

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Habrant, Damien; Koskinen, Ari M.P.

Towards the total synthesis of calyculin C: Preparation of the C9-C25 spiroketal-dipropionate unit

Published in: ORGANIC AND BIOMOLECULAR CHEMISTRY

DOI: 10.1039/c0ob00092b

Published: 01/01/2010

Document Version Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:

Habrant, D., & Koskinen, A. M. P. (2010). Towards the total synthesis of calyculin C: Preparation of the C9-C25 spiroketal-dipropionate unit. *ORGANIC AND BIOMOLECULAR CHEMISTRY*, *8*(19), 4364-4373. https://doi.org/10.1039/c0ob00092b

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Towards the total synthesis of calyculin C: preparation of the C₉–C₂₅ spiroketal-dipropionate unit⁺

Damien Habrant and Ari M. P. Koskinen*

DOI: 10.1039/c0ob00092b

An asymmetric synthesis of the $C_9 - C_{25}$ spiroketal fragment of calyculin C is described. Key steps include two crotylation reactions using successively Brown's reagent and (*Z*)-crotyltrifluorosilane for the formation of the *anti*, *anti*, *anti* stereotetrad, ynone formation by a Pd-catalyzed coupling of a thiol ester with a terminal alkyne and a double intramolecular hetero-Michael addition for the stereoselective construction of the spiroketal framework.

Introduction

Calyculins are a class of highly cytotoxic metabolites originally isolated by Fusetani *et al.* from the marine sponge *Discodermia calyx*, collected in the Gulf of Sagami, near Tokyo Bay. Calyculin A was the first member of the family isolated, in 1986,¹ later followed by calyculins B–H.^{2,3} The different calyculins vary by the substitution at C₃₂ and the olefin geometry of the tetraene moiety (Fig. 1). *D. calyx* remains today the primary source of the natural products, the most abundant ones being calyculin A and C, but *Lamellomorpha strongylata* has also been shown to contain calyculins and structurally related calyculinamides.⁴ Other natural products belonging to the calyculin family include calyculin J,⁵ calyculinamides A, B and J,^{4,5} des-*N*-methyl calyculin A,⁵ dephosphocalyculin A,⁶ clavosines A–C,⁷ geometricin A⁸ and swinhoeiamide A.⁹

Calyculins (R₁, R₂, R₃, C₆-C₇ geometry) **A** (CN, H, H, *E*); **B** (H, CN, H, *E*); **C** (CN, H, Me, *E*); **D** (H, CN, Me, *E*); **E** (CN, H, H, *Z*); **F** (H, CN, H, *Z*); **G** (CN, H, Me, *Z*); **H** (H, CN, Me, *Z*)

Fig. 1 Structures of calyculins.

The calyculins display a wide variety of biological activities. The high cytotoxicity of calyculins relies on their ability to selectively and efficiently inhibit protein phosphatases 1 and 2A (PP1 and PP2A), two enzymes able to dephosphorylate serine/threonine residues of proteins in eukaryotic cells.^{10,11} PP2A has been implied in several disease states, since a wide variety of cellular events are regulated by reversible protein phosphorylation.¹²⁻¹⁴ Many observations support the role of PP2A in tumorigenesis; PP2A activity and expression are decreased in drug-resistant breast cancer cells and Alzheimer's disease, whereas targeted inhibition of PP1 is a potential strategy for minimizing the symptoms associated with Parkinson's disease.^{15,16} Other naturally occurring toxins bind to inhibit more or less selectively PP, i.e. okadaic acid, microcystins, spirastrelloside or tautomycin.¹⁷ Even if these compounds cover a wide structural diversity, it is interesting to observe that some of the most active compounds contain a spiroketal moiety in a conformationally flexible position. Our group has earlier postulated that the spiroketal moiety in calyculins plays a crucial role in binding to the phosphatase.¹⁸

The interesting biological profile coupled with their spellbinding structure has made calyculins very attractive targets for synthetic chemists. Massive efforts have been devoted to the synthesis of these natural products, leading to the total syntheses of (*ent*)-calyculin A by Evans,¹⁹ Shioiri²⁰ and Barrett,²¹ calyculin A by Masamune,²² (*ent*)-calyculins A and B by Smith²³ and calyculin C by Armstrong.²⁴ In addition, the Trost group²⁵ and our group²⁶⁻²⁹ have been involved in the synthesis of individual fragments. We have recently reviewed these different syntheses, along with some biological data.³⁰

Results and discussion

Retrosynthetic analysis

The C_9-C_{25} spiroketal-dipropionate unit contains 11 of the total 16 chiral centres of calyculin C and therefore represents a very challenging target. Our strategy for the construction of fully protected spiroketal **1** relied on a double intramolecular hetero Michael addition (DIHMA) process on ynone **2** (Scheme 1). Ynone **2** was thought to arise from the coupling of the C_9-C_{20} alkyne fragment **3** with the $C_{21}-C_{25}$ thiol ester moiety **4**. In turn, we planned to prepare alkyne **5**.

Laboratory of Organic Chemistry, Department of Chemistry, Aalto University, School of Science and Technology, PO Box 16100, Kemistintie 1, FI-00076, Aalto, Finland.

[†] Electronic supplementary information (ESI) available: ¹H and ¹³C NMR spectra of compounds 1, 2, 3, 7, 8, 9, 10a, 14a, 14b, 16, 17, 19, 20 and 21. See DOI: 10.1039/c0ob00092b

Scheme 1 Retrosynthetic plan

Double crotylation strategy

The preparation of the *anti*, *anti*, *anti* stereotetrad has proven to be challenging.³¹ The use of crotylation reagents appeared to be the most common method, however, some selectivity issues have been observed. Barrett extensively used Brown's reagents in his formal synthesis of (*ent*)-calyculin A.³² With a strategy similar to ours, Armstrong had described that the protecting group at the C₁₉ hydroxyl played an unexpected but significant role in the asymmetric induction at C₁₁.^{24,33} This property unfortunately led to a poor diastereomeric ratio in the crotylation. We have recently described a procedure on a model compound, using at first a classical Brown's crotylation followed by a second crotylation using (*Z*)-crotyltrifluorosilane to overcome this problem.³⁴

The synthesis commenced with lactone **5** (Scheme 2).³⁵ Aldol reaction between 3-(benzyloxy)-propanal and ethyl 2,2-dimethyl-3-oxobutanoate, followed by dehydration, asymmetric dihydroxylation and *O*-methylation provided the expected lactone **5** in reasonable yields. Stereoselective reduction of **5** using potassium superhydride in THF was performed in good yield (82%) and selectivity (>7:1 by ¹H NMR) to yield **6**; superhydride gave better

Scheme 2 Preparation of aldehyde 9

yields and reproducibility than the previously reported use of L-Selectride for this reduction.^{29,35} TBS-protection of the newly-formed alcohol proceeded well under classical conditions³⁶ to yield 7. Removal of the benzyl protecting group of 7 by hydrogenolysis furnished the primary alcohol **8**, which was then converted to the corresponding aldehyde **9** by Swern oxidation.

Compound 9 was then submitted to an asymmetric Brown's crotylation reaction, using trans-2-butene as the carbon input, giving rise to the two homoallylic alcohols 10a and 10b, in a 6:1 diastereomeric ratio by ¹H NMR (in favour of **10a** according to the Brown's algorithm and previous results by Armstrong³³) and 73% overall yield (Scheme 3). The two isomers could not be separated at this stage by classical chromatographic techniques and the following reactions were carried out on the mixture of homoallylic alcohols. Alkenes 10a and 10b were converted to the corresponding aldehydes 11a and 11b by successive $\mathrm{OsO_4-}$ catalysed dihydroxylation and subsequent oxidative diol cleavage by NaIO₄. The mixture of **11a** and **11b** was then subjected to a second crotylation reaction. At this stage, we decided to use the methodology developed by Roush, using (Z)-crotyltrifluorosilane 12.37 This reaction has been shown to proceed via a bicyclic transition state in which the β -hydroxyl group is engaged in a chelate with the (Z)-crotylsilane, affording the anti, anti dipropionate, without any external source of chirality. However, the authors described that a sequential acidic (1 N HCl, 15 min) and basic (NaOH 1 N, 1 h) workup was required in order to hydrolyse the intermediate silvlene ketals formed in the course of the reaction.

