Vierros, Sampsa; Sammalkorpi, Maria

Role of hydration in phosphatidylcholine reverse micelle structure and gelation in cyclohexane: a molecular dynamics study

Published in:
Physical Chemistry Chemical Physics

DOI:
10.1039/C5CP01799H

Published: 01/01/2015

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Role of hydration in phosphatidylcholine reverse micelle structure and gelation in cyclohexane: a molecular dynamics study

S. Vierros, and M. Sammalkorpi*

*Department of Chemistry, Aalto University, P.O. Box 16100, 0076 Aalto, Finland. E-mail: maria.sammalkorpi@aalto.fi; Tel +358-50-371-7434

In this work, we employ all-atom molecular dynamics simulations to examine the hydration response of phospholipid reverse micelles in cyclohexane. This ternary phospholipid / water / cyclohexane system is an important organogel forming system and the focus of this study is on gaining insight on the factors governing the gelation transition. We map the contributions rising from specific lipid - lipid and lipid - water interactions, and their response to increasing aggregate size and changes in water-to-lipid ratio. We find that, opposed to phospholipid / heptane organogels, in cyclohexane, lipid bridging and hydrogen bond driven stabilization of the lipid head group packing is at minor role in dictating the reverse micelle structural transitions corresponding to the organosol / organogel phase transition in this system. Instead, increasing the lipid head hydration changes the lipid packing factor directly which leads to gelation through the formation of long, wormlike micelles. Furthermore, the confined environment in the reverse micellar cores slows down the water dynamics significantly in comparison to fully hydrated phospholipid bilayers and at low water-to-lipid ratios this slow-down is even more significant. The findings map the role of hydration at microscopic level in these systems and could enable tailoring reverse micellar systems for applications relying on the structure and dynamics of the reverse micelles. Examples include such as drug transport, nanotemplating, or confined chemistry in the reverse micelle core water space, e.g., in catalysis.

1 Introduction

Reverse micelles formed by amphiphilic self-assembly in apolar media provide highly dynamic and responsive aggregates with applications ranging from drug delivery systems and soft-templation of nanomaterials1-3 to enhanced protein separation and structural stabilization4. In particular, lecithin reverse micelles have attracted much attention due to their biocompatibility and the unusual property of undergoing a phase transition from a freely running organosol state into a stiff, highly viscous organogel state5. This transition is generally attributed to the formation and entanglement of wormlike reverse micelles6-8, and is typically controlled by a gelation agent. The list of compounds demonstrated to induce gelation in lecithin systems includes bile acids and salts9,10, alkaline earth and rare earth cations11,12, as well as, small polar molecules13 including water8 (see Ref. 14 for a comprehensive list).

Of these, the ternary systems of lecithin/water/oil are particularly interesting as the water-filled interior effectively permits solubilization of aqueous species in organic solvent, as well as, provides a confined space to perform aqueous chemistry, e.g. inorganic nanoparticle synthesis. In these systems, lecithin is a mixture of phosphatidylcholine (PC) lipids differing by their hydrocarbon tail length and degree of saturation, oil refers to an organic apolar solvent such as alcanes and fatty acid esters, and water acts as the gelation agent. The microstructure and macroscopic phase behaviour of lecithin/water/oil systems has been shown to be dependent on and controllable by factors such as temperature, lecithin composition (lipid tail structure) and water-to-lipid ratio, \(w_0 = [\text{water}]/[\text{lipid}] \) where the square brackets refer to concentration4,5,15. The size of the reverse micelles, and through it the viscosity of lecithin/oil/water systems, is dominantly controlled by the water-to-lipid ratio in the system. On the other hand, an increase in the temperature decreases the mean micelle size through entropy gain. This decrease in micelle size lowers the viscosity. However, the effect of temperature can be partially nullified by introducing more saturated lipids into the system. Jointly, these signify the actual size distribution of the cylindrical wormlike reverse micelles is determined by the balance in free energy between the total entropic gain in splitting the aggregates into smaller sizes and the energetic penalty associated with the formation of end-caps to the finite size aggregates.

