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A B S T R A C T   

The efficiency, flexibility, and resilience of building-integrated energy systems are challenged by unpredicted 
changes in operational environments due to climate change and its consequences. On the other hand, the rapid 
evolution of artificial intelligence (AI) and machine learning (ML) has equipped buildings with an ability to 
learn. A lot of research has been dedicated to specific machine learning applications for specific phases of a 
building’s life-cycle. The reviews commonly take a specific, technological perspective without a vision for the 
integration of smart technologies at the level of the whole system. Especially, there is a lack of discussion on the 
roles of autonomous AI agents and training environments for boosting the learning process in complex and 
abruptly changing operational environments. This review article discusses the learning ability of buildings with a 
system-level perspective and presents an overview of autonomous machine learning applications that make 
independent decisions for building energy management. We conclude that the buildings’ adaptability to 
unpredicted changes can be enhanced at the system level through AI-initiated learning processes and by using 
digital twins as training environments. The greatest potential for energy efficiency improvement is achieved by 
integrating adaptability solutions at the timescales of HVAC control and electricity market participation.   

1. Introduction 

Conventional automation systems are challenged by the increasing 
complexity of the built environment (Han et al., 2019). The develop-
ment of sustainable buildings, cities and societies presumes the energy 
systems’ ability to cope with increased penetration of intermittent 
renewable energy resources in the conditions of strict demand of energy 
efficiency, flexibility, and resilience (e.g., Aduda, Labeodan, Zeiler & 
Boxem, 2017). On the other hand, buildings need a capability to adapt to 
changing boundary conditions (e.g., user’s needs, changing climate and 
fluctuating grid prices) (Al Dakheel, Del Pero, Aste and Leonforte (2020; 
EPBD Recast (2010)). The variables related to operational environment, 
such as occupancy patterns, are subject to unpredictable changes, which 
calls for the system-level ability of quick and autonomous learning from 
experience that originates from outside historical datasets recorded 
during a long period of time (Xie et al., 2021). 

Overcoming the above challenges is possible due to the rapid evo-
lution of information and communication technologies (ICT) and 

building energy management systems (BEMS) plus that of the concepts 
‘intelligent building’ (IB) and ‘smart building’ (SB) (Al Dakheel et al. 
(2020); Wang et al. (2020))). A shift towards the implementation of 
artificial intelligence (AI) trained by machine learning algorithms is 
recognized as one of the major trends of development (Karpook, 2017). 
Given the complexities related to the operational environment, the 
machine learning techniques ‘reinforcement learning (RL)’ and its de-
rivative ‘deep reinforcement learning (DRL)’ have been experienced 
useful for the autonomous control networks of buildings (Han et al., 
2019). 

Quite a few review articles have been published with various per-
spectives on smart buildings. A quick look at the most relevant review 
articles in the field reveals that most of them focus on issues such as 
hardware technologies, monitoring, forecasting, modelling, building 
energy management, and applications of machine learning (Alawadi 
et al. (2020); Djenouri, Laidi, Djenouri and Balasingham (2019); Li, Lu, 
Yan, Xiao and Wu (2021); Petrosanu, Carutasu, Carutasu and Pîrjan 
(2019)). Here, learning is referred to as a single, data-driven process 
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based on the analysis of simulated or measured occupancy or system 
status data (e.g., Jazizadeh, Ghahramani, Becerik-Gerber, Kichkaylo and 
Orosz (2014), Marinaki et al. (2013)). Machine learning applications 
have been reviewed in terms of predicting occupancy and 
window-opening behaviours (Dai, Liu & Zhang, 2020), self-tuned indoor 
thermal environments (Lee et al., 2020), occupancy estimation 
(Amayri, Ploix, Bouguila & Wurtz, 2020), and building energy efficiency 
(Merabet et al. (2021); Wang et al. (2021)). 

The existing reviews commonly provide a specific, technological 
perspective without a vision for when and how smart technologies 
should be integrated (Khan, Seo and Kim (2020); Stopps, Huchuk, 
Touchie and O’Brien (2021)). Qolomany et al. (2019) takes a step to-
wards a more holistic vision by reviewing smart buildings jointly from 
the perspectives of application, data analytics, and machine learning. 
Yet the learning ability as a feature of smart buildings is interpreted 
narrowly, without addressing issues such the roles of human and AI 
agents plus training environments and their impacts on the learning 
process in complex and abruptly changing operational environments. 
Moreover, there is a lack of reviews describing the training of autono-
mous, building-integrated AI applications capable of independent 
decision-making. 

Thus, the first part of this article is dedicated to the discussion of the 
buildings’ learning ability in general, including an overview of the 
concepts, learning goals, AI training methods, and training environ-
ments. The second part is an overview of reported machine learning 
applications, focusing on autonomous AI agents that make independent 
decisions for building energy management. Specifically, we present 
applications based on (deep) reinforcement learning (RL), their reward 
mechanisms, training data, and the training environments in various 
application domains. 

This article is expected to be a useful source of information and ideas 
for further research for engineers and research scientists who develop 
and design autonomous AI systems for smart buildings and 
communities. 

2. Overview of buildings’ learning 

2.1. Learning ability as a feature of buildings 

The discussion of building intelligence and the learning ability of 
buildings originates from the idea of integrated buildings and machines, 
which, in turn, can be considered to have its earliest roots in the year 
1923, when architect Le Corbusier characterized a house as ‘a machine 
for living in’ (Le Corbusier, 1923). The evolution of brain research, 
cognitive science, and computer science gradually resulted in the use of 
the word ‘intelligence’ with an aim to address the increased ability of 
artificial systems to operate autonomously, whereas ‘intelligent build-
ings’ were introduced in the scientific literature in 1990s (Derek & 
Clements-Croome, 1997). From the beginning of 2000s, the need to 
emphasize the interaction between humans and machines was 
acknowledged. Himanen (2003), for example, stated that building in-
telligence may refer to intelligence ‘imprinted into an inorganic object 
(such as a building) by human intelligence’. 

Later, the term ‘smart building’ (SB) was adopted in the Energy 
Performance of Buildings Directive (EPBD) to promote the energy effi-
ciency of buildings (Al Dakheel et al. (2020); EPBD Recast (2010))). 
More recently, Albino, Berardi and Dangelico (2015) as well as Wang 
et al. (2020) concluded that while ‘intelligence’ refers to the diffusion of 
ICT in the infrastructure, ‘smartness’ entails the building’s interaction 
with people and community and the ‘smart’ feature particularly aims at 
improving the system’s interaction with humans. Since there is no 
standard definition of a smart or intelligent building, these concepts are 
often treated as synonymous with each other (Li et al., 2021). 

The next step is ‘cognitive building’, which is rooted in the term 
‘cognition’, i.e., the process of acquiring knowledge and understanding 
through thought, experience, and senses. A ‘cognitive building’ can be 

considered an enhanced version of smart buildings, since it includes 
more intelligence in the loop (Pasini et al. (2016); Xu, Lu, Xue and Chen 
(2019)). Here, the term cognition particularly refers to cognitive 
computing (modelling human thinking process in complex and uncer-
tain situations), which is integrated with an aim to better manage 
buildings (Ploennigs, Ba & Barry, 2018). 

The ability to learn can be considered one of the cognitive building 
features, since cognitivism refers to acquiring knowledge and skills 
(Gross (2010); Masethe, Masethe and Odunaike (2017)). In terms of 
buildings, learning is a process that particularly relies on the imple-
mentation of machine learning (ML) algorithms that mimic human 
learning (Karpook, 2017). So far, the learning applications reported in 
the literature are mainly human-initiated, but the learning process can 
be also initiated by artificial intelligence through autodidactic functions 
(Albino et al., 2015). 

Learning is about continuous adaptation based on experience so that 
non-favourable decisions will not be repeated. The decisions may be 
based on historical relationships and trends in a given set of data and 
they should be proactive rather than reactive (Nie, Xu, Cheng and Yu 
(2019); Van Offeren (2020)). Systemic antifragility can be also consid-
ered learning, when the adaptation is based on disorder such as mistakes 
or failures (De Florio (2014); Taleb and Douady (2013)). 

