron system
Ve Q) = v (V) (35)

a<b

The BGE2 correlation potential also has to be solved iteratively, which prevents us from making further
analytical manipulations. However, for H, in a minimal basis, the BGE2 correlation energy and potential can be
solved analytically, which will give us more insight into BGE2. This will be discussed later in section 4.1.

At this point, we will recap the approximations made in the derivation of the BGE2 correlation functional:

(1) From the outset we chose a pair theory. The full BGE (equations (11) and (12)) explicitly treats interactions in
one electron pair and is exact for one- and two-electron systems. For more than two electrons, the interaction
from other electrons can be taken into account in a mean field fashion (equation (14)). Then the correlation
energy sums up the correlations of all electron pairs (equations (28) and (33)).

(2) The BGE can be solved by means of Green’s functions (equation (20)). Here we omit the single excitation
contribution in the construction of the non-interacting Green’s function G, (equation (19)). We argue that
this approximation is justified and captures the subtle xc effects in one- and two-electron systems as does
CID or CCD.

(3) The next approximation is to terminate the BGE expansion at the second order (equation (31)). This implies
that we remove the infinite summation of particle—particle ladder diagrams (figure 1). The resulting BGE2
approximation still retains the e,,-coupling effect. We will show later that the e,,-coupling at second-order in
perturbation theory is sufficient to capture correlations that emerge from (near)-degeneracies and that
higher-order connected Goldstone diagrams are then not needed. However, if we are far from degeneracies
(e.g., H in the middle of dissociation) BGE2 alone is not sufficient and higher order diagrams would be
required.

(4) The final approximation (equation (32)) removes the first-order perturbation term el' from the

denominator of equation (31). On the one hand, this omission removes the difficulty of having to consider
the unknown density adaptive operator vy explicitly along the AC path (see equations (4) and (24)). On the
other hand, we will show in section 4.1 that together with the other two approximations, this approximation
is necessary to deliver an accurate description of H, dissociation in a minimal basis.

3.2. Analysis of the e,;-coupling effect in BGE2
Comparing to the standard PT2 expression, the only difference in the BGE2 correlation expression

(equations (32) and (33)) is that the BGE2 electron-pair correlation eu%,GEz () itself appears in the denominator.

e3GE2 () should acquire a finite value to prevent the numerical divergence for small-gap systems where

Aely, — 0. Todistinguish BGE2 from PT2, modified particle and hole lines (double line) are introduced in
figure 2 to represent the e,;,-coupling effect in the BGE2 method which corrects the double-excitation energies
Ace’y, and should be solved iteratively. We will demonstrate the accuracy of the e,,-coupling effect later both
numerically (section 3.3) and analytically (section 4.1). In this section, we will provide a many-body
perturbation theory perspective of the e,;,-coupling effect.

In quantum chemistry, the configuration interaction equation with singles and doubles (CISD) is usually
solved with iterative techniques [69], to avoid a direct diagonalization of the large Hamiltonian matrices in
configuration space. Pople et al [70] demonstrated that such iterative algorithms are more than just a technical
trick. From a many-body perturbation theory viewpoint, each iteration introduces higher order terms. For
example, after the second iteration, the second- and third-order terms emerge in the CISD energy expression but
with a scaled weight [70, 71]. This would also be true for the e,,-coupling effect in the complete BGE expansion
(equation (30)). But can we write down a perturbative expansion for the second-order BGE expression
(equation (32) and figure 2)? In other words, does the e,,-coupling effect introduce higher order perturbation
terms during the iterative procedure? In this section, we will answer these questions step-by-step.

7
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BGE2
€ab -

- ()
(.0-(X)

Figure 2. The diagramatic representation of PT2 and BGE2. Double lines in the BGE2 diagram represent a correction to the double
excitation energies due to the e,;,-coupling effect, which should be solved iteratively. The squiggly lines refer to the bare Coulomb
interaction.