Characterisation of lecithin/water/oil organogels using scattering techniques6-8,16,17, nuclear magnetic resonance spectroscopy15,18,19 and rheology20 has revealed that the internal structure of the organogel phase is determined by the chemical nature of the solvent. For example in cyclohexane water triggers uniaxial growth of the initially spherical reverse micelles into disconnected wormlike reverse micelles. Maximum viscosity is attained around water-to-lipid ratio \(w_0 \approx 2 \), and the swell of the micellar aggregates is controlled by the ratio of water to oil. The transition from swollen to channelled micelles, is accompanied by a significant increase in the relaxation time of water molecules. Gelation is thus described as the cooperative clustering of the gelation agent, resulting in the formation of a connected micellar network that efficiently confines the water molecules. The gelation time increases with decreasing water-to-lipid ratio, which can be attributed to the reduced mobility of water and the increased packing density of the bilayer cores. Gelation is also influenced by the concentration of lecithin, with higher concentrations leading to faster gelation times. The gelation process is also affected by the temperature, with an increase in temperature leading to a decrease in gelation time due to the increased mobility of water and the lecithin. The gelation time is also influenced by the type of solvent, with polar solvents such as methanol leading to faster gelation times compared to apolar solvents such as cyclohexane. The gelation process is also affected by the concentration of lecithin, with higher concentrations leading to faster gelation times. The gelation time is also influenced by the temperature, with an increase in temperature leading to a decrease in gelation time due to the increased mobility of water and the lecithin. The gelation process is also affected by the type of solvent, with polar solvents such as methanol leading to faster gelation times compared to apolar solvents such as cyclohexane.
the results at the necessary microscopic detail. Computer simulations, and especially, molecular dynamics which readily enable studying both the microstructure and dynamics, have emerged as an increasingly popular tool to complement the experimental studies. Atomistic studies that enable the mapping of specific interactions in reverse micelle systems are, however, scarce. Aqueous reverse micelles have been examined by molecular simulations mainly for the ionic Aerosol OT surfactant, and non-ionic polyethylene glycol based surfactants. These studies have explored the reverse micelle structure, as well as, the structure and dynamics of the contained water environment. Additionally, our earlier work on phosphatidylycholine reverse micelles in cyclohexane assessed the force field accuracy on describing lecithin/cyclohexane systems. To our knowledge, lecithin reverse micelle hydration has not been examined by computational means prior to this work.

Here, we characterise the structure and hydration of lecithin (phosphatidylycholine) reverse micelles using atomistic-detail molecular dynamics with the aim of clarifying the role of hydration and bridging in the formation of lecithin/water/cyclohexane organogels. We examine a series of water-to-lipid ratios with reverse micelles of different size and analyse the influence of hydration in these systems. Furthermore, we quantify the formation, dynamics and significance of lipid-water hydrogen bonds, hydrogen bond bridges, as well as, their dynamics. Finally, we discuss the results in terms of the gelation mechanism of lecithin in cyclohexane and consider the implications of the findings on lecithin/water/oil gelating systems in general, as well as, on water as a gelating agent in these systems.

2 Methods

GROMACS 4.6 simulation package was used for the simulations. Molecular interactions were modelled by the additive CHARMM force field. Lipids were described using the CHARMM36 lipid parametrisation while cyclohexane model was taken from the compatible carbohydrate force field from Ref. Water is modelled using the CHARMM modified explicit TIP3P water model. We originally chose the CHARMM36 force field, because the lipid model has been validated also at low hydration with the water model, verified parameters are available for both saturated and unsaturated lipids, and force field consistent parameters for cyclohexane exist. However, our earlier work indicates the cyclohexane penetration into the lipid tail region is underestimated in this description. We demonstrated this can be compensated by introducing extra cis bonds into the lipid tail to increase steric repulsion between the tails (as sol-
vent penetration would). With 1,2-distearidonoyl-sn-glycerol-3-phosphocholine (DSPC) as the lipid (4 unsaturated bonds in each tail, see Fig. 1), the model reproduces experimental characteristics of lecithin reverse micelles in cyclohexane at varying water-to-lipid ratios by core dimensions, water channel structure, and overall form. However, the tail region structure, and especially the solvent interactions there, are likely to be unrealistic in the model. Consequently, the reverse micelle cross-section is smaller because the excess cis bonds shorten the acyl chains.