Applied to our substrate **11**, the crotylation reaction seemed to proceed smoothly, however, after such workup and purification, only a moderate amount (around 30%) of diols **13** could be obtained. We assumed that the workup procedure was too harsh

Scheme 3 The double crotylation strategy

for our substrate. Pleasingly, we found out that, after treating a 0.08 M solution of **11** in CH_2Cl_2 with 320 mol% of **12** in the presence of 300 mol% of DIPEA for 36 h at 0 °C (as described in the original procedure), simply adding silica gel to the mixture

was enough to hydrolyse the silvlene ketals. Indeed, after stirring for 30 min at rt and simple filtration, the corresponding diols 13 were cleanly obtained. We therefore decided to run the 1,3-diol protection without any further purification. After acid-catalyzed reaction with 2-methoxypropene, the two diastereomer acetals 14a and 14b could be obtained and easily separated by simple column chromatography. Analysis of these products indicate that (1) the second crotylation occurred in a very selective manner, the amount of the undesired svn isomers being detected at around 5% by ¹H NMR and (2) both 14a and 14b proved to be the 1,3-syn acetonides according to the Rychnovsky's rules,³⁸ with ¹³C signals of the acetonide at 19.6, 30.1 and 97.7 ppm for 14a and 19.6, 30.2 and 97.9 for 14b. Altogether, starting from the mixture of homoallylic alcohols 10, this sequence allowed the synthesis of 14a in 66% and 14b in 53% yield, over 4 steps and involving a single chromatographic purification.

Conversion to the alkyne

To convert 14a to the acetylenic compound 3, we decided to use a similar strategy as the one we previously reported for the construction of the C13-C25 segment.²⁹ Lactone 14a was reduced in the presence of an excess of LiAlH₄. Surprisingly, the TBS group was cleaved during the course of the reaction and triol 15 was obtained (Scheme 4). This unexpected result left us with a triol, whose two secondary hydroxyls could not be easily differentiated for selective protection. We therefore decided to protect all three free hydroxyl groups by TES, leading to compound 16. This was then subjected to the conditions described by Spur for the selective oxidation of primary silyl ethers,³⁹ which appeared to be efficient in our case. Indeed, after addition of 16 to a DMSO/oxalvl chloride solution in CH_2Cl_2 at -78 °C, we observed that stirring the reaction mixture for 1 h at -35 °C before addition of Et₃N at -78 °C cleanly cleaved and oxidized the primary TES to give aldehyde 17 in a good isolated yield of 78%. Finally, homologation of aldehyde 17 to the corresponding terminal alkyne 3 was performed using the Ohira-Bestmann method;⁴⁰ the reaction required 48 h at rt to reach completion and alkyne 3 was obtained in a good yield of 88%.

Coupling and spirocyclisation

Compound 4 was prepared according to our previously reported procedure.29 For coupling of the two key intermediates 3 and 4, we decided to use the method developed by Fukayama (CuI, PdCl₂(dppf), P-(2-furyl)₃ in a DMF/Et₃N (5:1) mixture at 50 °C).41 As already reported by us29 and Kuwahara in his total synthesis of pteridic acids A and B,42 this reaction only gave a moderate yield of the expected ynone. In this case ynone 2 was obtained in an acceptable 50% yield (Scheme 5). The relatively low yield is due to the oxidative homocoupling of the acetylenic compound 3, leading to the formation of the corresponding Glaser-type divne 18. This side reaction precluded the reaction to go to completion and unreacted thiol ester 4 could be recovered (in our case, dimer 18 and 4 co-eluted during the purification by flash chromatography and therefore could not be separated). However, based on our previous studies on a model substrate, this method proved to be the only one allowing the preparation of the expected ynone.29

Scheme 4 Synthesis of alkyne 3

Scheme 5 Pd-catalyzed coupling of 3 and 4

With ynone 2 in hand, we then focused our attention on the key spirocyclisation step. The DIHMA protocol was first introduced

by Crimmins in 1990,43 and later elegantly used by Forsyth in a number of total syntheses.⁴⁴ In his 2009 preparation of the C₃-C₁₄ domain of 7-deoxyokadaic acid, Forsyth used the DIHMA protocol to efficiently convert a di-TES protected ynone to the corresponding spiroketal, by simply treating the ynone with 120 mol% of p-TsOH in toluene for 24 h.45 We also applied these conditions for the preparation of the C_{13} - C_{35} fragment with an acceptable yield.²⁹ Unfortunately, applied to our substrate ynone 2, the same conditions (with a slightly larger excess of *p*-TsOH, 180 mol%, due to the presence of a third TES group) only furnished the expected spiroketal 19 in a poor 33% yield. After an optimization study on this reaction and some unsuccessful attempts (TMSOTf in CH₃CN-CH₂Cl₂, TBAF in THF, PPTS in CH₂Cl₂, (+)-CSA in MeOH), we were pleased to find out that the treatment of 2 with (+)-CSA (15 mol%) in a 4:1 mixture of CH₂Cl₂-MeOH for 1 h at rt, followed by evaporation of the solvent and subsequent treatment of the residue with p-TsOH (20 mol%) in toluene for 4 h furnished a mixture of two spiroketals. 19 and its TES-protected analog 20, with a combined yield of 78% (Scheme 6). This protocol turned up to be very efficient for the spiroketal formation. After separation, 19 could be easily converted to 20 under classical conditions (TESOTf, 2,6-luditine in CH₂Cl₂, 85% yield). We then set up a 3-step sequence where ynone 2 was successively treated with (+)-CSA and p-TsOH as described above and, after simple filtration and concentration, the mixture of spiroketals 19 and 20 was directly treated with TESOTf. This allowed the efficient preparation of 20 from 2 in a single operation, with a very satisfying 67% yield. Ketone 20 was

Scheme 6 Last steps to 1

then stereoselectively reduced with L-Selectride⁴⁶ to yield **21**, as a single axial diastereomer (the axial configuration was confirmed by examination of the IR spectra and a narrow O–H bond stretch at 3542 cm⁻¹, confirming the hydrogen bond between the hydrogen of the newly-formed hydroxyl with the oxygen of the 5-membered ring of the spiroketal). Finally, **21** was protected as its acetate ester, by refluxing for two days in the presence of an excess of Ac₂O and Et₃N in CH₂Cl₂, to complete the synthesis of **1** in an excellent yield.

Conclusions

In conclusion, we have achieved the synthesis of the fully protected C_9-C_{25} spiroketal dipropionate fragment 1 of calyculin C in 4% yield over 19 steps based on the longest linear sequence starting from lactone 5. We were able to build the key *anti*, *anti*, *anti* stereotetrad *via* a highly selective double crotylation strategy. The key spirocyclisation step proved the efficiency of the DIHMA method and validated our planned strategy. We believe that

this orthogonally protected fragment should prove amenable for the total synthesis of diverse members of the calyculin family. Moreover, spiroketals **19**, **20**, **21** and **1** can be directly used to study the binding to the phosphatase and therefore provide useful information on the mode of action of calyculins and related inhibitors of PP1 and 2A, since the spirocyclic part of the calyculins is thought to play a crucial role in the binding.

Experimental section

General methods

All moisture sensitive reactions were carried out under an argon atmosphere in flame-dried glassware. Dry oxygen free THF, CH_2Cl_2 and toluene were obtained by passing deoxygenated solvents through activated alumina columns. MeOH was obtained by distillation over magnesium methoxide, DMF by distillation over 4 Å molecular sieves and ninhydrin, Et_3N and DMSO by distillation over CaH_2 and storage over 4 Å molecular sieves. Oxalyl chloride was freshly distilled prior to use. CuI was purified using a standard method.⁴⁷ Other solvents and reagents were used as obtained from supplier. Analytical TLC were performed using silica gel F254 (10–12 µm) plates and analyzed by UV light (254 or 366 nm) and by staining upon heating with standard permanganate or phosphomolybdic acid solutions. Flash chromatography was carried out on silica gel 60 (230–400 mesh) and p.a. grade solvents. The ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ (¹H 399.98 MHz; ¹³C 100.59 MHz) spectrometer. The chemical shifts are reported in ppm relative to CHCl₃ (δ 7.26) for ¹H NMR and (δ 77.16) for ¹³C NMR. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet), br (broad). Coupling constants, *J*, are reported in Hertz. Melting points are uncorrected.