To demonstrate the behavior of BGE2 for (near)-degeneracies, we analyse its limit as A€, goes to zero. To
do so we need to introduce a level-shift (L) into the expression of the BGE2 correlation energy (equation (32))

”"z"f‘ * (@ dyll6, &) I
r<s beEZ(A) +L—(Aegy + 1)

e (\) =

unocc /\2 2
_EERIGONGAIE | 56
~ At D
where
BGE2
x(L) = ﬁ (37)
A rsb + L
To be able to expand equation (36) into a geometric series we require
—1<x() <1. (38)
This leads to the following constraint for L
L> max(O, —— (A€, + BGEZ(A))). (39)
By definition we have ¢5°%2 < 0and A¢e”, > 0.Inaddition, Ae’, > |e5E2 (\)|holds for insulators, most

semi-conductors and even for most of the double excitations in small gap systems (excluding cases where ab
refers to the highest occupied molecular orbital (HOMO)). We can then always choose L = 0.

However, we cannot take L = 0 when the energy gap of double excitations from the HOMO to the LUMO
(A€ tends tozeroand Ae”y, < e85 (\)]. Then only a positive level shift L > —~ (Adfb + eBCE2 () will
guarantee a convergent geometric expansion.

We will discuss the positive level shift later and first analyse the L = 0 case. Expanding equation (36) into a
geometric series yields

00 unocc )\2
ey = -3y AMABIGBIE, ., (10)
n=0r<s ab
which for L = 0becomes
00 unocc )\2 2
ebeEZ ()\) Z E I ¢ (ﬁrf”f+? > I ebeEZ ()\)n (41)
n=0r<s (A )

This expression allows us to analyze the BGE2 correlation energy from a many-body perspective by iterating the
right-hand side. Here, we examine the simplest two terms. The first term in the BGE2 expansion (n = 0) is
nothing but the standard PT2 correlation energy

BGEZ,lst()\) — _u%c )‘2 |<¢a¢b”¢r¢s> |2 .

€ 7 (42)
r<s Ae usb
The Goldstone diagrams of the PT2 correlation are shown in figure (2). The second term becomes
unocc )\4 2
etll%bGEZ,an()\) _ Z <¢ ¢h|r|s¢ (b > | (43)

r<s ab
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Figure 3. The BGE2 diagrams at second order are rescaled PT2-like diagrams represented by two disconnected Hugenholtz diagrams
with quadrupole excitations, which can be expanded into 32 disconnected Goldstone diagrams [22, 72].

@i@ + Qii@xs+---,if Aels > [eBE®2) and L =0
Q:K) + Q:st +oeif Ay < [eBEF2) and L >0

Figure 4. The perturbative expansion of the direct term in the BGE2 correlation. Double lines in the BGE2 diagram represent a
correction to the double excitation energies due to the e,;,-coupling effect, which should be solved iteratively. Thin lines for the case of
L = 0 are the particles and holes for the standard many-body perturbation theory (top). However, thick lines in the perturbation
expansion for the L > 0 case suggest a constant level-shift L to the double excitation energies (bottom). The squiggly lines refer to the
bare Coulomb interaction.

where S is the normalization of the first-order perturbative wave-function %3 of the electron-pair ab

|q)lst> Z<¢a(21”fr¢s> |®rs>
r<s €ab
S= g | <¢a((ib|6|2r)q;s> I < |(I)lst> (44)

eBGEZ2nd is a fourth-order perturbation in terms of the coupling constant \. This expansion includes only even

powers of the perturbation. On the other hand, ¢3¢%2"d can be interpreted as 32 quadruple-excitation
Goldstone diagrams which, however, are both disconnected. The e,;,-coupling effect in BGE2 does therefore not
produce higher-order connected Goldstone diagrams. Using the so-called Hugenholtz diagram rule [72], these
32 quadruple-excitations can be represented by two Hugenholtz diagrams, which are shown in figure 3.
Recently, a self-consistent Green’s function scheme was proposed at 2nd order as well [58]. This self-
consistent second-order self-energy method also exhibits promising performance for systems with strong
correlation. It would be very interesting to compare the diagrams of the Green’s function theory with BGE2 in
the future.
Now we consider the case of A’y < [e5F* (\)], where the (near)-degeneracy effects are dominant. As
mentioned above, to guarantee a convergent geometric expansion, a positive level-shift
L>—- (Af“b + eBCE2()\)) is required. By inserting the binomial series (e5"> + L)" into equation (36) we