Mofidi and Akbari (2020) associate learning with issues such as oc-
cupants’ preferences and behaviour, occupancy patterns, productivity, 
indoor environmental preferences, and adaptive behaviour and thermal 
behaviour of the building and its environment. Lê, Nguyen and Barnett 
(2012) refer to learning as the building’s ability to predict and satisfy the 
needs of users and to adapt to the stress from the external environment. 
To that end, shared learning between humans, machines, and buildings 
is necessary and it is realized through ‘people-literate technology’, i.e., 
technology with ‘an ability to put human intentions into context by 
including multisensory and multi-touchpoint interfaces like wearables 
and advanced computer sensors’ (Panetta, 2019). 

Shared learning can be also considered organizational learning, i.e., 
a process, which is expected to yield a cultural change within an orga-
nization (= building + occupants + processes) (Argyris & Schön, 1978). 
Here, the role of artificial intelligence is to facilitate organizational 
learning. The reported applications vary from the resource management 
of a warehouse (Zhang, Pee & Cui, 2021) to AI-assisted maintenance of 
renewable energy systems (Shin, Han & Rhee, 2021). 

2.2. Learning goals and the assessment of learning ability 

The term ‘learning goal’ (aka ‘learning objective’ or ‘learning 
outcome’) refers to a measurable skill or knowledge that a learner (here: 
AI) is expected to have after being trained in a learning process (Bloom, 
Engelhart, Furst, Hill & Krathwohl, 1956). 

By examining the role of AI in building research, we conclude that 
learning goals follow the building automation systems’ main functions 
and can be classified into i) observing the system’s own status (e.g., 
Araya, Grolinger, El Yamany, Capretz & Bitsuamlak, 2017), ii) predict-
ing changes (e.g., Cao et al., 2020), iii) adjusting the operation (e.g., 
Azuatalam, Lee, de Nijs & Liebman, 2020), iv) managing data (e.g., 
Candanedo, Feldheim & Deramaix, 2018), and v) interacting with 
humans (e.g., Konstantakopoulos et al., 2019). 

Practical examples of how AI training may improve the building 
automation system’s (BAS) operation with respect to various functions 
are mentioned in Table 1 using the above classification. 

The examples in Table 1 make it visible that misinterpreted data (e. 
g., temperature data set with gaps) is a likely reason behind biased 
operation. In situations, where the BAS must quickly adapt to changing 
operational environment, the data acquisition and management abilities 
with respect to routinely monitored variables (e.g., temperatures, en-
ergy demands, occupancy detection) play a crucial role. 

On the other hand, quick adaptation benefits from direct feedback 
from users through occupant-building interaction (Stopps et al., 2021). 
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Carreira, Costa, Mansur and Arsénio (2018), for example, propose a 
‘learning occupant-centric control (OCC) system’, where user feedback 
is acquired through mobile devices. The OCC system combines historical 
sensor data and occupants’ preferences with an aim to learn an appro-
priate HVAC control configuration. Here, the decreased number of votes 
expressing discomfort demonstrates the performance of the OCC system 
before and after training. 

To assess the learning ability with respect to various learning goals, 
Alanne (2021) proposes buildings’ learning ability to be quantified as 
the growth of the building intelligence function (BI). Here, BI is a 
function of n key performance indicators (KPIs), which, in turn, are 
functions of time (t). Now, ‘learning’ can be understood as seeking the 
best available performance with respect to specific KPIs (i.e., optimi-
zation of given objective function) over a given period of time. To that 
end, Alanne (2021) introduces a novel performance indicator, Learning 
Ability Index (LAI), which is a single, dimensionless number between 
zero and one. Since the value of the LAI is bound to time invested in 
training, this method is useful for assessing a building’s learning per-
formance also in dynamic and unpredictable operational environments. 

In Alanne’s method, learning is measured using the value of KPI 
recorded at two moments in time (pre-test before and post-test after the 
learning process) and the performance is assessed using a novel learning 
ability index (LAI), which varies between zero and one so that zero 
represents the starting level (pre-test), and the full match between a pre- 
defined learning goal and reality (post-test) is awarded by LAI = 1. 

Alanne (2021) also states that the quality (and also diversity) of 
training data determines at which level a learning goal can be achieved. 
Given the quantitative essence of training data in smart building ap-
plications, it is essential that experimental and computational data 
match the reality as accurately as possible. Therefore, Alanne (2021) 
suggests that the quality of training data (and thus the quality of 
learning) should be considered by way of a separate correction coeffi-
cient (between 0 and 1) when assessing the building’s learning ability by 
way of the learning ability index (LAI). Here, for example, the mea-
surement error of +/−2% would result in the quality factor of 0.98. 

The elicitation of learning goals and useful KPIs is, of course, case- 
specific. To that end, several generic assessment frameworks have 
been proposed (Chen, Clements-Croome, Hong, Li & Xu, 2006). Tools 
such as the New Intelligent Building Index (IBI) (Chow (2005)) and the 
Honeywell Smart Building Score™ (Honeywell, 2016) have been sug-
gested to measure building’s intelligence with respect to several criteria. 
Al Dakheel et al. (2020) present a table of 34 KPIs, where the indicators 
have been divided into four sub-sets (nearly zero-energy targets, flexi-
bility, monitoring, interaction with users). 

The work of Candanedo et al. (2018) presents an example, where the 
root mean square error (RMSE) is used as the KPI for assessing the 

learning ability of linear regression (LM) and random forest (RF) algo-
rithms when predicting average indoor temperatures on the basis of 
incomplete data. The expectation is that after the training, the RMSE 
should be as close to zero as possible and, correspondingly, the value of 
LAI should be close to one. Mosavi et al. (2019) propose the correlation 
coefficient (r) (i.e., the difference (error) between the training data and 
the output of the trained model) for the same purpose. 

2.3. Components of the AI training 

Technically, a building-integrated AI is an advanced software 
implemented in a building automation system (BAS). To enable the AI 
training, the BAS needs to have related software, hardware, protocols 
and standards for the communication (e.g., C-Bus, LonWorks etc.) 
(Gholamzadehmir, Del Pero, Buffa, Fedrizzi & Aste, 2020). 

The main sources of training data are a history database and pref-
erably an access to other external databases (e.g., weather, energy, and 
cost databases) (Martín-Lopo, Boal & Sánchez-Miralles, 2020). A 
connection with the Internet of Things (IoT) enables data transfer over 
the Internet between the BAS and potentially any component from light 
bulbs to presence sensors. It also offers an access to big data (BD), which 
is above all weather data or sensor data (Daissaoui, Boulmakoul, Karim 
& Lbath, 2020), but may also include various other items such as 
hyperlocal and site-specific data, street view images or building codes 
(Mehmood, Chun, Han, Jeon & Chen, 2019). Data on occupants and 
their behaviour can be acquired through mobile and wearable tech-
nology, including their feedback, health, emotions, mobility, social 
media activity etc. (Zhang & He, 2020). 

Typical of BD is that data mass is growing continuously, which en-
ables learning from experience. The AI training may be based on cor-
relations and patterns recognized employing a data analysis technique 
known as data mining (Zhao, Zhang, Zhang, Wang & Li, 2020) or ma-
chine learning, which this article focuses on. 

A broad categorization of machine learning can be made into su-
pervised, unsupervised and reinforcement learning. In supervised 
learning, a significant set of historical data is used to train a mapping 
from independent variables to a dependant variable that is being pre-
dicted. In a building context, the independent variables are often sensor 
measurements. The predictions are generally either time-series forecasts 
or classifications. An example of the former is building energy con-
sumption forecasting. An example of the latter is diagnosing the type of 
fault that has occurred in an HVAC equipment. Supervised learning re-
quires an extensive training set of data for the independent variables, as 
well as the corresponding correct values for the dependant variables. 
These correct values are known as labels. After the training process, a 
mapping from the independent variables to the dependant variable has 
been established, so the model is able to receive a previously unseen 
combination of independent variables and predict the value of the 
dependant variable (Alawadi et al., 2020). 