Periodic boundary conditions were applied in all three dimensions and long-range electrostatic interactions were calculated using the PME method, with a fourth-order smoothing spline. A real space cut-off of 1.2 nm and reciprocal space grid of 0.12 nm were used. Lennard-Jones potentials were smoothly shifted to zero between 0.8 nm and 1.2 nm. Equations of motion were integrated with the leap-frog algorithm using a time step of 2 fs and bonds involving hydrogen were constrained to their equilibrium distance using LINCS and SETTLE algorithms. A stochastic velocity rescaling thermostat was used with reference temperature of 325 K and a relaxation time constant of 0.5 ps. Pressure was kept constant using Parinello-Rahman barostat with a time constant of 4.0 ps. Pressure control was applied isotropically with compressibility set to 8.2·10⁻⁵ bar⁻¹. System coordinates and energies were recorded every 10 ps. VMD was used to generate all the simulation snapshots.

To study the hydration behaviour of lecithin as a function of water-to-lipid ratio w_0, water-to-lipid ratios of 5, 7 and 11 were examined for reverse micelles with aggregation numbers between 57 and 129. Aggregation number of a micelle specifies how many lipids form that particular micelle. Table 1 provides a summary of the simulated systems and Fig. 1 a snapshot showing a sample reverse micelle simulation configuration. The water-to-lipid ratio values were selected to sample the water-to-lipid range below the experimentally defined maximum macroscopic viscosity where the structure of the reverse micelles is known to be wormlike. The aggregation numbers were chosen so that the larger aggregation numbers at water-to-lipid ratios 7 and 11 corresponded to a clearly elongated micelle (as opposed to spherical) yet small enough to allow simulations in all-atom detail. The smaller, clearly more spherical micelles enable evaluating the micelle size and form sensitivity of the findings. For comparison, also a fully hydrated ($w_0 = 28$) lipid bilayer structure composed of 128 lipids was characterised. Although the tail structure differs from naturally sourced lecithin, the equilibrated area per lipid in our simulations, 76.9 Å², is within the range expected based on experiments of lamellar lecithin assemblies.

Ideally, this type of simulations would start from a random mixture of the constituent molecules as the initial configuration. However, this type of approach requires the self-assembly process to equilibrate within simulationally accessible timescales. In the lecithin/oil systems, for example a 100 ns simulation starting from a random initial configuration allows only the initial micellisation to take place. As a simulation of these system sizes and timescales is typically run parallelized, in a cluster computer over an extended period of time, the formation and equilibration of any larger aggregates would take prohibitively long. Hence, to speed up equilibration, the reverse micelles were reassembled to an initially spherical form that is unbiased toward the cylindrical form the micelles adopt in the simulations. The procedure to prepare the initial configurations is detailed in Ref. 28.

The first 25 ns of the $w_0 = 11$ and $w_0 = 7$ simulations and was considered as the initial relaxation period and disregarded in the analysis. The $w_0 = 5$ simulation equilibrated slower because of the smaller amount of plasticizing water molecules and for it, the relaxation was 50 ns. Relaxation was measured as stabilization of the structural dimensions of the reverse micelles.

Figure 1: At left, the structure of the 1,2-distearidonoyl-sn-glycerol-3-phosphatidylcholine (DSPC) lipid. At right, a simulation snapshot corresponding to the final configuration of the system RM129.