(4*R*,5*S*)-5-((*S*)-3-(benzyloxy)-1-methoxypropyl)-4-hydroxy-3,3dimethyldihydrofuran-2(3H)-one 6. Lactone 5 (3.5 g, 11.42 mmol, 100 mol%) was dissolved in THF (50 mL). The solution was cooled to -78 °C and KHBEt₃ (1 M in THF, 12.6 mL, 12.6 mmol, 110 mol%) was added. After 1 h 30 min, the reaction was quenched by addition of a saturated aqueous solution of NH₄Cl (20 mL). After separation of phases, the aqueous phase was extracted with EtOAc (30 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash chromatography (Hex/AcOEt: 80 : 20 to 50 : 50) afforded compound **6** (2.88 g, 82%) as a colourless oil. Spectral data were in agreement with those previously reported.³⁵

(4R,5R)-5-((S)-3-(benzyloxy)-1-methoxypropyl)-4-(tert-butyldimethylsilyloxy)-3,3-dimethyldihydrofuran-2(3H)-one 7. Lactone 6 (2 g, 6.5 mmol, 100 mol%) was dissolved in CH₂Cl₂ (30 mL). The solution was cooled to 0 °C and 2,6-lutidine (3.03 mL, 26 mmol, 400 mol%) and TBSOTf (3 mL, 13 mmol, 200 mol%) were successively added. The mixture was stirred overnight at rt. The reaction was quenched by addition of a saturated aqueous solution of NH₄Cl (20 mL). After separation of phases, the aqueous phase was extracted with CH_2Cl_2 (15 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc: 95:5 to 80:20) afforded protected compound 7 (2.34 g, 85%), as a colourless oil. R_f : 0.57 (Hex/EtOAc: 70:30); $[\alpha]_{20}^{D} = -13.3$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.09 (s, 3H), 0.11 (s, 3H), 0.91 (s, 9H), 1.18 (s, 3H), 1.19 (s, 3H), 1.79-1.95 (m, 2H), 3.41 (s, 3H), 3.57-3.71 (m, 3H), 4.15 (d, J = 5.5 Hz, 1H), 4.43 (t, J = 5.5 Hz, 1H), 4.45-4.52 (m, 2H), 7.26-7.35 (m, 5H); ¹³C NMR (CDCl₃): δ -3.9, -3.4, 18.4, 19.4, 24.9, 26.1, 31.1, 44.6, 58.7, 66.3, 73.2, 75.3, 77.4, 82.9, 127.7, 127.8, 128.4, 138.4, 180.9; IR (v_{max}, thin film): 2983, 2930, 2858, 1777, 1463, 1389, 1259, 1134, 1101; HRMS: calculated for C23H38O5NaSi $[M+Na]^+$: 445.2386, found: 445.2388.

(4*R*,5*R*)-4-(*tert*-butyldimethylsilyloxy)-5-((*S*)-3-hydroxy-1-methoxypropyl)-3,3-dimethyldihydrofuran-2(3H)-one 8. Benzyl protected lactone 7 (1.54 g, 3.64 mmol, 100 mol%) was dissolved in EtOH (60 mL). Pd(OH)₂ (20% on carbon, 0.307 g, 0.44 mmol, 10 mol%) was added. The mixture was flushed first by 3 cycles vacuum/argon then 3 cycles vacuum/H₂. After 1 h, the mixture was filtered through a pad of Celite, washed with EtOH (30 mL) and concentrated to yield alcohol 8 (1.21 g, quant.) as a white solid. R_f: 0.26 (Hex/EtOAc: 50:50); Mp: 57 °C; $[\alpha]_{20}^{D} = -17.4$ (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.09 (s, 3H), 0.10 (s, 3H), 0.93 (s,

9H), 1.20 (s, 3H), 1.24 (s, 3H), 1.69-1.78 (m, 1H), 1.84-1.92 (m, 1H), 2.17 (bs, 1H), 3.48 (s, 3H), 3.70-3.75 (m, 1H), 3.79-3.83 (m, 2H), 4.14 (d, J = 5.2 Hz, 1H), 4.43 (t, J = 5.5 Hz, 1H); ¹³C NMR (CDCl₃): δ -3.9, -3.4, 18.4, 19.4, 24.6, 26.1, 33.1, 44.8, 59.1, 59.8, 76.9, 77.4, 83.0, 180.6; IR (v_{max} , thin film): 3436, 2954, 2931, 2859, 1775, 1472, 1464, 1390, 1132, 1100 cm⁻¹; HRMS: *calculated for* $C_{16}H_{32}O_5NaSi [M+Na]^+$: 355.1917, *found*: 355.1922.

(S)-3-((2R,3R)-3-(tert-butyldimethylsilyloxy)-4,4-dimethyl-5oxotetrahydrofuran-2-yl)-3-methoxypropanal 9. DMSO (0.3 mL, 3.5 mmol, 120 mol%) was added at -78 °C to a solution of oxalyl chloride (0.3 mL, 3.8 mmol, 130 mol%) in CH₂Cl₂ (20 mL); gas evolution was observed. After 15 min at -78 °C, a solution of alcohol 8 (0.97 g, 2.9 mmol, 100 mol%) in CH₂Cl₂ (10 mL) was added. The reaction mixture was stirred for 1 h at -78 °C before addition of Et₃N (1.2 mL, 8.7 mmol, 300 mol%). The solution was allowed to warm to rt and CH2Cl2 was evaporated. The residue was taken up with Et₂O (30 mL) and a saturated aqueous solution of NH₄Cl (20 mL). After separation of phases, the organic layer was dried over MgSO₄ and concentrated in vacuo to give aldehyde 9 (0.96 g, quant.), as a colourless oil. R_f : 0.59 (Hex/EtOAc: 50: 50); $[\alpha]_{20}^{D} = -20.7 \ (c \ 1, \ CHCl_3); \ ^{1}H \ NMR \ (CDCl_3): \ \delta \ 0.11 \ (s, \ 3H),$ 0.12 (s, 3H), 0.95 (s, 9H), 1.21 (s, 3H), 1.26 (s, 3H), 2.76 (ddd, J = 17.7, 6.0, 1.4 Hz, 1H), 2.82 (ddd, J = 17.7, 6.1, 1.1 Hz, 1H), 3.41 (s, 3H), 4.04 (dt, J = 6.1, 4.0 Hz, 1H), 4.22 (d, J = 6.5 Hz, 1H), 4.42 (dd, J = 6.4, 3.9 Hz, 1H), 9.84 (t, J = 1.1 Hz, 1H); ¹³C NMR (CDCl₃): δ -4.1, -3.9, 18.4, 19.4, 26.0, 26.1, 43.8, 45.0, 58.2, 72.8, 77.1, 81.7, 108.8, 200.4; IR (v_{max}, thin film): 2955, 2932, 2589, 1777, 1724, 1472, 1390, 1257, 1132, 1098 cm⁻¹; HRMS: calculated for $C_{16}H_{30}O_5NaSi [M+Na]^+$: 353.1760, found: 353.1756.