Unsupervised learning can be applied when a labelled training set 
does not exist. A common application of unsupervised learning is 
anomaly detection. The machine learning model is trained with data in 
normal conditions, after which it is able to detect whether the system is 
in a normal condition or not. However, it will not be able to diagnose the 
type of failure condition (Mirnaghi & Haghighat, 2020). 

Supervised and unsupervised approaches are suitable for observing 
and predicting, but less well suited for adjusting, managing, and inter-
acting. For these latter approaches, the reinforcement learning tech-
nique is suitable Perera & Kamalaruban, 2021). Key concepts of 
reinforcement learning are in italics in Fig. 1, with typical building 
sector examples in parenthesis. Instead of labelled data as in supervised 
learning, a special purpose environment is constructed for the rein-
forcement learning agent. The agent takes actions that impacts the 
environment and gets feedback in the form of a reward that quantifies 
whether the impact was beneficial or not. Based on the feedback, the 
agent gradually learns to take actions with beneficial outcomes. 

Table. 1 
Examples of BAS improvements due to AI training.  

Function Status before training Status after training 

Observe The BAS does not recognize one 
of the measured indoor 
temperatures as unexpectedly 
high. 

The BAS recognizes 
unexpectedly high a room 
temperature. 

Predict The BAS mispredicts the 
building’s energy demand for the 
next 24 h. 

The BAS is able to predict the 
energy demand with a 
reasonable accuracy. 

Adjust The BAS follows a pre-defined 
control strategy without 
considering unpredicted changes 
in the occupancy. 

The BAS introduces a new 
control strategy on the basis of 
up-to-date occupancy data.  

Manage 
(data) 

The BAS mispredicts the energy 
demand due to the gaps in 
acquired weather data. 

The BAS predicts the energy 
demand accurately due to a 
reconstructed weather data set. 

Interact 
(with 
humans) 

The BAS calls service without a 
reason due to a misinterpreted 
temperature. 

The BAS recognizes an 
unexpected temperature and 
calls the service if needed.  

K. Alanne and S. Sierla                                                                                                                                                                                                                        



Sustainable Cities and Society 76 (2022) 103445

4

Additionally, the environment provides state information, which the 
agent uses to select the action. The applications to these concepts to 
building energy management are discussed further in Section 3. 

Commonly, AI training is not a continuous process, but its essence is 
pre-optimization, where algorithm-specific variables (e.g., weight fac-
tors of an artificial neural network, ANN) are fixed to yield a certain 
output from a fixed set of training data (e.g., Gharehbaghi, Nguyen, 
Farsangi & Yang, 2020). Here, the AI is not able to adapt to any situation 
other than one included in the training data in the pre-optimization 
phase. When exposed to anomalies, the AI repeats an erroneous action 
until a new training with extended data is performed. Therefore, the 
model training must take place on either a regular basis or on the basis of 
demand (e.g., user feedback, initiation by automation system).An 
autonomous building should be also capable of both identifying the 
possibilities to improve its performance and initiating and automatically 
running appropriate learning processes. To create a self-taught AI calls 
for the implementation of autodidactic functions (Albino et al., 2015). 
Here, a database provides a platform for the AI, whereas the learning 
process continuously utilizes available data, unassisted by humans 
(Bailey, 2020). 

An autodidactic algorithm can be realized under the reinforcement 
learning (RL) paradigm, where the AI is set into an unknown environ-
ment (data set) and either rewarded or penalized according to its ac-
tions. The AI aims at maximizing the cumulative reward, wherefore it (in 
theory) evolves endlessly (e.g., Dey, 2016). Deep Reinforcement 
Learning (DRL) incorporates deep learning (DL) into the algorithm. 
Deep Reinforcement Learning (DRL) has been mentioned as a potential 
direction for future research for coping with the complex decisions 
related to multi-energy systems (Hassan, Acharya, Chertkov, Deka and 
Dvorkin (2020)); Ye, Qiu, Wu, Strbac and Ward (2020)). An example of 
an autodidactic approach is given in the work of McAleer, Agostinelli, 
Shmakov and Baldi (2018) who have developed a reinforcement 
learning algorithm called Autodidactic Iteration that teaches itself to 
solve the Rubik’s Cube with no human assistance. To our best knowl-
edge, autodidactic training has not been applied so far in the field of 
building automation, anyway. 

The present-day AI is called narrow or weak AI, since the AI can 
specialize in one task only (Mehmood et al., 2019). Instead, artificial 
general intelligence (AGI) (aka strong AI) is capable of performing 
various tasks similarly as humans (e.g., Bołtuć, 2020). To that end, 
techniques such as program synthesis (Reynolds, 2017), neuro-morphic 
computing (Mizutani, Ueno, Arakawa & Yamakawa, 2018) and the 
merger of biology and technology (Dambrot (2020); Pisarchik, Maksi-
menko and Hramov (2019)) have been suggested. The aforementioned 
approaches are at the level of basic research, however, and their ap-
plications have not been reported so far in the field of building 
automation. 

Attempts to imitate AGI-like qualities in machine learning have been 
reported. For example, several weak AI agents may be connected 
together to solve a particular computational problem (a multi-agent 
system) or to store knowledge while solving one problem and to apply 
it to a different but related problem (transfer learning) (Wang et al., 
2017). Applications of these methods also has been demonstrated for 
smart buildings (e.g., smart-grid interaction by Labeodan, Aduda, 

Boxem and Zeiler (2015), temperature prediction by Grubinger et al. 
(2017) and prediction of energy use by Pinto, Praça, Vale and Silva 
(2020)). Transfer learning in multi-agent systems has been identified as 
a potential avenue of research, but this field is still maturing (Da Silva & 
Costa, 2019). 

Finally, we point out that the reported machine learning applications 
often focus on tasks where the AI does not make decisions on the basis of 
what it has learned, such as predicting different variables with improved 
accuracy (e.g., Candanedo et al., 2018). Instead, when the AI actuates 
single processes (e.g., HVAC, lighting), it can be classified as an auton-
omous AI at the lower hierarchy level of the BAS. If it redefines the 
setpoints to change the control strategy (e.g., to achieve demand 
response), it is an autonomous AI at the upper hierarchy level of the BAS. 
To support these decisions, an AI may utilize user feedback as training 
data, as exemplified by Carreira et al. (2018)). 

2.4. Training environment 

Training environments for AI may be virtual, physical or a hybrid of 
virtual and physical environments. Here, virtual training environments 
often refer to whole-building simulations, where all the building’s 
physical components and their functions have mathematical counter-
parts. AI training may take place completely on the basis of sensor data 
(e.g., smart controller) or in its natural operational environment (e.g., 
kitchen robot). A hybrid of mathematical models and physical compo-
nents has been described, for example, by Kilpeläinen, Lu, Cao, Hasan 
and Chen (2018). In the work of Lu et al. (2020), the accuracy of the 
whole-building simulation is enhanced through re-calibration of the 
building model on the basis of continuously updating set of sensor data. 

One of the most promising virtual training environments is digital 
twin (DT), which is defined as “a digitalized version of a physical object” 
(i.e., building and its systems) (Mathupriya, Saira Banu, Sridhar & Arthi, 
2020). The DT may be constructed as an extremely detailed 
whole-building simulation model and building information modelling 
(BIM) is employed as a major product database (e.g., Boje, Guerriero, 
Kubicki and Rezgui (2020), Sacks, Girolami and Brilakis (2020)). 
Furthermore, DT includes an interface between the physical system and 
its virtual counterpart, e.g., building energy management system 
(Agouzoul et al. (2021); Koulamas and Kalogeras (2018)). Given that 
combined data from both physical and soft (virtual) sensors can be 
synchronized in real time, the DT allows a quick and reliable building 
performance prediction as a response to changes in operational variables 
(e.g., Srinivasan, Manohar & Issa, 2020). 