In the analysis, we consider a hydrogen bond exists if the acceptor-hydrogen distance is less than 0.25 nm and the hydrogen-acceptor-donor angle is less than 30°. The distance cutoff is based on the first minimum in acceptor-hydrogen radial distribution function and the angle cutoff is equal to the default value for hydrogen bonds in GROMACS. To characterise the dynamics of the hydrogen bonds, we calculated so-called history-independent correlation functions. History-independent correlation functions express the condi-
is now given by k_{exists}. A correlation function along the spirit of Eq. involving acceptor oxygens i_b lipid-water hydrogen bonds. Here, a binary function acceptor sites, are characterised similarly to the regular form when a water molecule is bound to two different atoms is hydrogen bonded to one another at time t; if a hydrogen bond between atoms i and j is intact at time t, $h_{ij}(t) = 1$ and otherwise it is zero. The integral of the correlation function yields the correlation time τ_h, which can be interpreted as the hydrogen bond lifetime assuming that the decay is exponential
\[
\tau_h = \int_0^\infty C_h(t)\,dt
\] (2)
In practice, the decay is rarely exponential. Nonetheless, the integral is useful in qualitative analysis of the hydrogen bond dynamics and used in this work to compare the relative stability of the hydrogen bonding.

The dynamics of the hydrogen bond bridges, which form when a water molecule is bound to two different acceptor sites, are characterised similarly to the regular lipid-water hydrogen bonds. Here, a binary function $h_{ijk}(t)$ expresses whether a hydrogen bond bridge involving acceptor oxygens i, j, and a water molecule k exists. A correlation function along the spirit of Eq. 1 is now given by
\[
C_h(t) = \frac{\langle h_{ijk}(t_0)h_{ijk}(t) \rangle}{\langle h_{ijk}(t_0) \rangle}
\] (3)

3 Results

In our previous study, in which we assessed the force-field accuracy on describing lecithin/cyclohexane systems, we characterised the structural response of DSPC reverse micelles to hydration and validated it against available experimental data. The initial structures of the simulated reverse micelles are spherical but during the course of the initial relaxation, RM70 ($w_0 = 5$), RM78 ($w_0 = 7$), and RM129 ($w_0 = 11$) settle into a rod-like form with little fluctuations. However, the smaller reverse micelles RM57 ($w_0 = 7$) and RM94 ($w_0 = 11$) end fluctuating between spherical and rod-like forms in our simulations. Furthermore, the reverse micelles with equal water-to-lipid ratios have similar cross-sectional radii and the increase in aggregation number elongates the reverse micelle but does not change the core diameter. This signifies the reverse micelles undergo an axial elongation as their size increases which is in line with giant wormlike micelle form for the significantly larger aggregates present in experimental systems. On the other hand, an increase in w_0 increases the cross-sectional radii of the reverse micelles – again, in line with experimental observations.

Here, we characterise the role of water in this structural response. In particular, we map the specific interactions with the lipid head groups in the phosphatidylcholine reverse micelles. Figure 2 presents the average number of hydrogen bonds per acceptor site in the head groups. The number of hydrogen bonds at each acceptor site increases with increasing water-to-lipid ratio. This reflects increased access of the hydrogen bonding sites to water. The number of hydrogen bonds also shows a small dependence on the aggregation number of the reverse micelle. In line with this observation, Zhao et al. have reported that lipids in cylindrical re-
shows the interlipid bridges are most prominent at if it is hydrogen bonded to both lipids. The figure A water molecule is considered to bridge two lipids compared to a fully hydrated bilayer, see Figure 3. bridges in the reverse micelles were calculated and as well.

with tail carbonyl groups experiencing some hydration irrespective of the water-to-lipid ratio. This signifies water than similar oxygens in the glycerol moiety –

P–O) and oxygens in the phosphate group bind more water than the single-bonded oxygens (C–O and C=O) double bonded oxygen atoms (C=O and P=O) bind

In general, the data presented in Figure 2 shows the double bonded oxygen atoms (C=O and P=O) bind more water than the single-bonded oxygens (C–O and P–O) and oxygens in the phosphate group bind more water than similar oxygens in the glycerol moiety – irrespective of the water-to-lipid ratio. This signifies the hydrogen bonding is localised to phosphate group with tail carbonyl groups experiencing some hydration as well.