(4R,5R)-4-(tert-butyldimethylsilyloxy)-5-((1S,3S,4R)-3-hydroxy-1-methoxy-4-methylhex-5-enyl)-3,3-dimethyl dihydrofuran-2(3H)-one 10a and (4R,5R)-4-((tert-butyl dimethylsilyl)oxy)-5-4S)-3-hydroxy-1-methoxy-4-methylhex-5-en-1-yl)-3,3-((1S.3R.dimethyldihydrofuran-2(3H)-one 10b. To a solution of t-BuOK (0.76 g, 6.7 mmol, 200 mol%) in THF (5 mL) were successively added E-butene (3 mL) and n-BuLi (2.3 M in hexanes, 2.9 mL, 6.7 mmol, 200 mol%) at -78 °C. The yellow solution was stirred for 30 min at -45 °C. A solution of (+)-IpcBOMe (2.13 g, 6.7 mmol, 200 mol%) in THF (5 mL) was then added at -78 °C. After 30 min, BF₃·OEt₂ (0.85 mL, 6.7 mmol, 200 mol%) was added, followed by a solution of aldehyde 9 (1.11 g, 3.4 mmol, 100 mol%) in THF (5 mL). The mixture was stirred for 2 h at -78 °C, then MeOH (5 mL) was added and the mixture was allowed to warm to rt. Solvents were evaporated and the residue taken up in THF (20 mL) and H₂O (10 mL). After cooling to 0 °C sodium perborate (1 g) was added and the mixture was stirred overnight at rt. More water was added (20 mL) and, after extraction with EtOAc (40 mL), the organic layers were dried over MgSO₄ and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc: 95:5 to 75:25) afforded the homoallylic alcohols 10 (0.95 g, 73%) as a 6:1 mixture of diastereomers. Data for major isomer 10a (obtained from the mixture): R_f : 0.44 (Hex/EtOAc: 80:20); ¹H NMR (CDCl₃): δ 0.09 (s, 3H), 0.10 (s, 3H), 0.93 (s, 9H), 1.06 (d, J = 6.8 Hz, 3H), 1.21 (s, 3H), 1.24 (s, 3H), 1.54-1.62 (m, 1H),1.75 (ddd, J = 14.4, 6.0, 1.9 Hz, 1H), 2.15-2.22 (m, 1H), 2.72 (d, J = 2.2 Hz, 1H), 3.46 (s, 3H), 3.64-3.68 (m, 1H), 3.77 (q, J =6.1 Hz, 1H), 4.17 (d, J = 5.2 Hz, 1H), 4.50 (t, J = 5.5 Hz, 1H), 5.06-5.12 (m, 2H), 5.78 (ddd, J = 17.0, 10.5, 8.2 Hz, 1H); ¹³C NMR (CDCl₃): δ -3.8, -3.4, 16.3, 18.5, 19.5, 24.8, 26.1, 34.2, 44.8, 45.2, 58.6, 72.3, 77.3, 77.5, 82.4, 116.4, 140.1, 180.8; IR (v_{max} , thin film): 3501, 2958, 2931, 2859, 1773, 1472, 1390, 1132, 1101 cm⁻¹; HRMS: *calculated for* $C_{20}H_{38}O_5NaSi$ [M+Na]⁺: 409.2386, *found*: 409.2394.

(4R,5R)-5-((S)-2-((4S,5S,6R)-6-((R)-but-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)-1-methoxy ethyl)-4-(tert-butyl dimethylsilyloxy)-3,3-dimethyldihydrofuran-2(3H)-one 14a and (4R,5R)-5-((S)-2-((4R,5R,6S)-6-((S)-but-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)-1-methoxyethyl)-4-(*tert*-butyl dimethylsilyloxy)-3,3dimethyldihydrofuran-2(3H)-one 14b. To a solution of homoallylic alcohols 10a and 10b (0.99 g, 2.6 mmol, 100 mol%) in a 10:3:1 mixture of t-BuOH/THF/H₂O (14 mL) were successively added OsO4 (2.5% in t-BuOH, 0.37 mL, 0.03 mmol, 5 mol%) and NMO (83 mg, 0.7 mmol, 120 mol%). After stirring overnight at rt, the reaction was quenched by addition of a saturated aqueous solution of NaHSO₃ (5 mL) and the mixture was stirred for 1 h at rt. After extraction with EtOAc (10 mL), the organic layers were dried over MgSO4 and concentrated in vacuo.

The residue was taken up in THF (23.5 mL) and H_2O (2.5 mL) and treated with NaIO₄ (1.64 g, 7.65 mmol, 300 mol%). After 1 h, Et₂O (20 mL) and H_2O (20 mL) were added. After separation of phases, the organic layer was dried over MgSO₄ and concentrated *in vacuo* to give a mixture of aldehydes **11**.

To a solution of aldehydes **11** in CH_2Cl_2 (32 mL) 4 Å molecular sieves (1 g) were added. After 30 min, the mixture was cooled to 0 °C. (*Z*)-crotyltrifluorosilane **12** (1.1 mL, 8.2 mmol, 320 mol%) and DIPEA (1.3 mL, 7.7 mmol, 300 mol%) were successively added. After 36 h at 0 °C, 1 g of silica was added to the mixture and, after 30 min, the mixture was filtered through a short pad of silica.

After concentration, the residue was dissolved in CH₂Cl₂ (40 mL). 2-methoxypropene (1.2 mL, 12.8 mmol, 500 mol%) and PPTS (31 mg, 0.13 mmol, 5 mol%) were added. After 30 min, the reaction was stopped by addition of a saturated aqueous solution of NaHCO₃ (10 mL). After extraction with CH₂Cl₂ (20 mL), the organic layer was dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc: 95:5 to 90:10) afforded compounds 14 (0.795 g, 65% global yield), as a separable mixture of 14a (0.701 g, 66% over 4 steps from 10a) as a white solid and 14b (0.094 g, 53% over 4 steps from 10b) as a colourless oil. Data for 14a: R_f: 0.35 (Hex/EtOAc: 90:10); Mp: 89 °C; $[\alpha]_{20}^{D} = -52.0 (c \ 0.1, CHCl_3); {}^{1}H \ NMR (CDCl_3): \delta \ 0.09 (s, c)$ 3H), 0.11 (s, 3H), 0.74 (d, J = 6.6 Hz, 3H), 0.92 (s, 9H), 1.03 (d, J = 7.0 Hz, 3H), 1.19 (s, 3H), 1.23 (s, 3H), 1.23-1.29 (m, 1H), 1.31 (s, 3H), 1.36 (s, 3H), 1.64 (ddd, J = 14.2, 9.8, 3.3 Hz, 1H), 2.00 (ddd, J = 14.3, 8.7, 2.3 Hz, 1H), 2.36-2.44 (m, 1H), 3.32 (s, 3H), 3.33-3.37 (m, 1H), 3.58 (dt, J = 9.9, 2.2 Hz, 1H), 3.64 (dt, J = 8.7, 3.6 Hz, 1H), 4.28 (d, J = 6.4 Hz, 1H), 4.51 (dd, J = 6.4, 3.9 Hz, 1H), 4.95-5.00 (m, 2H), 5.82 (ddd, J = 17.2, 10.4, 9.1 Hz, 1H); ¹³C NMR (CDCl₃): δ -4.0, -3.7, 11.8, 18.2, 18.4, 19.5, 19.6, 26.0, 26.1, 30.1, 32.6, 36.5, 39.6, 43.8, 56.8, 70.5, 74.5, 77.4, 77.5, 80.8, 97.7, 115.1, 139.6, 181.3; IR (v_{max}, thin film): 2961, 2932, 2859, 1778, 1471, 1463, 1388, 1380, 1259, 1131 cm⁻¹; HRMS: calculated for $C_{26}H_{48}O_6NaSi [M+Na]^+$: 507.3118, found: 507.3112. Data for **14b**: R_f : 0.20 (Hex/EtOAc: 90:10); $[\alpha]_{20}^{D} = -8.6$ (*c* 0.5, CHCl₃); NMR ¹H (CDCl₃): δ 0.09 (s, 3H), 0.15 (s, 3H), 0.74 (d, J = 6.6 Hz, 3H), 0.94 (s, 9H), 1.05 (d, J = 6.9 Hz, 3H), 1.20 (s, 3H), 1.33 (s, 3H), 1.41 (s, 3H), 1.41-1.44 (m, 1H), 1.86 (ddd, J = 13.7, 11.1,

2.5 Hz, 1H), 2.37-2.46 (m, 1H), 3.38 (dd, J = 10.2, 2.2 Hz, 1H), 3.45 (s, 3H), 3.48-3.53 (m, 1H), 3.71 (dt, J = 10.3, 2.5 Hz, 1H), 3.64 (ddd, J = 10.1, 5.1, 2.7 Hz, 1H), 4.12 (d, J = 5.7 Hz, 1H), 4.28 (t, J = 5.4 Hz, 1H), 4.94-5.00 (m, 2H), 5.83 (ddd, J = 17.1, 10.4, 9.0 Hz, 1H); NMR ¹³C (CDCl₃): δ -3.7, -3.6, 11.7, 18.2, 18.4, 19.4, 19.6, 25.1, 26.1, 30.2, 36.7, 36.8, 39.7, 44.5, 59.6, 70.2, 73.8, 77.3, 77.4, 84.7, 97.9, 115.0, 139.9, 181.0; IR (v_{max} , thin film): 2961, 2931, 2859, 1778, 1472, 1380, 1256, 1202 cm⁻¹; HRMS: *calculated* for $C_{26}H_{48}O_6NaSi [M+Na]^+$: 507.3118, found: 507.3105.