Research activities on buildings’ DTs commonly aim at model 
development by simulation (Angjeliu, Coronelli & Cardani, 2020), im-
ages and drawings (Lu et al., 2020; Lu, Chen, Li, & Pitt, 2020b), and BIM 
(Boje et al., 2020). Applications have been also reported in anomaly 
detection ((Lu et al., 2020c)c), lifecycle management (Tchana, Ducellier 
& Remy, 2019), construction site logistics (Greif, Stein & Flath, 2020), 
energy performance evaluation (Kaewunruen, Rungskunroch & Welsh, 
2019), and building information management (Nasaruddin, Ito & Tuan, 
2018). The application of DT as a training environment for AI agents is 
uncommon. Khajavi, Motlagh, Jaribion, Werner and Holmström (2019), 
propose a DT to assist HVAC design and (fine) control, but here, the DT 
does not operate as training environment, either. 

3. Overview of machine learning applications 

3.1. Material and methods 

The review was initiated by quick searches with different combina-
tions of keywords in various Internet databases were conducted to 
obtain an overall conception of the relevant literature. The suggestions 
by the search engine and the reference lists in the found publications 
were utilised, when applicable. To narrow down the scope, the search 
was supplemented with four (4) searches in the field ‘Abstract, Title, 

Fig.. 1. Key concepts of reinforcement learning.  
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Keywords’ in the ScienceDirect database using its own search engine. In 
the first place, the subject areas were not restrained (Search 0). The rest 
of searches (1–3) included the subject areas ‘engineering’ and ‘energy’ 
only. The search procedure (ScienceDirect) and the number of hits is 
shown in Table 2. The development of research activity is in Fig. 2. 

The papers classified as relevant were first chosen for further 
consideration using annotations. Second, the papers were scanned with 
an aim to identify and classify the application domains and application- 
specific machine learning techniques. Finally, autonomous applications 
based on reinforcement learning were reviewed with more detail to 
identify their key features such as sources of training data, applied 
reward mechanisms and the training environments. An overview of the 
application domains is presented in Section 3.2, whereas Section 3.3 has 
been dedicated to autonomous applications utilizing RL techniques. 

3.2. Application domains by main function 

The survey of 47 selected articles resulted in a classification, where 
18 key application domains were recognized using the five (5) main 
functions listed in Section 2.2. The aforementioned application domains 
are in Table 3. These are not constrained to autonomous AI agents or 
reinforcement learning techniques, but all the detected approaches are 
included. 

The main function ‘observe’ is one of the basic functions of BAS, and 
there are plenty of reported applications. The recent reports include 
applications such as the use of energy signatures to identify the heating 
system and building type using smart metre data and unsupervised 
regression modelling (Westermann, Deb, Schlueter & Evins, 2020), 
recognition of occupants and their activity (e.g. Zou, Zhou, Yang & 
Spanos, 2018), vision-based heat gain detection with deep learning 
(Wei, Tien, Calautit, Wu & Boukhanouf, 2020), detection of structural 
damages based on various algorithms (Gharehbaghi et al. (2020); 
Mangalathu et al. (2019), Wang et al. (2019); Zheng, Lei and Zhang 
(2020)), detection of anomalies (Araya et al., 2017) and BAS intrusions 
(Pan, Hariri & Pacheco, 2019). In their application, Araya et al. (2017) 
use ensemble learning (supervised) in their work, as well as Han, Zhang, 
Cui and Meng (2020) for fault diagnosis. Autonomous AI agents are not 
typical for this category, and the reports surveyed for this overview do 
not include the implementation of reinforcement learning, either. 
Hence, the detailed treatment does not belong to the scope of this sur-
vey, and the reader is referred to the original papers for further 
information. 

Quite a few of the reported applications represents the main function 
‘predict’. In this category, autonomous AI agents are not typical, but 
reinforcement learning has been reported in the context of predicting 
energy use (Liu, Tan, Xu, Chen & Li, 2020) and occupant behaviour 
(Han et al., 2020). The prevailing approach is deep learning (e.g., Gao, 
Ruan, Fang and Yin (2020), Wen, Zhou and Yang (2020))), whereas 
statistical learning has been applied, for example, to the prediction of 
the risk of power outages (Mukherjee, Nateghi & Hastak, 2018). Ap-
plications relying on transfer learning (e.g., Chen, Tong, Zheng, 
Samuelson and Norford (2020), Gao et al. (2020), Qian, Gao, Yang and 
Yu (2020)) and supervised ensemble learning (e.g., Gong, Wang, Bai, Li 
and Zhang (2020), Pinto et al. (2020)) also have been reported. 

The main function ‘manage (data)’ typically does not include 

autonomous AI agents. To our best knowledge, reinforcement learning 
has not been applied in this area in terms of smart buildings, either. Data 
management issues such as ‘poor data quality’ have been referred to in 
the context of other main functions (e.g., Gao et al., 2020). Amayri et al. 
(2020) present database quality assessment for interactive learning in 
the context of occupancy estimation. End-user group categorization on 
the basis of reduction and transformation of energy use data is presented 
by Song, Ahn, Ahn, Park and Kwon (2020). An example of dataset 
reconstruction is in the work of Candanedo et al. (2018). 

The main function ‘interaction with humans’ is a new albeit growing 
body of smart building research. An example is reported by Kon-
stantakopoulos et al. (2019), who present a deep learning and gamifi-
cation approach to improving human-building interaction and energy 
efficiency in smart infrastructure. While gamification also suits into the 
frame of organizational learning, a more holistic approach is so called 
‘people-oriented’ approach, where training data are gathered through 
‘five senses’ (voice, visual recognition, recognition of emotions etc.), 
and, in tandem with the users’ active feedback used to improve building 
performance (Li, Zhang, Li, Huang & Wang, 2020). 

In contrast to the aforementioned categories, autonomous AI agents 
are common under the category ‘adjust’. Here, the reinforcement 
learning technique is appropriate and also prevailing, wherefore Sec-
tion 3.3 as whole is dedicated to a more detailed review of those 
applications. 

3.3. Autonomous AI based on RL and DRL 

In this section, we survey applications, where the AI not only actu-
ates control processes autonomously (i.e., lower hierarchy level of the 
BAS) but chooses the values of parameters and control variables with an 
aim to adapt to changing operational environment (i.e., upper BAS hi-
erarchy level). 

Five categories emerged from our review of reinforcement learning 
applications to intelligent buildings. These categories are summarized in 
the ‘Application’ column of Table 4, and each of them is discussed in a 
separate subsection of Section 3.3. The key elements of a reinforcement 
learning system illustrated in Fig.1, namely, training environment, state, 
action, and reward, are elaborated for each of these application cate-
gories in Table 4. 

3.3.1. Application 1: controller tuning 
Shipman and Coetzee (2019) apply RL to train an autonomous AI 

agent to tune a PI controller, given only the process variable, set-point, 
manipulated variable and prior controller gains. The training considers 
random changes in plant dynamics, disturbances, and measurement 
noise and it is realized in a simulation. The saturating reward function 
(Deisenroth, 2012) is used as the reward signal to the AI agent. 

3.3.2. Actuation of heating and cooling systems 
Many reinforcement learning applications for HVAC control focus on 

heating. Gupta, Badr, Negahban and Qiu (2021) develop a reinforce-
ment learning controller for automatically actuating a heating element. 
A reward function is designed to simultaneously optimize thermal 
comfort and energy saving. A simulation model of a house is used as the 
environment to train the controller. Most works control indoor tem-
perature, whereas Brandi, Piscitelli, Martellacci and Capozzoli (2020) 
control supply water temperature. Rahimpour, Verbič and Chapman 
(2020) demonstrate the advantages of reinforcement learning in indoor 
temperature control for buildings with phase change materials, which 
have complex dynamics and thus pose significant challenges for con-
ventional control approaches. Whereas the majority of approaches are 
limited to considering thermal comfort and energy consumption, Y. Du 
et al. (2021) additionally consider a variable electricity retail price and 
Yoon and Moon (2019) consider humidity as an additional factor for 
occupant comfort. 

The majority of approaches involves using a building energy 

Table. 2 
Number of hits by search in ScienceDirect (Date: June 22, 2021).  