To quantify the hydrogen bond bridging, the average number and percentage of interlipid and intralipid bridges in the reverse micelles were calculated and compared to a fully hydrated bilayer, see Figure 3. A water molecule is considered to bridge two lipids if it is hydrogen bonded to both lipids. The figure shows the interlipid bridges are most prominent at $w_0 = 7$, and at $w_0 = 11$ the numbers seem to decline with the bilayer having the lowest number of interlipid bridges. Similarly intralipid bridging increases up until water-to-lipid ratio 7-11 and remains at that level also in the fully hydrated bilayer. The interlipid and intralipid percentages exhibit analogous behaviour. Notably, only ~ 1 hydrogen bond per lipid (corresponding to approximately one fifth of the total number of hydrogen bonds) are involved in interlipid bridging in the simulations. The increase of bridging until some intermediate w_0 level followed by decline in interlipid bridges and leveling off of intralipid bridges indicates that there are two effects at play. First, hydrogen bond bridging increases as a function of water-to-lipid ratio due to the increased number of water molecules present at the headgroup region, see Figure 2. Then, at hydrations above $w_0 = 7$, some effect starts to cut down the amount of interlipid bridges even though the degree of hydrogen bonding of the headgroups actually increases.

To better understand this effect we examined the site dependence of hydrogen bond bridging, see Figure 3. In the simulations, a vast majority of interlipid bridges (58-48 %) were formed between phosphate P=O oxygens. For intralipid bridging, P=O and C=O oxygen bridging is favoured (69-62 %). Furthermore, the decrease in interlipid bridging is localised specifically at the P=O oxygens with bridging to other oxygen atoms remaining relatively unaffected. This behaviour leads us to conclude hydrogen bond bridging is closely related to the packing properties of the polar-apolar interface: decrease in the interfacial curvature increases phosphate group distance while build-up of hydration layer increases area per lipid thus hindering the relatively short-ranged bridging effect. Intralipid bridging on the other hand is not affected by the curvature and hence is unaffected by it. Water dynamics may also influence, but because intralipid bridging shows no signs of this we consider this less likely.

To evaluate water dynamics explicitly, we calculated hydrogen bond correlation functions from the simulations. These are presented in Figure 5. In general, slower decay of the correlation functions implies more stable bonding either due to strong interaction between the bonding species or due to molecular isolation. The figure shows a significant slow-down of hydrogen bond dynamics as w_0 is decreased. Furthermore, the decay is non-exponential with a slowly attenuating tail extending to several nanoseconds – particularly at water-to-lipid ratio $w_0 = 5$.

Next, we integrated the correlation functions to obtain the hydrogen bond lifetimes, see Eq. 2. As the decay of the correlation functions in these systems is non-exponential, these do not provide the actual lifetimes but the values tell about the relative stability of the hydrogen bonds. Figure 6 shows that the correlation times of the hydrogen bonds decrease in the order P=O > C=O > P–O > C–O, although the difference between P=O and C=O oxygens is substantial only for $w_0 = 5$. The observed order of correlation times roughly correlates with the strength of the hydrogen bond estimated from the partial charges and the Lennard-Jones parameters for these sites in the simulative model.

Besides the hydrogen bond strength, Figure 6 shows that the lifetime also depends on the location of the acceptor site. For instance, the number of hydrogen...
reverse micelle (w0 = 5) a clear difference in the average lifetime emerges. We interpret this effect to be due to molecular isolation; an increased local hydration, see Fig. 2, results in a more isotropic hydrogen bonding environment and accelerated rotational dynamics, as well as, donor exchange. On the other hand, isolated water molecules have only the lipid acceptor sites to bond with. Indications of similar, local hydration dependence on hydrogen bond stability can be seen to a lesser extent for the C=O oxygens as well as P–O oxygens. For these, the effect is smeared by the fact that correlation times calculated from the smaller reverse micelles RM57 (w0 = 7) and RM97 (w0 = 11) are generally slightly shorter than those calculated from the larger aggregates at the same water-to-lipid ratio. This is likely a result from the greater amount of shape fluctuations the smaller reverse micelles undergo. Deduction concerning the acceptor sites C−O21 and C−O31 suffers from the low hydration at these sites.