obtain the correspondlng geometric series

SN N (B, Ml 00 1P
BGE2>\7 (”)nm a Pol1Pr Ps BGE2 ( yym_

We note that the L = 0 case in equation (41) is a special case of equation (45). For positive level shifts, it can be
easily proven that the first two expansion terms of equation (45) are the same as in equations (42) and (43), only
that the level-shift L appears in the denominator. We plot the perturbative expansion of the BGE2 correlation in
figure 4. For the L = 0 case, the BGE2 correlation can be interpreted based on the standard perturbative
expansion. However, if Ae”s, < |e85F? ()|, a positive level shift is required to guarantee a well-defined
perturbative expansion of the BGE2 correlation. In figure 4, we show the first- and second-order geometric
expansion of the direct term of the BGE2 correlation. The exchange part can be expanded in the same way. Thick
lines are introduced to represent a positive level-shift L to the double excitation energies A¢;,.. For both cases,
higher order excitations are not involved, but only rescale weights of the existing contributions. The S is the
modified S with a positive level-shift L:
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Figure 5. H, (A) and Hj (B) dissociation curves without breaking spin symmetry. All calculations, including the configuration
interaction method with singles and doubles (CISD), have been carried out with FHI-aims [78] and the NAO-VCC-5Z basis set [79].
For one and two electron systems, CISD provides the exact curves, which are thus denoted as CI. The HF, PBE and PBEO results are
obtained self-consistently. The HF orbitals are employed to evaluate the CISD results, and the PT2, RPA, rPT2, and BGE2 calculations
are on top of a PBEQ reference. In the smaller panel for H, dissociation, the total energies of two isolated Hydrogen atoms are plotted
for each method. And for H3 dissociation, the smaller panel shows the total energies of one isolated Hydrogen atom.

s = FEUABIGAIP )

(Af;sb + L)z

r<s

The divergence of MP and GL perturbation theories has been widely discussed in quantum chemistry [73—
77]. Small-gap systems with strong (near)-degeneracy effects are, of course, one kind of failure, as the
perturbation energy diverges at any finite order. For non-degenerate systems, where A€’y is not exactly zero, the
MP (or GL) perturbation expansion does not diverge. However, Leininger et al found that the perturbation
expansion also does not converge toward the exact solution even for very simple systems such as Ne, F~,and Cl ™
[74]. The individual terms in the perturbative expansion of these systems do not diverge, but exhibit an
oscillatory divergence with increasing order [73, 74]. From a mathematical point of view the MP expansion fails,
if the single reference, e.g., HF or KS, is far from the exact ground state [75-77]. However, there is no simple
diagnostic tool to determine when a multi-reference problem breaks the MP expansion.

In this work we propose to use the condition A€, < |e5°5 (\)|as a simple criterion to judge the divergence
of a single-reference perturbation method. If the HOMO-LUMO gap of a given single reference is smaller than
the absolute value of the corresponding BGE2 electron-pair correlation energy, it is not advisable to use a
perturbative method based on this single reference, because the BGE2 correlation cannot be expanded directly
without a proper level-shift L (equation (36)). The value of the level shift L then quantifies the multi-reference
nature of each electron pair in the investigated systems.

3.3.H, and Hj dissociation
Our BGE2 xc functional encompasses the exact exchange and the BGE2 correlation term (equations (32) and

(33)
ES” = EX + B (A =1). (47)

It has been implemented in the Fritz Haber Institute ab initio molecular simulations (FHI-aims) code package
[78,79]. Due to its simple sum-over-state formula, BGE2 has the same computational scaling as standard PT2 in
terms of both time and memory. Although the e,,-coupling requires an iterative solution, convergence is fast in
our experience, and an accuracy of 108 Hartree can be achieved within a few iterations.