(5*R*,6*R*)-5-((*S*)-2-((4*S*,5*S*,6*R*)-6-((*R*)-but-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)-1-methoxyethyl)-3,3,10,10-tetraethyl-7,7dimethyl-6-(triethylsilyloxy)-4,9-dioxa-3,10-disiladodecane 16. To a suspension of LiAlH₄ (0.171 g, 4.52 mmol, 200 mol%) in THF (25 mL) was added a solution of 14a (1.09 g, 2.26 mmol, 100 mol%) in THF (15 mL) at 0 °C. The mixture was stirred 1 h at 0 °C and then quenched by successive addition of H₂O (0.2 mL), 15% NaOH (0.2 mL) and H₂O (0.6 mL). After 30 min, the precipitate was filtered and washed with EtOAc (20 mL). The combined organic solution was dried over MgSO₄ and concentrated *in vacuo* to afford crude triol 15.

Triol 15 was then dissolved in CH₂Cl₂ (50 mL). 2,6-Lutidine (3.58 mL, 30.7 mmol, 1200 mol%) and TESOTf (2.8 mL, 13.6 mmol, 600 mol%) were successively added at 0 °C. After 12 h at rt, a saturated aqueous solution of NH4Cl (20 mL) was added to the mixture. After separation of phases, the aqueous phase was extracted with CH₂Cl₂ (20 mL). Combined organic extracts were dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc: 100:0 to 95:5) afforded the triprotected compound 16 (1.16 g, 72% over 2 steps) as a colourless oil. R_{f} : 0.66 (Hex/EtOAc: 95:5); $[\alpha]_{20}^{D} = -31.3$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.55-0.66 (m, 18H), 0.75 (d, J = 6.6 Hz, 3H), 0.87 (s, 3H), 0.91 (s, 3H), 0.94-0.99 (m, 27H), 1.05 (d, J = 6.9 Hz, 3H), 1.09-1.25 (m, 1H), 1.33 (s, 3H), 1.39 (s, 3H), 1.41-1.44 (m, 1H), 2.05-2.10 (m, 1H), 2.38-2.45 (m, 1H), 3.21-3.25 (m, 2H), 3.28 (s, 3H), 3.36 (dd, J = 10.3, 2.1 Hz, 1H), 3.44 (d, J = 9.4 Hz, 1H), 3.58-3.63 (m, 1H), 3.69 (d, J = 2.0 Hz, 1H), 3.84 (dd, J = 8.2, 1.9 Hz, 1H), 4.95-5.01 (m, 2H), 5.86 (ddd, J = 17.1, 10.4, 9.0 Hz, 1H); ¹³C NMR (CDCl₃): δ 4.6, 5.9, 6.0, 7.0, 7.3, 7.4, 12.1, 18.3, 19.5, 20.6, 22.4, 26.2, 30.3, 32.9, 36.3, 39.8, 41.1, 57.5, 69.9, 71.4, 75.4, 77.6, 81.0, 97.7, 114.8, 140.1; IR (v_{max}, thin film): 2956, 2912, 2877, 1461, 1416, 1379, 1238, 1201, 1095 cm⁻¹; HRMS: calculated for $C_{38}H_{80}O_6NaSi_3[M+Na]^+$: 739.5160, found: 739.5158.

(3R,4R,5S)-6-((4S,5S,6R)-6-((R)-but-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)-5-methoxy-2,2-dimethyl-3,4-bis(triethylsilyloxy)hexanal 17. A solution of DMSO (98 µL, 1.4 mmol, 880 mol%) in CH₂Cl₂ (1 mL) was cooled to -78 °C. Oxalyl chloride (59 µL, 0.7 mmol, 440 mol%) was added to the solution (gas evolution was observed). TES-protected compound 16 (0.112 g, 0.16 mmol, 100 mol%) in CH₂Cl₂ (1 mL) was added. The solution was stirred 20 min at -78 °C and then warmed to -35 °C and stirred for 1 h at this temperature. The solution was then cooled down to -78 °C and Et₃N (0.33 mL, 2.35 mmol, 1500 mol%) was added. The mixture was allowed to warm to rt and after 1 h, a saturated aqueous solution of NH₄Cl (2 mL) was added. After separation of phases, the aqueous phase was extracted with EtOAc (10 mL). The combined organic extracts were dried over $MgSO_4$ and concentrated *in vacuo*. Purification by flash chromatography (Hex/EtOAc: 100:0 to 95:5) afforded aldehyde 17 (74 mg, 78%) as a colourless oil. $R_f: 0.53$ (Hex/EtOAc: 95:5); $[\alpha]^{D}_{20} = -46.7$ (*c* 1, CHCl₃) ¹H NMR (CDCl₃): δ 0.57 (q, J = 7.9 Hz, 6H), 0.65 (q, J = 7.7 Hz, 6H), 0.77 (d, J = 6.6 Hz, 3H), 0.93 (t, J = 7.9 Hz, 9H), 0.97 (t, J = 7.7 Hz, 9H), 1.03 (s, 3H), 1.04 (d, J = 7.2 Hz, 3H), 1.06 (s, 3H), 1.19-1.23 (m, 1H), 1.31 (s, 3H), 1.37 (s, 3H), 1.40-1.42 (m, 1H), 2.07-2.12 (m, 1H), 2.39-2.46 (m, 1H), 3.23 (s, 3H), 3.31-3.35 (m, 1H), 3.37 (dd, J = 10.2, 2.1 Hz, 1H), 3.67 (t, J = 9.1 Hz, 1H), 3.93-3.95 (m, 2H), 4.96-5.03 (m, 2H), 5.85 (ddd, J = 16.9, 10.3, 9.0 Hz, 1H), 9.83 (s, 1H); ¹³C NMR (CDCl₃): δ 5.5, 6.0, 7.2, 7.3, 12.2, 18.2, 19.5, 19.9, 23.2, 30.3, 31.5, 36.1, 39.8, 49.5, 56.3, 70.0, 74.2, 77.6, 79.5, 80.2, 97.7, 115.0, 139.9, 206.5; IR (v_{max} , thin film): 2956, 2937, 2876, 1717, 1458, 1379, 1257, 1201, 1094 cm⁻¹; HRMS: calculated for $C_{32}H_{64}O_6NaSi_2[M+Na]^+$: 623.4158, found: 623.4139.