Figure 5 presents also the correlation functions of hydrogen bond bridges. Because a bridge requires two hydrogen bonds, the bridge correlation functions are expected to decay faster than lipid - water correlation functions. Curiously, however, the data shows bridge correlation functions decay only slightly faster, indicating that hydrogen bond bridges are long-lived rather than transient. As the systems contain only ~1 hydrogen bond bridge per lipid, the raw data contains noise which would reflect significantly on integrated bridge lifetimes. Therefore, we have not evaluated the relative stability by integration. However, the correlation functions show two partially overlapping bands of lipid bridges at water-to-lipid ratios w0 = 11 and w0 = 28. This signifies a set of hydrogen bond bridges has significantly longer lifetimes than the bridges corresponding to the faster decaying band. Careful analysis reveals the slower band corresponds to bridges involving the phosphate group. As a consequence, hydrogen bond bridges that have oxygens from phosphate group as one of the binding sites have substantially slower dynamics than bridges between acceptor sites closer to the tails. This indicates that only bridges originating from the phosphate group form persistent hydrogen bond structures. In total, the observed dynamic behaviour of the hydrogen bond bridges indicates that bridging is strongly affected by hydration and increasing it makes the bridges more transient.

4 Discussion

In this work, we applied all-atom molecular dynamics to study the relation between lipid hydration and reverse micelle structure in organogel forming phosphatidylcholine lipid/water/cyclohexane system. We characterised lipid-water hydrogen bonds at three water-to-lipid ratios and assessed the sensitivity to aggregation number. We find the hydrogen bond network, bonding strength, as well as hydrogen bond bridging and bridge stability depend strongly on the specific site and local hydration. Most notably, increased access to water molecules makes the hydrogen bonding more transient, enhances local water dynamics at the reverse micelle core, and decreases the amount and persistence of water bridges formed between two lipids. These findings allow us to present a microscopic picture of the gelation process, as well as, discuss the implications this has for other lecithin organogels.

To our knowledge hydration of phosphatidylcholines in reverse micellar environment has not been previ-
functions (top panel) and hydrogen bond bridge correlation functions (bottom panel). Inserts present a comparison of the hydrogen bond bridge correlation functions in the reverse micelle system. The simulations showed that the bridge originates from phosphate group PO$_4$. W and C are labelled in the graph.

Figure 5: Hydrogen bond correlation functions (top panel) and hydrogen bond bridge correlation functions (bottom panel). Inserts present a comparison of the hydrogen bond bridge correlation functions in the reverse micelle system. The simulations showed that the bridge originates from phosphate group PO$_4$. W and C are labelled in the graph.

Figure 6: Integrated lifetimes of hydrogen bonds (HBs) formed to different acceptor oxygens. Lifetimes are expressed in arbitrary units (arb. u.) due to the non-exponential decay of the correlation functions. See Fig. 2 for the phosphatidylcholine lipid head group and the acceptor oxygen labelling in the graph.

In the simulated reverse micelles, the amount of hydrogen bonding to water follows directly from lipid headgroup hydration. However, the analysis shows also that the lifetime of the hydrogen bonds depend not only on the site but also the local water density at the site; competition between water molecules sped up the dynamics whereas slow-down was observed at sites of low hydration. At low water-to-lipid ratio, the slow-down is even more pronounced. Priorly, Lopez et al. have characterised hydrogen bond dynamics in dimyristoyl phosphatidylcholine bilayer using a simulations method similar to this work. Based on a single simulation they postulated very much in line with our observations that the observed differences in hydrogen bond lifetimes depend not only on the strength of the water-lipid hydrogen bond in question but also on the local water density due to the competition between neighbouring water molecules. For instance, hydrogen bonds to C=O oxygens in their simulations have a longer lifetime than hydrogen bonds to chemically similar P=O oxygens because less water molecules penetrate to the depth of the glycerol moieties and consequently there is less competition between water molecules for the C=O oxygens.