In figure 5 we plot the H, and Hj dissociation curves for various methods (BGE2, PBE, PBEO, PT2, RPA, and
rPT2). All results are obtained with input KS orbitals from a PBEO calculation [80—-82]. All calculations,
including the CISD reference, are carried out with FHI-aims using the NAO-VCC-5Z basis set [79, 83]. In
figure 6 we show the same curves for RPA, rPT2 and BGE2 for different starting points (PBE, PBEO and HF).

In the following we will analyse the performance of the different approaches shown in figure 5 class by class.
In the dissociation of HJ only non-local exact exchange is required and correlation is absent, while dissociated
H, contains strong (near)-degeneracy static correlation, which current DFT methods typically underestimate.
Asillustrated in figure 5, the PBEO functional fails in both cases, yielding a heavy one-electron ‘self-correlation’
error (around 66 mHartree in the Hj dissociation limit) and a significant underestimation of the (near)-
degeneracy static correlation limit (around 119 mHartree in the H, dissociation limit).
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Figure 6. The H, dissociations calculated by RPA (A), rPT2 (B) and BGE2 (C). The nomenclature adopted here: F@SC is the advanced
functionals (F), i.e. RPA, rPT2, and BGE2, respectively, evaluated with the orbitals of different self-consistent (SC) schemes, i.e. HF,
PBEO, and PBE.

Fifth-level correlation functionals, e.g., PT2, RPA and rPT2, are fully non-local. Figure 5 reveals that PT2 is
exact for one-electron systems such as Hj dissociation, in agreement with previous investigations [ 1-5], but
completely fails for heavily stretched H,, where static correlation becomes dominant. RPA exhibits the opposite
behavior. It is accurate in the H, dissociation limit, but its severe one-electron ‘self-interaction’ or delocalization
error [84, 85] affects H; dissociation adversely. Adding the SOSEX term to RPA removes the one-electron self-
interaction error again such that rPT2 dissociates HJ correctly, but simultaneously the performance for H,
deteriorates [15]. Henderson et al have ascribed this behavior to a removal of static correlation by the SOSEX
term [4].

Figure 5 reveals that the BGE2 functional is free of one-electron ‘self-correlation” and thus dissociates Hy
correctly. Italso delivers the correct H, dissociation limit and reduces the incorrect repulsive ‘bump’ that RPA
exhibits at intermediate bond lengths. We attribute this consistent improvement to three factors. (1) The one-
electron ‘self-correlation’ error is removed at the PT2 level. (2) (Near)-degeneracy static correlation (for two
electrons) is incorporated by the e,,-coupling mechanism at the second-order perturbation level without having
to invoke higher-order Goldstone diagrams. (3) Due to the systematic nature of the approximations we made,
we can trace the repulsive ‘bump’ back to the 2nd order approximation, when we went from the full BGE to
BGE2. In other words higher-order pp-ladder diagrams will alleviate the ‘bump’ [19].

In figure 6 we illustrate the starting-point dependence of RPA, rPT2 and BGE2 by evaluating all three
approaches for a PBE, a PBEO and a HF reference. The starting-point dependence in RPA is quite pronounced,
which is akin to the much investigated starting-point dependence in the corresponding GW approach for
excitation spectra [86—89]. Judging by figure 6, the starting-point dependence of rPT2 and BGE2 appears to be as
pronounced as for RPA. Although it remains to be seen in the future, if this statement can be generalized.

4. Promising properties of the BGE2 correlation functional

In wave-function theory, there is a systematic way to improve the theoretical approach for the electronic
correlation energy [23, 66, 90, 91]. However, it is challenging to design methods that fulfil a certain number of
exact conditions and constraints [91]. One requirement is that the solution for one- and two-electron systems
such as H,/Hj is exact. Another requirement is size consistency [23, 26, 27], i.e., the ground-state total energy
itself is an extensive quality, which should be asymptotically proportional to the system size [23]. These two
criteria are widely used to judge the universal applicability of a given theoretical method from small isolated
molecules to extensive solids. We will analyse analytically, how well BGE2 fares for H, in a minimal basis.