Search Keywords and search rule Hits Reviews 

0 learning AND (building OR buildings) (subject area 
not restrained) 

6618 339 

1 learning AND (building OR buildings) 2216 91 
2 “reinforcement learning” AND (building OR 

buildings) 
81 4 

3 “deep reinforcement learning” AND (building OR 
buildings) 

20 –  
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simulator as the training environment, but criticizing the simplifying 
assumptions made during the building of such simulation models. Zou, 
Yu and Ergan (2020) use two (2) years of building automation system 

data to train deep neural networks to serve as the environment for 
training the reinforcement learning agent doing the HVAC control. 

In general, reinforcement learning methods for HVAC control as-
sume that the agent takes actions at regular intervals, but Hosseinloo 
et al. (2020) proposes an event-triggered approach, in which examples 
of events are state variables crossing a threshold. Very similar setups for 
the building environment and reinforcement learning agents are appli-
cable for cooling (Jia, Jin, Sun, Hong & Spanos, 2019). 

The majority of research ignores the possible availability of rooftop 
photovoltaic generation, despite the strong increase in such capacity 
(Gernaat, de Boer, Dammeier & van Vuuren, 2020). However, Lissa 
et al. (2021) propose a reinforcement learning agent for home energy 
management, performing three distinct tasks: space heating, domestic 
hot water heating and ensuring that local photovoltaic generation is 
used locally as much as possible. A separate reward function is defined 
for each of these tasks. By weighting these, a higher-level reward 
function computes the overall reward used to train the agent. The 
environment for training the agent is a house energy simulation, 
parameterized with real sensor data from a case study. 

3.3.3. Actuation of ventilation systems 
One direction of research in learning ventilation systems are natural 

ventilation systems in which the opening and closing of windows is 
actuated. Han et al. (2020) developed a reinforcement learning agent for 
automatically closing and opening windows in order to optimize indoor 

Fig.. 2. Number of publications per year.  

Table. 3 
Application domains classified according to main function.  

Main function Application domain 

Observe Identification of equipment and systems 
Recognition of activity 
Detection of anomalies and faults 
Monitoring building performance 

Predict Prediction of human behaviour 
Prediction of state variables 
Prediction of heat gains and loads 
Prediction of energy and power usage 
Prediction of risks 

Adjust Controller tuning 
Actuation of heating, cooling, ventilation, and lighting systems 
Building energy management 
Demand response and scheduling 

Manage (data) Data acquisition 
Data quality assessment 
Data reconstruction 
Data analysis 

Interact 
(with humans) 

Improvement of human-building interaction  

Table. 4 
Overview of reinforcement learning applications.  

Application domain Training environment State Action Reward 

Actuation of heating and 
cooling systems 

Building energy model, e.g., data driven model, 
building energy simulator, or simulator 
parameterized based on building sensor 
measurements 

Building sensors related to 
HVAC, ambient light, 
occupancy. Outdoor weather 

Actuators, e.g., valves, 
pumps, window 
openers 

Building indoor environment kept 
within parameters & energy 
consumption minimization Actuation of ventilation 

systems 
Actuation of indoor lighting 

systems 
Building energy 

management: decision 
making at the setpoint 
level 

Same as above with possible 
extra information on 
electricity prices 

Setpoint for HVAC 
control loops 

Minimize electricity consumption 
or bills, in some cases considering 
varying electricity price 

Demand response: decision 
making for rescheduling 
HVAC loads 

Same as above, price 
information is mandatory 

Reschedule 
consumption away 
from peak hours 

Minimize electricity bills 
considering varying prices  
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air quality and thermal comfort. A deep learning model of the envi-
ronment is trained, based on two months of sensor observations on how 
the human occupant opened and closed the windows and how the in-
door conditions changed as a result. Here, the black-box model of the 
room’s indoor air quality and thermal comfort works as the training 
environment. It was demonstrated that the trained agent achieved 
significantly superior performance than the human occupant in terms of 
air quality and indoor temperature. Chen, Norford, Samuelson and 
Malkawi (2018) present a reinforcement learning agent for a similar 
problem, with the capability of controlling an air conditioner and heater 
in addition to opening and closing the windows. The capability to con-
trol indoor temperature and humidity all year round is demonstrated. 

Another direction of research in learning ventilation applications 
assumes that windows remain closed. Valladares et al. (2019) propose a 
reinforcement learning agent for the joint control of ventilation fans and 
air conditioners in a subtropical environment with no heating need. 
Unlike the majority of the research, air quality (CO2 levels) is included 
into the usual optimization criteria of thermal comfort and energy effi-
ciency. Building on this work, Yu et al. (2021) consider an environment 
with a variable number of occupants as part of the system state. The 
number of occupants is recorded manually, which requires further work 
before the system could be deployed. 

We note that learning applications for ventilation have been studied 
less than applications for heating and cooling. With the exception of 
Chen et al. (2018), the reviewed works make simplified assumptions: 
Han et al. (2020) is limited to two months during a season in which 
outdoor temperatures were favourable towards natural ventilation, and 
(Valladares et al., 2019; Yu et al., 2021) assume a climate in which 
heating is never needed. 

3.2.4. Actuation of indoor lighting systems 
Park, Dougherty, Fritz and Nagy (2019) present a reinforcement 

learning agent for controlling lighting levels of an office. In addition to 
sensor data about occupancy and ambient lighting, the users’ activity in 
operating the light switch is considered as a state variable, in order to 
allow the agent to learn the user preferences. The actions are limited to 
turning the lights on or off, lacking the possibility for adjustment of 
lighting levels. Cho et al. (2020) present a similar approach and go 
further by analysing occupants text message and by tracking their 
location and activity. Cheng et al. (2016) propose a reinforcement 
learning agent for lighting and window blinds control, to optimize the 
combined energy consumption of lighting and air conditioning. 
Motamed, Bueno, Deschamps, Kuhn and Scartezzini (2020) perform 
joint control of blinds and lighting to achieve sophisticated goals for 
visual comfort. As a pre-study for reinforcement learning applications 
for affecting human emotions by adjusting lighting levels and light 
colour. Seo, Choi and Sung (2021) designed a supervised learning model 
for recommending an illuminance level and correlated colour temper-
ature depending on the task to be performed and the fatigue level and 
emotional mood of the person performing the task. 

In summary, learning applications for indoor lighting present broad 
research challenges, due to the complexity of determining the impact on 
human productivity and comfort, the complexity of tracking humans 
and due to the interdependencies with other systems such as window 
blinds and heating or cooling. 

3.2.5. Building energy management: decision making at the setpoint level 
One category of learning applications are higher level building en-

ergy management systems that do not directly participate in real-time 
control but rather adjust the setpoints of lower-level HVAC control 
systems. Vázquez-Canteli, Ulyanin, Kämpf and Nagy (2019) use a 
building energy simulator as the environment to train a reinforcement 
learning agent. Two case studies are demonstrated. Firstly, an agent is 
trained to operate a heat pump to manage a chilled water tank in order 
to minimize electricity consumption of an air conditioning system over a 
one-day period. Secondly, the same problem is solved in the presence of 

local photovoltaic generation. Jiang et al. (2021) present a similar 
approach with another building energy simulator, using the solid mass 
of the building as a heat sink instead of a chilled water tank as a cold 
storage. A very similar approach is presented by Schreiber, Eschweiler, 
Baranski and Müller (2020), with the addition of considering the spot 
electricity price as part of the electricity cost minimization problem. 
Pinto, Piscitelli, Vázquez-Canteli, Nagy and Capozzoli (2021) propose 
another building energy simulator for training reinforcement learning 
models, with the advantage of being scalable from a single building to 
clusters of buildings and urban districts. 

The abovementioned works assume that the same indoor environ-
ment should be maintained throughout the building. Lork et al. (2020) 
note that for managing the air conditioning of a residential building, the 
individual preferences of inhabitants should be considered in different 
parts of the building. Room specific environments are trained for rein-
forcement learning agents, which adjust the temperature setpoint of the 
air conditioning unit of the room. Y. Du et al. (2021) present a similar 
multi-zone indoor temperature control system, with the additional 
capability of considering variable electricity retail price for the energy 
cost optimization. 