We found lipid bridging by water molecules is present in the reverse micelle system. The simulations showed lipid bridging increases with water-to-lipid ratio at low
hydration but increasing the amount of available water molecules quickly saturates the intralipid bridging and turns the amount of interlipid bridging in the system to a decline. Priorly, the presence of hydrogen bond bridging in neutral lipid membranes has been demonstrated both experimentally and computationally. In general, computational studies report the number of interlipid bridges in hydrated phosphatidylcholine membranes to be between 0.7 – 1.7 bridges per lipid with the exact value depending on the lipid and the simulation conditions, see e.g. Refs. Comparing these numbers directly to reverse micelles is not reasonable due to the significantly lower hydration in reverse micelle systems. Our bilayer simulation, however, presents noticeably less bridging presumably due to the greater area per lipid of the distearidonyl phosphatidylcholine (DSPC) in comparison to more saturated lipids.

To our knowledge, bridging in partially hydrated membranes has not been considered computationally. However, Stępniewski et al. compared hydrated gel-phase distearoyl phosphatidylcholine bilayer to liquid crystalline dilinoleyl phosphatidylcholine and found that water molecules in the more contracted distearoyl phosphatidylcholine membrane have a greater tendency towards bridging even though the amount of hydrogen bonds and bridges was actually lower. While Pearson and Pascher found using crystallography that in crystalline lecithin samples are planar. If bridging in lecithin reverse micelles follows same orientation preference, such planar arrangement is feasible axially in the reverse micelle but not at the caps where non-planar bridging is enforced due to geometry.

In experiments, the average length and cross-sectional radius of the reverse micelles, and consequently the aggregation number, increases with increasing water-to-lipid ratio. This implies that the energetic penalty associated with the formation of end-caps, the end-cap energy, also increases relative to the cylindrical section. If hydrogen bond bridges indeed bind neighbouring lecithin molecules together in the cylindrical micelles when gelation occurs, one would expect the amount of hydrogen bond bridges at the very least to remain constant, if not increase, as a function of water-to-lipid ratio. However, our simulations show signs of this kind of behaviour only for w0 < 7 while for water-to-lipid ratios above 7 the bridging decreases noticeably. We remind the reader that in cyclohexane, the reverse micelle organogel maximum viscosity is attained at w0 ≈ 11. Hence the experimental viscosity behaviour and amount of bridging in our simulations do not seem to correlate. This signifies that the aggregate elongation in cyclohexane must be influenced if not controlled by some other factor.

Contrary to the amount of bridging, the amount of water-lipid hydrogen bonds seems to correlate with the organogel viscosity behaviour. At these low water-to-lipid ratios, increase in the amount of hydrogen bonds is connected to hydration layer formation. The build-up of a hydration layer, or actually more specifically the space required by the bound water molecules, changes
the effective shape of the lipids in cyclohexane toward a more cylindrical effective packing. This contributes to the increase of the aggregation of the reverse micelles, and at suitable lipid effective packing form, to gelation. Hence, instead of bridging, our results suggest that the growth of wormlike reverse micelles in cyclohexane is mainly due to the formation of a hydration layer around lipid headgroups. Nevertheless, bridging is still present, and contributes to the aggregate stability also in cyclohexane – it is merely not the dominant factor at water-to-lipid ratios significantly above 5 where the reverse micelles in cyclohexane gelate. Actually, our results suggest that bridging becomes dominant only when water molecules are effectively isolated from one another, as in the low water-to-lipid ratios where lecithin reverse micelles in heptane gelate. Hence, this picture is consistent with bridging contributing significantly in the heptane/lecithin system and the gelation effect there seeming to be connected to the bridging capability of the gelation agent. Based on our hydrogen bond and bridge dynamics results, we postulate that in the heptane system the bridging dynamics is likely to be significantly slower than in the cyclohexane, thus making the influence of bridging larger.