4.1. H, in minimal basis

The BGE2 approximation is not exact for two-electron systems. However, in section 3.3, we reported a
significant improvement of BGE2 over PT2 and RPA for H, dissociation. In this section, we analyze the BGE2
correlation functional (equation (32)) and its correlation potential (equation (34)) for H, in a minimal basis. We
demonstrate that the BGE2 approximation captures essential features of the adiabatic connection path that
current state-of-the-art approximations do not.
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The minimal basis of H, consists of one bonding (¢, ) and one anti-bonding (1) KS orbital determined by
the D,.j, symmetry:

O (r — R) &£ ¢,(r — R)

2 + 28r1,R2

where R, and R, are the two atomic positions, ¢,,(r — R) /,) is the normalized 1s atomic orbital located at the
each hydrogen atom, and S, g, is the overlap integral of the two atomic orbitals. In this minimal basis
representation, the BGE2 correlation energy (equation (32)) and its potential with respect to the coupling
constant A (equation (34)) can be derived analytically

EBGE2()) — B — B +4NA
¢ 2

20A
VB + 4NA
where A = | (¢4, [1p 1) [*and B = Ae ;. Now we see that several important features of the AC path are

captured by the BGE2 approximation:
(1)) When A — 0, wehave

Pi(r) =

(48)

VISR () = — (49)

VBGEZ’(O) _ VESE2())

A
! D\ = _2§ = 2EFT (50)

A=0

which shows that the initial slope of the BGE2 correlation potential is twice the energy in PT2. Comparing to the
exact condition, i.e. V! (0) = 2ES", the single-excitation contribution is ignored during the first approximation
in this work (equations (16) and (19)).

(i) In the H, dissociation limit (R} — R,| — occand B = Ae ;| — 0)we find for the initial slope
v GE2' —2% — 00. The BGE2 correlation potential itself tends to a constant value that is independent of A
thanks to the e,,-coupling effect:

V(?GEZ()\)th*Rﬂ*’OO - _<¢15¢15|¢15¢15>' (51)

The coupling-constant integration (equation (5)) is trivial to carry out and the correlation energy E2F2 has the
same value as VPSE2, This is the exact correlation energy in the minimal basis [23]. In conjunction with the exact
exchange energy, it completely cancels out the undesired error originating from the Hartree approximation, and
thus guarantees the correct dissociation limit.

If we do not make the fourth approximation, i.e. to remove the first-order perturbation term e;' in the
denominator of equation (31), the parameter Bnow equals Ae 7 + e!® ()\). By using the definitions of 7, and

en! (equations (4) and (24)) we have e}* (\) in the H, dissociation limit

ejlitk ()\) | |Ri—Ry|—o0 = -A <¢ls¢ls|¢ls ¢ls>' (52)

Here, for simplicity, we neglect the exchange 1 (r;) and the scaled correlation potential 1. (r;, o) (equation (4)),
since they are small compared to the Hartree energy Ey. The resulting correlation energy
E.=— % (B1015l 01, 0,,) recovers only 90% of the exact value in the minimal basis (equation (51)). This
motivates a posteriori why we made the second approximation, i.e. omitted the single excitation contribution. In
practice this single excitation contribution is non-zero in a DFT framework. However, our minimal basis
consideration shows that if we were to include it, H, would no longer dissociate correctly, unless we would also
include higher-order particle—particle ladder diagrams (the third approximation), which would significantly
increase the computational cost. The BGE2 correlation functional proposed in this work is thus the simplest
approximation that provides the exact H, dissociation in the minimal basis. Any further improvement over
BGE2 has to simultaneously deal with all approximations in a proper and balanced way.

(iii) The second-order derivative of the BGE2 correlation energy V! = 9V, (\)/d\ is

VBGE (\y 24A2B73)\ .
‘ (1 + 4XA/B?/?

(53)

As A and Bare positive, VCBGEZN (A) > 0,indicating that the first derivative of VCBGE2 is monotonically increasing
within0 < A < 1

VECEX (X 16A]) = VECEY (). (54)

Considering that VES¥'(\) < 0 forboth A = 0and A = 1, VP2 ()\) captures the convex shape of the exact
AC correlation path [6, 10, 92].