Luo et al. (2020) propose the self-learning controller as an alterna-
tive to reinforcement learning approach such as the ones reviewed by 
Vázquez-Canteli and Nagy (2019B). The self-learning controller does not 
employ machine learning techniques but is similar to reinforcement 
learning in the sense that it receives feedback from a building energy 
simulation and adjusts its actions accordingly. 

The majority of the research does not consider the possible avail-
ability of rooftop photovoltaic generation of electricity or hot water. 
Works that do consider it have diverse approaches for incorporating it 
into the learning targets. Soares et al. (2020) use reinforcement learning 
to control a domestic heat pump and electric loads in the presence of a 
hot water tank for heat storage, a battery storage and local photovoltaic 
production. The goal is simply to maximize local self-consumption of the 
photovoltaic energy on an hourly basis, with occupant comfort being 
treated as hard constraints for the lower level control. Thus, comfort is 
not included in the reward function of the reinforcement learning. The 
energy content of the tank and battery are modelled analytically instead 
of relying on ready components in building energy simulators. 
Vázquez-Canteli et al. (2019) aim to use photovoltaic generation to 
reduce the electricity consumption in the presence of cold storage. 
Correa-Jullian, Droguett and Cardemil (2020) considers a domestic solar 
thermal collector and a reinforcement learning agent performing on/off 
control of a solar circulation pump and heat-recovery circulation pump. 
A complex combination of factors contributes to the reward, including 
energy efficiency, local exploitation of renewable energy, energy cost 
and thermal comfort. 

3.2.6. Demand response: decision making for rescheduling HVAC loads and 
using alternative (non-electric) sources of energy 

In an overview on machine learning approaches for demand response 
in residential buildings, Sharda, Singh and Sharma (2021) identify RL as 
an emerging alternative to conventional multi-objective optimization 
techniques. Instead, our survey reveals great variety in how different 
authors formulate the RL problem. 

Mathew, Jolly and Mathew (2021) train an RL agent for rescheduling 
residential electricity load away from peak priced hours. The scheduling 
problem is modelled as a game, where loads are blocks on a chart 
depicting time on the horizontal axis and the total load on the vertical 
axis. The agent is able to move the blocks and it is rewarded, when it is 
able to create a load profile shifted away from peak hours. 

Sheikhi, Rayati and Ranjbar (2016) propose an energy management 
system for a residential building equipped with gas powered micro-CHP. 
The system includes a reinforcement learning agent that takes demand 
response actions to avoid electricity consumption at times of high 
electricity prices. It can do this either by rescheduling electric loads or 
by buying gas and using the micro-CHP. In (Sheikhi, Rayati & Ranjbar, 
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2016), they generalize the approach to a multi-energy system with 
several possible energy carriers. In a review of reinforcement learning 
demand response solutions for HVAC and other assets, Vázquez-Canteli 
and Nagy (2019B) point out a problem in the majority of such ap-
proaches: in markets with demand-independent electricity prices, these 
approaches are likely to only shift the consumption peaks. This critique 
could be applied to (Mathew et al., 2021); however, (Sheikhi et al., 
2016) assume a real-time pricing environment, which could overcome 
this problem. Demand response research is focused on electrical sys-
tems, but Solinas, Bottaccioli, Guelpa, Verda and Patti (2021) apply the 
concept to district heating, in which a hot water piping network supplies 
heat to buildings from a CHP plant. The authors apply reinforcement 
learning to reduce peak demand at the CHP plant by controlling the 
heating load in buildings. 

We note that the reviewed works do not consider the additional 
possibility to trade on ancillary markets such as frequency reserve 
markets, which is a special form of demand response and offers addi-
tional possibilities for profitable exploitation of flexible energy re-
sources (Giovanelli, Kilkki, Sierla, Seilonen & Vyatkin, 2019; Kempitiya 
et al., 2020; Subramanya et al., 2021). 

4. Discussion and recommendations for future research 

In the first part of this article, we discussed the learning ability as a 
feature of buildings. We conclude that the increasing autonomy of smart 
buildings, the evolving AI, and the increasing demand for interaction 
between humans and buildings challenge the future research. Further 
research is needed, for example, to find out to which extent the AI may 
enhance building performance and the buildings’ adaptability to 
unpredicted changes when the entire system rather than single processes 
is concerned. Here, the application of digital twins as training envi-
ronments in boosting the learning processes is considered one of the 
major research topics. 

The evolving autonomy of building energy management systems 
requires further specifications for AI-initiated monitoring, analysis, and 
decision-making tasks (Aguilar, Garces-Jimenez, R-Moreno & García, 
2021). One of the potential research topics is building performance 
assessment with an aim to identify processes that yield the highest 
benefit from automation, including the autonomous learning processes. 
Here, the key performance indicators are indoor comfort, energy effi-
ciency, carbon footprint and techno-economic viability. We propose the 
Learning Ability Index (LAI) as a tool to assess the implications of 
autonomous learning processes at the system level. This is because the 
LAI indicates the performance of AI by aggregating multiple attributes 
into a single number and considers the time invested in AI training 
(Alanne, 2021). Other indicators such as the Building Intelligence 
Quotient (BIQ), the Consumer Engagement, and the Smart Readiness 
Indicator (SRI) can be used to quantify the contribution of AI-initiated 
processes in the whole system (Batov (2015); SCIS (2017), Verbeke 
et al. (2017); Vigna, Pernetti, Pernigotto and Gasparella (2020); Volkov 
(2013)). 

With an intention to outline pathways towards higher building in-
telligence, we want to stimulate discussion on whether to standardize 
autonomy levels for buildings, inspired by the levels of automated 
driving (SAE J3016 2018). The Society of Automotive Engineers (SAE) 
determines explicitly the driving tasks belonging to the human driver 
and those belonging to AI using a scale zero (0) to five (5) (Gruyer et al., 
2017). AI training takes place on a regular basis and implements both 
hardware/software updates and data collected from real traffic condi-
tions (Badue et al., 2021). There is no corresponding standardization for 
buildings. We conclude on the basis of our survey, however, that this 
type of a definition and standard would potentially serve as a roadmap 
supporting a progression from basic capabilities towards more advanced 
capabilities, building on the basic ones. 

In the second part of this paper, we presented an overview of re-
ported machine learning applications under five main functions, 

namely, observe, predict, adjust, manage, and interact. Here, we focused 
on autonomous AI agents that make independent decisions for building 
energy management and are based on (deep) reinforcement learning 
(RL). 

The reviewed reinforcement learning applications involve adjust-
ment both in real-time, hourly, and daily timescales. We conclude that 
the adjustments would perform better if they incorporated the outputs of 
asset management and prediction as state information to the rein-
forcement learning agent (see: Fig. 1), but such integrations were not 
found in the reviewed papers. This is a major direction for future 
research. 

Management of big data will be a major issue related to large scale 
deployment of all of the above, but these aspects have not been 
addressed by the studies reviewed in this paper. To that end, Qolomany 
et al. (2019) perform a review of machine learning applications for 
smart buildings with a focus on big data. Applications of these tech-
nologies is a major area of further research to address the challenges of 
deployment of AI solutions to physical buildings. 

The reviewed papers address interaction with human users in limited 
ways, building on adjustment capabilities, so that the adjustments are 
made based on occupancy sensor data and in some cases providing very 
simple user interfaces for human users. Sophisticated interaction tech-
nologies such as wearable technologies or speech detection are topics for 
further research. Besides, our survey revealed some further limitations 
and potential areas of future research, which are briefly discussed in the 
following paragraphs. 

One direction of further research would be to develop benchmarks of 
building environments with constraints for the indoor environment, in 
order to permit direct comparisons between the performance of different 
systems targeting similar goals; the benchmarks could be in the form of 
open source RL training environments implementing the popular 
OpenAI Gym interface (Brockman et al., 2016). Ma, Aviv, Guo and 
Braham (2021) present a comprehensive overview of the variables used 
in the literature and identify additional variables that have hardly been 
used such as adjustments to lighting colour that are made possible by 
LED technology. 