(5R,6R)-5-((S)-2-((4S,5S,6R)-6-((R)-but-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)-1-methoxyethyl)-3,3,8,8-tetraethyl-6-(2methylbut-3-yn-2-yl)-4,7-dioxa-3,8-disiladecane 3. Aldehyde 17 (0.40 g, 0.66 mmol, 100 mol%) was dissolved in MeOH (15 mL). Ohira-Bestmann reagent (0.31 g, 1.65 mmol, 250 mol%) and K_2CO_3 (0.228 g, 1.65 mmol, 250 mol%) were then successively added and the mixture stirred at rt for 48 h. MeOH was evaporated and the residue taken up in EtOAc (20 mL) and H₂O (10 mL). After separation of phases, the aqueous phase was extracted with EtOAc (10 mL). The combined organic extracts were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash chromatography (Hex/EtOAc: 100:0 to 95:5) afforded alkyne 3 (0.345 g, 88%) as a colourless oil. $R_f: 0.72$ (Hex/EtOAc: 95:5); $[\alpha]_{20}^{D} = -43.6$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.61-0.70 (m, 12H), 0.76 (d, J = 6.5 Hz, 3H), 0.92-1.00 (m, 18 H), 1.05 (d, J = 6.9 Hz, 3H), 1.24 (s, 3H), 1.25 (s, 3H), 1.35 (s, 3H), 1.39 (s, 3H), 1.40-1.46 (m, 2H), 2.07 (s, 1H), 2.08-2.14 (m, 1H), 2.38-2.46 (m, 1H), 3.25-3.31 (m, 4H), 3.36 (dd, J = 10.3, 2.1 Hz, 1H), 3.59-3.64 (m, 1H), 3.74 (d, J = 2.0 Hz, 1H), 4.04 (dd, J = 7.7, 1.9 Hz, 1H), 4.95-5.01 (m, 2H), 5.86 $(ddd, J = 17.5, 10.4, 9.0 \text{ Hz}, 1\text{H}); {}^{13}\text{C NMR} (\text{CDCl}_3): 5.8, 5.9, 7.3,$ 7.4, 12.1, 18.2, 19.5, 25.4, 27.6, 30.2, 33.0, 36.2, 36.9, 39.7, 57.2, 69.5, 71.4, 74.5, 77.3, 77.7, 81.1, 92.3, 97.7, 114.8, 140.1; IR (v_{max}, thin film): 3309, 2955, 2937, 2877, 2111, 1460, 1379, 1238, 1202, 1097; HRMS: calculated for C₃₃H₆₄O₅NaSi₂ [M+Na]⁺: 619.4190, found: 619.4181.

(6R,7R,12R,13R)-13-((S)-2-((4S,5S,6R)-6-((R)-but-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)-1-methoxyethyl)-15,15-diethyl-2, 2,7,11,11-pentamethyl-3,3-diphenyl-6,12-bis(triethylsilyloxy)-4, 14-dioxa-3,15-disilaheptadec-9-yn-8-one 2. To a solution of thiol ester 4 (49 mg, 71 µmol, 100 mol%) in DMF (0.15 mL) and Et₃N (45 µL) were successively added PdCl₂(dppf) (6 mg, 7 µmol, 10 mol%), CuI (26 mg, 0.135 mmol, 190 mol%), P(2-furyl)₃ (4 mg, 18 umol, 25 mol%) and a solution of alkyne 3 (80 mg, 0.135 mmol, 190 mol%) in DMF (0.15 mL). The mixture was heated at 50 °C for 3 h and then cooled to rt. Celite (0.1 g), Et₂O (5 mL) and H₂O (2 mL) were added. After 10 min, the mixture was filtered through a pad of Celite and the pad was washed with EtOAc (10 mL). After separation of phases, the organic extracts were washed with H₂O (5 mL), dried over MgSO₄ and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc: 99:1 to 95:5) furnished ynone 2 (38 mg, 50%), as a colourless oil. R_{f} : 0.43 (Hex/EtOAc: 97:3); $[\alpha]_{20}^{D} = -27.7$ (c 1, CHCl₃); ¹H NMR $(CDCl_3)$: $\delta 0.54$ (q, J = 7.9 Hz, 6H), 0.60-0.70 (m, 12H), 0.75 (d, *J* = 6.6 Hz, 3H), 0.90 (t, *J* = 7.9 Hz, 9H), 0.95 (t, *J* = 7.9 Hz, 9H),

0.98 (t, J = 7.9 Hz, 9H), 1.05 (s, 9H), 1.05 (d, J = 6.6 Hz, 3H), 1.13 (d, J = 7.0 Hz, 3H), 1.29 (s, 6H), 1.33 (s, 3H), 1.39 (s, 3H), 1.42-1.44 (m, 1H), 1.77 (q, J = 6.4 Hz, 2H), 2.06-2.10 (m, 1H), 2.37-2.45 (m, 1H), 2.52-2.58 (m, 1H), 3.27 (s, 3H), 3.29-3.31 (m, 2H), 3.37 (dd, J = 10.2, 2.1 Hz, 1H), 3.61-3.64 (m, 1H), 3.68 (t, J = 6.4 Hz, 2H), 3.80 (d, J = 1.8 Hz, 1H), 3.97 (dd, J = 7.9, 1.7 Hz, 1H), 4.41-4.45 (m, 1H), 4.95-5.03 (m, 2H), 5.87 (ddd, J = 16.8, 10.0, 9.4 Hz, 1H), 7.35-7.44 (m, 6H), 7.64-7.68 (m, 4H); ¹³C NMR (CDCl₃): δ 5.3, 5.8, 5.9, 7.1, 7.3, 7.4, 10.1, 12.0, 18.2, 19.3, 19.5, 25.9, 27.0, 30.3, 32.6, 36.1, 37.8, 38.7, 39.8, 53.7, 57.2, 60.9, 69.9, 71.2, 77.4, 77.6, 80.6, 81.7, 97.7, 102.0, 114.8, 127.8, 129.7, 133.8, 133.9, 135.7, 140.1, 190.1; IR (v_{max} , thin film): 2955, 2936, 2876, 2205, 1673, 1459, 1379, 1238, 1095 cm⁻¹; HRMS: calculated for $C_{61}H_{106}O_8NaSi_4$ [M+Na]⁺: 1101.6863, found: 1101.6896.

(2S,3R,7S,8R)-2-((S)-2-((4S,5S,6R)-6-((R)-but-3-en-2-yl)-2,2, 5-trimethyl-1,3-dioxan-4-yl)-1-methoxyethyl)-7-(2-(tert-butyldiphenylsilyloxy)ethyl)-3-hydroxy-4,4,8-trimethyl-1,6-dioxaspiro[4.5] decan-9-one 19. To a solution of ynone 2 (31 mg, 29 µmol, 100 mol%) in toluene (1 mL) was added p-TsOH (10 mg, 50 µmol, 180 mol%) and the mixture was stirred 24 h at rt. The reaction was quenched by addition of a saturated aqueous solution of NaHCO₃ (0.5 mL) and H₂O (0.5 mL). The mixture was diluted with EtOAc (5 mL) and, after separation of phases, the organic phase was dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc: 95:5 to 80:20) afforded spiroketal 19 (7 mg, 33%), as a colourless oil. R_f : 0.44 (Hex/EtOAc: 80:20); $[\alpha]_{20}^{D} = -64.3$ (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.61 (d, J = 6.5 Hz, 3H), 0.86 (s, 3H), 1.02-1.07 (m, 18H), 1.11 (s, 3H), 1.25 (s, 3H), 1.29-1.38 (m, 2H), 1.64-1.74 (m, 2H), 1.83-1.91 (m, 2H), 2.27-2.46 (m, 3H), 2.56 (d, J = 14.8 Hz, 1H), 3.19 (dd, J = 10.3, 2.1 Hz, 1H), 3.29 (s, 3H), 3.44-3.46 (m, 1H), 3.58-3.65 (m, 2H), 3.74 (dt, J = 9.4, 4.8 Hz, 1H), 3.79 (dd, J = 7.7, 3.7 Hz, 1H), 3.92 (ddd, J = 9.0, 4.3, 2.9 Hz, 1H), 4.05 (dd, J = 9.0, 8.1 Hz, 1H), 4.94-5.01 (m, 2H), 5.81 (ddd, J = 17.2, 10.2, 9.1 Hz, 1H), 7.36-7.45 (m, 6H), 7.63-7.66 (m, 4H); ¹³C NMR (CDCl₃): δ 10.8, 11.7, 17.2, 18.1, 19.3, 21.0, 27.0, 27.0, 30.0, 32.6, 34.9, 36.1, 39.6, 41.6, 48.3, 48.5, 56.3, 61.7, 68.4, 71.6, 76.4, 77.4, 77.4, 80.4, 97.8, 108.4, 115.2, 127.9, 129.9, 133.7, 135.6, 139.7, 210.0; IR (v_{max}, thin film): 3469, 2959, 2930, 2857, 1720, 1472, 1462, 1428, 1379, 1203, 1111 cm⁻¹; HRMS: calculated for $C_{43}H_{65}O_8Si[M+H]^+$: 737.4449, found: 737.4445.