(v) The A-dependent AC path is closely connected to the behavior under uniform density scaling [93], for
which the low-density limit is related to the strong correlation limit A — 0o. The exact correlation functional

12



10P Publishing

NewJ. Phys. 18 (2016) 073026 1Y Zhanget al

0.0 =g —
001} e R g R=0.8A
e T
0.02{ Vo e
-0.03 TV TRy
. ey

-0.04[¥ ¥ RPA @ @ [1/1]-Padé A A BGE2

005 ¥
-0.1
-0.15
0.2}

-0.05%,
041 °
-0.15
-0.2
-0.25

Correlation potentials along the AC path (in Hartree)

0 0.2 0.4 0.6 0.8 1.0
Coupling constant A

Figure 7. Correlation potentials of H, in a minimal basis at the equilibrium geometry (R = 0.8 A, upper panel), an intermediate bond
distance (R = 3.0 A, middel panel), and a large bond distance (R = 6.0 A, lower panel) for RPA, the [1/1]-Padé model, and BGE2.
The parameters in the [1/1]-Padé model are determined by fixing the initial slope to 2E” and the correlation energy to EZE2,

should reach a finite value in the strong correlation limit [6, 92, 93], which is satisfied by the BGE2 model
according to equation (49) (V. — —JA when A — 00).

Figure 7 presents the correlation potentials of RPA and BGE2 for H, dissociation in the minimal basis. At the
equilibrium geometry (R = 0.8A) where the energy gap is large, the BGE2 model exhibits a quasi-linear
behavior. For stretched geometries (R = 3.0 and 6.0 A), the e,,-coupling then bends the correlation potential,
whereas RPA overestimates the initial slopes. The BGE2 correlation potentials are similar to those of
configuration interaction calculations with a quadrupole-( basis set [92].

We also include the common [1/1]-Padé AC model [6, 10]

a\ padé _ a4 _ aln(l +b)

L+bA 7 b b?
The two parameters are determined by fixing the initial slope to 2EFT? and the correlation energy to EZ°F2, As
illustrated in figure 7, the [1/1]-Padé formula describes the AC path at the equilibrium geometry well, but
exhibits a tendency to underestimate the curvature and overestimate the correlation potential at stretched
geometries. A better agreement can be expected by using a more sophisticated [2/2]-Padé formula [6, 10].

VEEQ) = (55)

4.2. Size consistency for the ground-state energy calculation
Recently, the application of advanced correlation methods, e.g., MP2 [94-96], RPA [60, 62, 96, 97], and coupled-
cluster theories [98—100], in materials science has attracted increased attention. In this paper, we adopt the
K-dependence criterion [27, 101-104] to demonstrate the size consistency of the BGE2 correlation functional
and its applicability to complex extended materials. The advantage and usage of the K-dependence criterion has
been discussed comprehensively in [27]. In short, the number (K) of k-points in the Brillouin zone is a direct
measure of system size in periodic boundary conditions. Then a size-consistent method must have an
asymptotic K' dependence.

Before we turn to BGE2, we first discuss Brillouin—-Wigner second-order perturbation theory (BW2)
[102, 105]. The size consistency of BW2 has been disproved in [27]. This helps us to better understand the size
consistency of BGE2 which shares a very similar sum-over-state formula as BW2.

In periodic boundary conditions, the BW2 correlation is given by

ECBWZ _ Z Z Z |<¢)aka ¢bkb”¢r}<, ¢sk5 > |2

BW2 EX rk, sk
a<br<s kbk,ksEc + Ex - Agakablib

(P ak, Do | Pk, Dot ) I
~Y Y 7 Wk Oonl1On, Oar )1

BW2 rk, sk
a<b r<s kpk ks Ec - Afakrablzb

(56)

Here, ¢, is a canonical HF or KS spin-orbital in the ith band with wave vector k;. Due to momentum
conservation, the summation only goes over three wave vectors (ky, k,, k), giving rise to a factor K°. It can be
proven that | (¢, dy|ld g ) I* exhibits an asymptotic K-2 dependence. E™ and AE;};(; S,ff(b scaleas K' and

K°, respectively [27]. If the denominator scales the same as EEX (the first line in equation (56)), the overall scaling
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of EPV? becomes K°, which would not be size consistent. Removing EX from the denominator (second line in
equation (56)) changes the scaling of EZV? to K'/2, which is still not size consistent. These non-physical size
dependences make the second-order energy per unit cell, E"2/K, go to zero as K — oo. Ithas been argued
that the presence of an extensive quantity, EX"? 4 EFX, in the denominator is responsible for the lack of size
consistency [27, 105].