Han et al. (2019) identify a lack of research that accounts for the 
behaviour of the occupant. The simplest way to take the occupant into 
consideration is to add occupancy as a state variable to the reinforce-
ment learning model (Han, Zhao, Zhang, Shen & Li, 2021). Deng and 
Chen (2021) propose an alternative approach by creating a model of the 
behaviour of occupants in how they adjust the thermostat and adjust 
their clothing level. 

The majority of the works reviewed in this article fail to account for 
human behaviour; however, Park et al. (2019) incorporate the occu-
pant’s manipulation of the light switch into the training of the rein-
forcement learning agent and Cho et al. (2020) extensively track the 
activity, movements, and messaging of the occupants, which may raise 
privacy concerns should the system be deployed. 

In a review of reinforcement learning applications for HVAC control 
systems, Wang and Hong (2020) note that a major upcoming challenge 
for HVAC controllers is that they need to integrate to higher level 
building energy management systems; this improves energy savings 
Mason and Grijalva (2019). For example, Azuatalam et al. (2020) inte-
grate a demand response operating mode to the reinforcement learning 
HVAC controller. As a long-term challenge, Perera and Kamalaruban 
(2021) identify further research horizons for exploiting reinforcement 
learning for energy management across buildings and other sectors, 
namely, transportation, agriculture, and waste management. 

When reinforcement learning agents are deployed to physical 
buildings, only a limited number of experiences can be gained from the 
physical environment. One avenue of further research would be transfer 
learning in multi-agent systems, in which experiences gained by an 
agent in one building could be exploited by agents in other buildings. 

The great majority of the reviewed approaches use kind of a building 
energy simulation as the environment for training the reinforcement 
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learning agent. However, Han et al. (2020) and Schreiber, Netsch, 
Baranski and Müller (2021) create data-driven black-box models of the 
environment with datasets collected from the physical building. Qiu 
et al. (2020) compare two alternatives for the environment: a building 
simulation model developed with real data from the case as well as a 
data-driven model using the same data. Superior performance was 
achieved with the former one. The building simulation approach is 
preferred to the data-driven approach also in the sense that it enables 
predicting the system behaviour also in other than measured operation. 

5. Conclusions 

In this paper, we discussed the learning ability of buildings in general 
and reviewed machine learning applications for training building- 
integrated AI with an emphasis on the reinforcement learning (RL) 
technique and autonomous AI agents that make decisions to initiate 
building control and energy management processes. To clarify the 
learning goals for buildings, we classified the learning applications ac-
cording to five main functions, namely, observe, predict, adjust, manage 
data, and interact with occupants. 

We conclude that buildings’ ability to learn is a key element for their 
adaptability. Learning can be achieved through AI training by way of 
machine learning algorithms, but also through shared learning between 
humans and a building. However, the adaptability at the system level 
and within a limited time calls for increased autonomy of building en-
ergy management systems. This can be realized through autodidactic 
functions, which initiate learning processes. Here, the training envi-
ronment plays a significant role to make the learning process efficient. 

Significant activity with RL was discovered, and it was concluded 
that the field is not yet mature with respect to the following three lim-
itations: the performance of different solutions for similar problems are 
in general not comparable (1), the capabilities of RL are not exploited to 
perform optimization across subsystems (2) and solutions do not scale 
up to several buildings without the need to engineer environments for 
each building from scratch (3). 

In the conditions of global climate change and its consequences, as 
well as the increased penetration intermittent renewable energy pro-
duction, building occupancy scenarios may not stabilize to a ‘new 
normal’, limiting the relevance of long sets of training data from a single 
building. Hence, there is a need for solutions that can quickly adapt to 
the changed conditions as well as to detect when conditions have 
changed so that the historical experiences of the agent might be obso-
lete. As the research on reinforcement learning for building energy 
management begins to confront the challenges related to deployment to 
physical buildings, there are clear motivations to explore transfer 
learning and multi-agent reinforcement learning for energy manage-
ment of intelligent buildings. 

Another line of research would be to employ a digital twin of the 
building as a virtual training environment for the reinforcement 
learning agent, to ensure that the environment reflects the most recent 
conditions at the building. An agent trained in such an environment 
would have a high potential for successful deployment to the real 
building. However, a high-fidelity digital twin is computationally 
expensive, and one line of further research would be to determine the 
adequate level of fidelity in the digital twin to enable the reinforcement 
learning agent trained in this environment to successfully generalize to 
the operating environment of the real building. 
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Lê, Q., Nguyen, H. B., & Barnett, T. (2012). Smart homes for older people: Positive aging 
in a digital world. Future Internet, 4(2), 607–617. 

Lee, S., & Karava, P. (2020). Towards smart buildings with self-tuned indoor thermal 
environments – A critical review. Energy and Buildings, 224, Article 110172. 

Li, P., Lu, Y., Yan, D., Xiao, J., & Wu, H. (2021). Scientometric mapping of smart building 
research: Towards a framework of human-cyber-physical system (HCPS). Automation 
in Construction, 129, Article 103776. 

Li, Z., Zhang, J., Li, M., Huang, J., & Wang, X. (2020). A Review of Smart Design Based 
on Interactive Experience in Building Systems. Sustainability, 12, 6760. 

Lissa, P., Deane, C., Schukat, M., Seri, F., Keane, M., & Barrett, E. (2021). Deep 
reinforcement learning for home energy management system control. Energy and AI, 
3, Article 100043, 43. 

Liu, T., Tan, Z., Xu, C., Chen, H., & Li, Z. (2020). Study on deep reinforcement learning 
techniques for building energy consumption forecasting. Energy and Buildings, 208, 
Article 109675. 

Lork, C., Li, W.-. T., Qin, Y., Zhou, Y., Yuen, C., Tushar, W., et al. (2020). An uncertainty- 
aware deep reinforcement learning framework for residential air conditioning 
energy management. Applied Energy, 276, Article 115426. 

Lu, Q., Chen, L., Li, S., & Pitt, M. (2020b). Semi-automatic geometric digital twinning for 
existing buildings based on images and CAD drawings. Automation in Construction, 
115, Article 103183. 

Lu, Q., Parlikad, A. K., Woodall, P., Ranasinghe, G. D., Xie, X., Liang, Z., & Schooling, J. 
(2020). Developing a Digital Twin at Building and City Levels: Case Study of West 
Cambridge Campus. Journal of Management in Engineering, 36(3). 

Lu, Q., Xie, X., Parlikad, A. K., & Schooling, J. M. (2020c). Digital twin-enabled anomaly 
detection for built asset monitoring in operation and maintenance. Automation in 
Construction, 118, Article 103277, 2020c. 

Luo, J., Joybari, M. M., Panchabikesan, K., Sun, Y., Haghighat, F., Moreau, A., et al. 
(2020). Performance of a self-learning predictive controller for peak shifting in a 
building integrated with energy storage. Sustainable Cities and Society, 60, Article 
102285. 

Ma, N., Aviv, D., Guo, H., & Braham, W. W. (2021). Measuring the right factors: A review 
of variables and models for thermal comfort and indoor air quality. Renewable and 
Sustainable Energy Reviews, 135, Article 110436. 

Mangalathu, S., & Burton, H. V. (2019). Deep learning-based classification of earthquake- 
impacted buildings using textual damage descriptions. International Journal of 
Disaster Risk Reduction, 36, Article 101111. 

Martín-Lopo, M. M., Boal, J., & Sánchez-Miralles, A. (2020). A literature review of IoT 
energy platforms aimed at end users. Computer Networks, 171, Article 107101. 

Masethe, M. A., Masethe, H. D., & Odunaike, S. A. (2017). Scoping Review of Learning 
Theories in the 21st Century. In Proceedings of the World Congress on Engineering and 
Computer Science 2017 Vol I WCECS 2017. 

Mason, K., & Grijalva, S. (2019). A review of reinforcement learning for autonomous 
building energy management. Computers & Electrical Engineering, 78, 300–312. 