(2R, 3R, 7S, 8R) - 2 - ((S) - 2 - ((4S, 5S, 6R) - 6 - ((R) - but - 3 - en - 2 - vl) - 2 - vl) - 2 - vl) - 2 - vl - 2 -2,2,5-trimethyl-1,3-dioxan-4-yl)-1-methoxyethyl)-7-(2-((tert-butyldiphenylsilyl)oxy)ethyl) - 4,4,8 - trimethyl - 3 - ((triethylsilyl)oxy)-1,6-dioxaspiro[4.5]decan-9-one 20. To a solution of ynone 2 (25.4 mg, 23.5 µmol, 100 mol%) in CH₂Cl₂ (0.60 mL) and MeOH (0.15 mL) (+)-CSA (1 mg, 4.3 µmol, 15 mol%) was added. After 1 h and total consumption of the starting material, the solvent was evaporated. The residue was taken up in toluene (1.5 mL) and p-TsOH·H₂O (1 mg, 5.2 µmol, 20 mol%) was added. After 4 h, the mixture was filtered and concentrated. The residue was dissolved in CH₂Cl₂ (3 mL). To this solution were successively added 2,6-lutidine (11 µL, 94.0 µmol, 400 mol%) and TESOTf (11 µL, 47.0 µmol, 200 mol%) at 0 °C. The reaction mixture was stirred at rt overnight and quenched by addition of a saturated aqueous solution of NH₄Cl (2 mL). After separation of phases, the aqueous phase was extracted with CH_2Cl_2 (5 mL). The combined organic extracts were dried over MgSO4 and concentrated in vacuo.

Purification by flash chromatography (Hex/EtOAc: 95:5 to 90:10) afforded spiroketal 20 (13.4 mg, 67% over 3 steps) as a colourless oil. R_f: 0.65 (Hex/EtOAc: 80:20); $[\alpha]_{20}^{D} = -47.7$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.53-0.59 (m, 9H), 0.88 (s, 3H), 0.94 (t, J = 7.9 Hz, 9H), 1.02 (s, 3H), 1.03-1.05 (m, 15H), 1.11 (s, 3H),1.25 (s, 3H), 1.27-1.33 (m, 1H), 1.54 (dt, J = 13.8, 9.6 Hz, 1H), 1.61-1.67 (m, 1H), 1.83-1.97 (m, 2H), 2.24-2.29 (m, 1H), 2.33-2.37 (m, 2H), 2.49 (d, J = 15.4 Hz, 1H), 3.16-3.23 (m, 2H), 3.24 (s, 3H),3.29-3.33 (m, 1H), 3.64 (dt, J = 9.7, 6.0 Hz, 1H), 3.68 (dd, J = 8.1, 1.7 Hz, 1H), 3.81 (dt, J = 9.9, 5.1 Hz, 1H), 3.95 (ddd, J = 9.5, 3.6, 2.9 Hz, 1H, 4.17 (d, J = 8.0 Hz, 1H), 4.94-5.00 (m, 2H), 5.81 (ddd, 100 Hz)*J* = 17.2, 10.3, 9.1 Hz, 1H), 7.35-7.43 (m, 6H), 7.65-7.67 (m, 4H); ¹³C NMR (CDCl₃): δ 5.1, 7.1, 10.9, 11.8, 16.9, 18.2, 19.3, 21.3, 26.3, 27.0, 30.0, 34.8, 34.9, 36.5, 39.6, 41.0, 48.1, 48.4, 57.0, 61.9, 67.7, 71.5, 74.7, 77.4, 78.3, 79.8, 97.6, 108.4, 115.1, 127.9, 129.8, 133.8, 135.5, 139.8, 210.0; IR (v_{max}, thin film): 2958, 2929, 2857, 1723, 1471, 1463, 1379, 1260, 1202, 1112 cm⁻¹; HRMS: calculated for $C_{49}H_{78}O_8NaSi_2[M+Na]^+$: 873.5133, found: 873.5140.

(2R,3R,7S,8S,9R)-2-((S)-2-((4S,5S,6R)-6-((R)-but-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)-1-methoxyethyl)-7-(2-((tert-butyldiphenylsilyl)oxy)ethyl) - 4,4,8 - trimethyl - 3-((triethylsilyl)oxy) - 1, 6-dioxaspiro[4.5]decan-9-ol 21. To a solution of spiroketal 20 (75.0 mg, 0.088 mmol, 100 mol%) in THF (4 mL) was added L-Selectride (1 M in THF, 0.26 mL, 0.26 mmol, 300 mol%) at -78 °C. After stirring for 1 h 30 at -78 °C, MeOH (1 mL), 1 M NaOH (1 mL), 30% H₂O₂ (0.5 mL) and THF (6 mL) were successively added. The reaction mixture was then allowed to warm to 0 °C, stirred for 30 min at 0 °C and finally 30 min at rt. Et₂O (10 mL) and brine (5 mL) were then added to the mixture. After extraction with Et₂O (10 mL), the combined organic extracts were dried over MgSO₄ and concentrated in vacuo. Purification by flash chromatography (Hex/EtOAc: 90: 10 to 80: 20) afforded alcohol 21 (65.0 mg, 86%) as a colourless oil. $R_f: 0.37$ (Hex/EtOAc: 80:20); $[\alpha]_{20}^{D} = -62.2$ $(c 1, CHCl_3)$; ¹H NMR (CDCl_3): $\delta 0.55$ (q, J = 7.7 Hz, 6H), 0.64 (d, J = 6.4 Hz, 3H), 0.81 (d, J = 7.1 Hz, 3H), 0.87 (s, 3H), 0.92(t, J = 7.9 Hz, 9H), 0.91 (s, 3H), 1.03 (s, 9H), 1.04 (d, J = 3.5 Hz, 3H), 1.09 (s, 3H), 1.24 (s, 3H), 1.29-1.35 (m, 1H), 1.57-1.69 (m, 4H), 1.74 (dd, J = 14.4, 2.8 Hz, 1H), 1.81-1.91 (m, 2H), 2.33-2.41 (m, 1H), 3.20 (dd, J = 10.4, 2.1 Hz, 1H), 3.25 (s, 3H), 3.26-3.35 (m, 1H)2H), 3.63 (dt, J = 9.9, 5.7 Hz, 1H), 3.71-3.78 (m, 3H), 3.81 (dt, J = 10.1, 5.0 Hz, 1H), 4.00 (ddd, J = 9.7, 3.0, 2.8 Hz, 1H), 4.13 (d, J = 8.0 Hz, 1H), 4.94-5.00 (m, 2H), 5.82 (ddd, J = 17.2, 10.3, 9.1 Hz, 1H), 7.35-7.43 (m, 6H), 7.65-7.68 (m, 4H); 13 C NMR (CDCl₃): δ 5.1, 7.1, 10.9, 11.8, 16.8, 18.2, 19.2, 19.3, 21.3, 27.0, 28.4, 30.0, 34.9, 36.0, 36.5, 38.1, 39.6, 48.3, 57.1, 62.3, 64.1, 70.9, 71.6, 74.9, 77.4, 78.3, 79.8, 97.6, 107.8, 115.1, 127.8, 129.7, 134.0, 135.5, 139.8; IR (*v*_{max}, thin film): 3542, 2959, 2932, 2913, 2877, 1472, 1463, 1379, 1259, 1112 cm⁻¹; HRMS: calculated for $C_{49}H_{80}O_8NaSi_2[M+Na]^+$: 875.5289, found: 875.5299.