The BGE2 correlation energy (equations (32) and (33)) in periodic boundary conditions takes the form

2 2
eBbGEZ(A) — Z Z A I <¢aka ¢bkb||¢rkr ¢sks > |
a BGE2 k, sk
res bk € (A) — Ae ;k:bkb

EFR ) = 3 el (. (57)

a<b k,

Compared to the BW2 correlation energy, the only difference in BGE2 is the appearance of the correlation
coupling for each electron pair ab, i.e. the e,;,-coupling. Following a similar approach as for BW2, it is easy to
prove that the electron-pair correlation term eb "2 scales as K [27]. Due to momentum conservation the
summation in the BGE2 correlation energy ECBGEZ only runs over one wave vector k;, (see equation (57)).

1 o .
Therefore, EZ°F2 scales as K' and thus is size consistent.

4.3. Orbital invariance

It should be stated that an electron-pair approximation such as BGE2 does not have a derived wave function. It
thus breaks another important feature: the orbital invariance [23], i.e. the total energies cannot be determined
uniquely with respect to rotations among occupied and/or unoccupied orbitals. However, the simple sum-over-
state formula of BGE2 (equations (32) and (57)) clearly suggests that the e,;,-coupling decays very quickly to
standard PT2 when the energy difference becomes larger. Therefore, we expect that this orbital invariance
deficiency does not affect real applications. We leave a detailed examination of this issue to the future work.

5. Conclusion

In this work, we present a new insight into the H,/Hj challenge in DFT. We establish the BGE in the context of
DFT through the AC approach. BGE is the simplest approximation to provide the exact solution for one- and
two-electron systems. We propose a simple orbital-dependent correlation functional, BGE2, by terminating the
BGE expansion at the second order, but reversing the e ;,-coupling effect in BGE. BGE2 has a similar sum-over-
state formula as the standard PT2, thus sharing the same computational scaling as PT2 in terms of both time and
memory. We demonstrate that the e,,-coupling iteration procedure at the second-order expansion does not
invoke higher-order connected Goldstone diagrams, but partially captures the multicenter character of each
electron pair, especially in heavily stretched H,. A remarkable improvement of BGE2 over PT2 and RPA in the
H,/Hj challenge can be observed, which suggests that the one-electron ‘self-correlation” and the two-electron
(near)-degeneracy static correlation can be included simultaneously well at the second-order perturbation level
in conjunction with a proper treatment of the multi-reference contributions of each electron pair. In addition of
the size consistency, the advantage of the BGE2 correlation functional has been further demonstrated using H,
in minimal basis.

However, for systems with large energy gaps or more electrons, BGE2 reduces to standard PT2 since the
effect of the e,,-coupling is nearly damped out. Further development on top of BGE2 could proceed as follows:
(1) From the semi-empirical double hybrid perspective, the BGE2 correlation formula could be a promising
substitute of normal PT2, which opens an opportunity to extend the double-hybrid scheme into the realm of
transition metals while keeping the accuracy achieved for main group elements [30]. (2) From the AC modeling
perspective, we can improve the BGE2 model by satisfying more physical constraints. For example, in the strong
correlation limit A — oo, the BGE2 model depends asymptotically on X! rather than the correct X" 1/2[7, 92].
Promisingly, the plain sum-over-state PT2-like formula makes it easy to fulfill the correct asymptotic behavior
by introducing an additional term that depends on X3/2 in the denominator of the BGE2 formula
(equation (31)). (3) From the many-body perturbation theory perspective, it would be appealing to renormalize
the BGE2 scheme in rPT2 [16], which would be an alternative to construct advanced orbital-dependent
functionals systematically.
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