K. Alanne and S. Sierla                                                                                                                                                                                                                        

http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0029
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0029
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0029
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0029
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0030
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0030
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0030
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0031
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0031
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0031
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0032
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0032
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0032
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0033
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0033
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0034
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0034
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0035
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0035
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0036
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0036
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0037
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0037
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0037
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0038
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0038
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0039
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0039
https://doi.org/10.1145/3311950
https://doi.org/10.1145/3311950
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0041
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0041
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0041
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0042
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0042
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0042
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0043
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0043
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0043
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0044
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0044
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0044
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0045
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0045
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0045
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0046
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0046
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0046
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0047
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0047
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0047
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0048
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0048
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0048
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0049
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0049
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0049
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0050
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0050
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0051
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0051
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0052
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0052
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0052
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0053
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0053
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0053
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0054
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0054
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0054
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0056
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0056
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0056
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0057
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0057
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0057
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0058
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0058
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0058
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0059
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0059
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0059
http://smartbuildings.honeywell.com/resource/1458300080000/MEhsbs_whitepaper
http://smartbuildings.honeywell.com/resource/1458300080000/MEhsbs_whitepaper
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0061
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0061
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0061
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0062
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0062
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0062
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0063
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0063
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0064
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0064
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0064
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0064
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0065
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0065
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0067
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0067
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0067
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0067
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0068
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0068
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0068
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0069
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0069
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0070
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0070
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0070
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0071
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0071
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0071
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0071
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0072
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0072
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0073
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0073
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0073
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0073
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0074
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0074
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0075
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0075
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0076
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0076
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0078
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0078
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0078
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0079
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0079
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0080
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0080
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0080
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0081
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0081
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0081
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0082
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0082
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0082
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0083
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0083
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0083
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0084
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0084
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0084
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0085
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0085
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0085
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0086
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0086
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0086
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0086
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0087
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0087
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0087
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0088
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0088
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0088
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0089
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0089
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0090
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0090
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0090
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0091
http://refhub.elsevier.com/S2210-6707(21)00718-6/sbref0091


Sustainable Cities and Society 76 (2022) 103445

11

Mathew, A., Jolly, M. J., & Mathew, J. (2021). Improved residential energy management 
system using priority double deep Q-learning. Sustainable Cities and Society, 69, 
Article 102812. 

Mathupriya, S., Saira Banu, S., Sridhar, S., & Arthi, B. (2020). Digital twin technology on 
iot, industries & other smart environments: A survey. Materials Today: Proceedings.  

McAleer, S., Agostinelli, F., Shmakov, A., & Baldi, P. (2018). Solving the rubik’s cube 
without human knowledge (pp. 1–11). [cs.AI], 18 May 2018 Retrieved from Accessed 
February 24, 2021, arXiv:1805.07470v1, https://arxiv.org/pdf/1805.07470.pdf. 

Mehmood, M. U., Chun, D. Z., Han, H., Jeon, G., & Chen, K. (2019). A review of the 
applications of artificial intelligence and big data to buildings for energy-efficiency 
and a comfortable indoor living environment. Energy and Buildings, 202, Article 
109383. 

Merabet, G. H., Essaaidi, M., Haddou, M. B., Qolomany, B., Qadir, J., Anan, M., et al. 
(2021). Intelligent building control systems for thermal comfort and energy- 
efficiency: A systematic review of artificial intelligence-assisted techniques. 
Renewable and Sustainable Energy Reviews, 144, Article 110969. 

Mirnaghi, M. S., & Haghighat, F. (2020). Fault detection and diagnosis of large-scale 
HVAC systems in buildings using data-driven methods: A comprehensive review. 
Energy and Buildings, 229, Article 110492. 

Mizutani, H., Ueno, M., Arakawa, N., & Yamakawa, H. (2018). Whole brain connectomic 
architecture to develop general artificial intelligence. Procedia Computer Science, 123, 
308–313. 

Mofidi, F., & Akbari, H. (2020). Intelligent buildings: An overview. Energy and Buildings, 
223, Article 110192. 

Mosavi, A., Salimi, M., Faizollahzadeh Ardabili, S., Rabczuk, T., Shamshirband, S., & 
Varkonyi-Koczy, A. R. (2019). State of the Art of Machine Learning Models in Energy 
Systems, a Systematic Review. Energies, 12(7), 1301. 

Motamed, A., Bueno, B., Deschamps, L., Kuhn, T. E., & Scartezzini, J.-. L. (2020). Self- 
commissioning glare-based control system for integrated venetian blind and electric 
lighting. Building and Environment, 171, Article 106642. 

Mukherjee, S., Nateghi, R., & Hastak, M. (2018). A multi-hazard approach to assess 
severe weather-induced major power outage risks in the U.S. Reliability Engineering & 
System Safety, 175, 283–305. 

Nasaruddin, A. N., Ito, T., & Tuan, T. B. (2018). Digital twin approach to building 
information management. In Proc. Manuf. Syst. Division Conf (p. 304). 

Nie, J., Xu, W., Cheng, D., & Yu, Y. (2019). Digital Twin-based Smart Building 
Management and Control Framework. DEStech Transactions on COMPUTER SCIENCE 
and ENGINEERING, 10–14. 

Pan, Z., Hariri, S., & Pacheco, J. (2019). Context aware intrusion detection for building 
automation systems. Computers & Security, 85, 181–201. 

Panetta, K. (2019). Gartner Top 10 Strategic Technology Trends for 2020. Retrieved from 
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technolog 
y-trends-for-2020/ Accessed: August 19, 2021. 

Park, J. Y., Dougherty, T., Fritz, H., & Nagy, Z. (2019). LightLearn: An adaptive and 
occupant centered controller for lighting based on reinforcement learning. Building 
and Environment, 147, 397–414. 

Pasini, D., Ventura, S. M., Rinaldi, S., Bellagente, P., Flammini, A., & Ciribini, A. L. C. 
(2016). Exploiting Internet of Things and building information modeling framework 
for management of cognitive buildings. In 2016 IEEE International Smart Cities 
Conference (ISC2) (pp. 1–6). 

Perera, A. T. D., & Kamalaruban, P. (2021). Applications of reinforcement learning in 
energy systems. Renewable and Sustainable Energy Reviews, 137, Article 110618. 

Petrosanu, D. M., Carutasu, G., Carutasu, N. L., & Pîrjan, A. (2019). A review of the 
recent developments in integrating machine learning models with sensor devices in 
the smart buildings sector with a view to attaining enhanced sensing, energy 
efficiency, and optimal building management. Energies, 12. https://doi.org/ 
10.3390/en12244745 

Pinto, G., Piscitelli, M. S., Vázquez-Canteli, J. R., Nagy, Z., & Capozzoli, A. (2021). 
Coordinated energy management for a cluster of buildings through deep 
reinforcement learning. Energy, 229, Article 120725. 

Pinto, T., Praça, I., Vale, Z., & Silva, J. (2020). Ensemble learning for electricity 
consumption forecasting in office buildings. Neurocomputing. 

Pisarchik, A. N., Maksimenko, V. A., & Hramov, A. E. (2019). From Novel Technology to 
Novel Applications: Comment on “An Integrated Brain-Machine Interface Platform 
With Thousands of Channels” by Elon Musk and Neuralink. Journal of medical 
Internet research, 21(10), e16356. 

Ploennigs, J., Ba, A., & Barry, M. (2018). Materializing the promises of cognitive IoT: 
How cognitive buildings are shaping the way. IEEE Internet Things J, 5(4), 
2367–2374. 

Qian, F., Gao, W., Yang, Y., & Yu, D. (2020). Potential analysis of the transfer learning 
model in short and medium-term forecasting of building HVAC energy consumption. 
Energy, 193, Article 116724. 

Qiu, S., Li, Z., Li, Z., Li, J., Long, S., & Li, X. (2020). Model-free control method based on 
reinforcement learning for building cooling water systems: Validation by measured 
data-based simulation. Energy and Buildings, 218, Article 110055. 

Qolomany, B., Al-Fuqaha, A., Gupta, A., Benhaddou, D., Alwajidi, S., Qadir, J., et al. 
(2019). Leveraging Machine Learning and Big Data for Smart Buildings: A 
Comprehensive Survey. IEEE access : practical innovations, open solutions, 7, 
90316–90356. 
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