As for the observed decrease in bridging with increasing water-to-lipid ratio, we suggest two possible explanations. Firstly, the increased amount of water at the headgroup region leads to increased exchange of hydrogen bond donor-acceptor pairs thus disrupting the bridging. Indeed, our results and those of others indicate that increase in local water density leads to increased water dynamics at phospholipid interfaces. The other possible explanation is that bridging is feasible only on a relatively narrow range of acceptor-acceptor distances and subtle changes in it due to for example increased hydration can cause bridging to become unfavourable. We cannot say conclusively which of these is the cause. However, the saturation of intralipid bridging indicates that the dynamics may have less influence than the geometric considerations. These factors, as well as, in the fact that small changes in solvent nature is enough to hinder or promote aggregate growth indicates that bridging is a relatively weak effect. For comparison, alkaline earth and rare earth cations thought to induce gelation via electrostatics mediated salt bridges are much more insensitive to solvent gelating both cycloalkanes and alkanes at low ion-to-lipid ratio.

The picture emerging from our simulations that the hydration directly modifies the lipid packing properties without major contribution from bridging is contrary to the deductions of Zhao et al. They inferred similar bridging structure as in heptane is present also in the cyclohexane system. We believe the reason for this discrepancy is that the IR data of Zhao et al. shows directly that the hydrogen bondedness of the lipid headgroup phosphate group is linked to the shape of the reverse micelle, but does not, as such, indicate the presence or absence of bridging. Hence, the interpretation of the role of interlipid bridging based on these experiments is challenging, and relies partially on the experimental results of Shchipunov and Shumilina on heptane systems where interlipid bridging was deduced by correlating gelation agent chemical structure with their ability to induce gelation. This provides a significantly more direct connection to bridging. As the work of Zhao et al. concentrated on water induced organogel formation with carbon dioxide as control, no similar correlation could be demonstrated. Finally, we point out that our suggested model of the hydration layer formation driving the gelation transition in cyclohexane explains the observations of Zhao et al., as well as, the bridging model at lower hydration (as is in heptane).

5 Conclusions

In summary we have conducted all-atom simulations of phosphatidylcholine reverse micelles in cyclohexane to study the mechanism behind water induced organogel formation. The findings clarify the role of packing constraints (shape of the lipid) and specific interactions (in particular, hydrogen bond bridging) to the formation of lecithin organogels. Namely, we deduced that in cyclohexane/lecithin system hydrogen bond bridging plays a relatively minor role in the formation of the organogel. Instead, the effective shape of the lipid controls the form of the wormlike reverse micelles and the viscosity of the resulting solution. The effective shape of the lipid, in turn, is influenced by the number and location of water-lipid hydrogen bonds. Even if in minor role in gelation, our results do, however, indicate that at low water-to-lipid ratios (w_0 < 5) bridging becomes the dominant form of hydrogen bonding.

We also report a significant slow-down of the dynamics of the system in terms of water mobility and hydrogen bond stability at low hydration. The result originates directly from the lack of plasticizing water molecules. All in all, the simulations show that besides the usually considered physical dimensions of the reverse micelles, also the dynamics in the microenvironment provided by the core can be controlled by hydration. This could bear significance in designing, e.g., catalysis platforms, controlling synthesis, or molecular separation and encapsulation.

The study is, to our knowledge, the first computational characterization of the role of hydration in lecithin organosols or gels. The results show molecular simulations are able to provide detailed information on the hydration response of these complicated, dynamic systems and to generate understanding on the nature
of the organogel transition at a solvent-specific level.

Acknowledgements

This research was supported by Fortum Foundation, Academy of Finland, and a Marie Curie Career Integration Grant within the 7th European Community Framework Programme (grant agreement 293861). Computational resources by CSC IT Centre for Science, Finland, are gratefully acknowledged.

References