(2R,3R,7S,8R,9R)-2-((S)-2-((4S,5S,6R)-6-((R)-but-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)-1-methoxyethyl)-7-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-4,4,8-trimethyl-3-((triethylsilyl)oxy)-1,6dioxaspiro[4.5]decan-9-yl acetate 1. To a solution of alcohol 21 (28 mg, 33 µmol, 100 mol%) in CH₂Cl₂ (5 mL) were added Et₃N (0.15 mL, 1.1 mmol, 3300 mol%), Ac₂O (0.08 mL, 2500 mol%) and DMAP (1 mg, 8.2 µmol, 25 mol%). The mixture was heated to reflux for 48 h. After cooling to rt, the reaction was quenched by addition of a saturated aqueous solution of NH₄Cl (4 mL). After separation of phases, the aqueous phase was extracted with CH₂Cl₂ (5 mL). The combined organic extracts were dried over MgSO₄ and concentrated *in vacuo*. Purification by flash chromatography (Hex/EtOAc: 90:10) afforded spiroketal 1 (28 mg, 96%) as a colourless oil. R_f: 0.54 (Hex/EtOAc: 80:20); $[\alpha]_{20}^{D} = -67.7 \ (c \ 1, \ CHCl_3); \ ^{1}H \ NMR \ (CDCl_3); \ \delta \ 0.55 \ (q, \ J =$ 7.5 Hz, 3H), 0.55 (q, J = 8.1 Hz, 3H), 0.65 (d, J = 6.6 Hz, 3H), 0.84 (s, 3H), 0.87 (d, J = 7.1 Hz, 3H), 0.92 (s, 3H), 0.93 (t, J =7.9 Hz, 9H), 1.03 (s, 9H), 1.04 (d, J = 4.4 Hz, 3H), 1.12 (s, 3H), 1.25-1.27 (m, 4H), 1.30-1.37 (m, 1H), 1.53-1.62 (m, 3H), 1.70-1.71 (m, 2H), 1.77-1.84 (m, 1H), 1.99 (s, 3H), 2.33-2.38 (m, 1H), 3.20 (dd, J = 10.3, 2.1 Hz, 1H), 3.25 (s, 3H), 3.26-3.32 (m, 2H), 3.64(dt, J = 9.6, 5.2 Hz, 1H), 3.68 (dd, J = 8.3, 1.3 Hz, 1H), 3.80 (dt, J = 9.7, 5.7 Hz, 1H), 4.05-4.09 (m, 1H), 4.17 (d, J = 8.3 Hz, 1H), 4.85 (dd, J = 5.7, 2.9 Hz, 1H), 4.94-5.01 (m, 2H), 5.83 (ddd, J =17.2, 10.3, 9.1 Hz, 1H), 7.35-7.42 (m, 6H), 7.64-7.67 (m, 4H); ¹³C NMR (CDCl₃): δ 5.1, 7.1, 10.2, 11.8, 16.6, 18.2, 19.2, 19.3, 21.3, 21.8, 26.5, 27.0, 30.0, 35.0, 35.1, 35.9, 36.7, 39.7, 48.4, 57.0, 62.2, 64.0, 71.6, 72.4, 75.1, 77.4, 77.4, 79.9, 97.7, 105.8, 115.1, 127.8, 129.8, 134.0, 135.5, 139.9, 170.8; IR (v_{max}, thin film): 2958, 2931, 2858, 1732, 1472, 1462, 1378, 1112 cm⁻¹; HRMS: calculated for $C_{51}H_{82}O_9NaSi_2[M+Na]^+: 917.5395, found: 917.5437.$

Notes and references

- 1 Y. Kato, N. Fusetani, S. Matsunaga, K. Hashimoto, S. Fujita and T. Furuya, J. Am. Chem. Soc., 1986, 108, 2780–2781.
- 2 Y. Kato, N. Fusetani, S. Matsunaga, K. Hashimoto and K. Koseki, J. Org. Chem., 1988, 53, 3930–3932.
- 3 S. Matsunaga, H. Fujiki, D. Sakata and N. Fusetani, *Tetrahedron*, 1991, **47**, 2999–3006.
- 4 E. J. Dumdei, J. W. Blunt, M. H. G. Munro and L. K. Pannell, J. Org. Chem., 1997, 62, 2636–2639.
- 5 S. Matsunaga, T. Wakimoto and N. Fusetani, J. Org. Chem., 1997, 62, 2640–2642.
- 6 S. Matsunaga, T. Wakimoto, N. Fusetani and M. Suganuma, *Tetrahe*dron Lett., 1997, 38, 3763–3764.
- 7 X. Fu, F. J. Schmitz, M. Kelly-Borges, T. L. McCready and C. F. B. Holmes, J. Org. Chem., 1998, 63, 7957–7963.
- 8 S. Kehraus, G. M. Konig and A. D. Wright, J. Nat. Prod., 2002, 65, 1056–1058.
- 9 R. A. Edrada, R. Ebel, A. Supriyono, V. Wray, P. Schupp, K. Steube, R. van Soest and P. Proksch, J. Nat. Prod., 2002, 65, 1168–1172.
- 10 A. Kita, S. Matsunaga, A. Takai, H. Kataiwa, T. Wakimoto, N. Fusetani, M. Isobe and K. Miki, *Structure*, 2002, 10, 715–724.
- 11 S. Wera and B. A. Hemmings, Biochem. J., 1995, 311, 17-29.
- 12 L. Zhang, Z. Zhang, F. Long and E. Y. C. Lee, *Biochemistry*, 1996, 35, 1606–1611.
- 13 J. R. Bagu, B. D. Sykes, M. M. Craig and C. F. B. Holmes, J. Biol. Chem., 1997, 272, 5087–5097.
- 14 P. T. W. Cohen, Trends Biochem. Sci., 1997, 22, 245-251.
- 15 A. McCluskey, A. T. R. Sim and J. A. Sakoffs, J. Med. Chem., 2002, 45, 1151–1175.
- 16 A. H. Schönthal, Cancer Lett., 2001, 170, 1-13.
- 17 C. F. B. Holmes and M. P. Boland, Curr. Opin. Struct. Biol., 1993, 3, 934–943.
- 18 M. K. Lindvall, P. M. Pihko and A. M. P. Koskinen, J. Biol. Chem., 1997, 272, 23312–23316.
- 19 D. A. Evans, J. R. Gage and J. L. Leighton, J. Am. Chem. Soc., 1992, 114, 9434–9453.
- 20 F. Yokokawa, Y. Hamada and T. Shioiri, Chem. Commun., 1996, 871– 872.
- 21 O. P. Anderson, A. G. M. Barrett, J. J. Edmunds, S. I. Hachiya, J. A. Hendrix, K. Horita, J. W. Malecha, C. J. Parkinson and A. VanSickle, *Can. J. Chem.*, 2001, **79**, 1562–1592.
- 22 N. Tanimoto, S. W. Gerritz, A. Sawabe, T. Noda, S. A. Filla and S. Masanume, Angew. Chem., Int. Ed. Engl., 1994, 33, 673–675.

- 23 A. B. Smith, G. K. Friestad, J. Barbosa, E. Bertounesque, K. G. Hull, M. Iwashima, Y. Qiu, B. A. Salvatore, P. G. Spoors and J. J. W. Duan, J. Am. Chem. Soc., 1999, **121**, 10468–10477.
- 24 A. K. Ogawa and R. W. Armstrong, J. Am. Chem. Soc., 1998, 120, 12435–12442.
- 25 B. M. Trost and J. A. Flygare, Tetrahedron Lett., 1994, 35, 4059-4062.
- 26 P. M. Pihko and A. M. P. Koskinen, J. Org. Chem., 1998, 63, 92-98.
- 27 P. M. Pihko and A. M. P. Koskinen, Svnlett, 1999, 1966-1968.
- 28 A. M. P. Koskinen and J. Chen, Tetrahedron Lett., 1991, 32, 6977-6980.
- 29 D. Habrant, A. J. W. Stewart and A. M. P. Koskinen, *Tetrahedron*, 2009, 65, 7927–7934.
- 30 A. E. Fagerholm, D. Habrant and A. M. P. Koskinen, *Mar. Drugs*, 2010, 8, 122–172.
- 31 A. M. P. Koskinen and K. Karisalmi, Chem. Soc. Rev., 2005, 34, 677– 690.
- 32 O. P. Anderson, A. G. M. Barrett, J. J. Edmunds, S. I. Hachiya, J. A. Hendrix, K. Horita, J. W. Malecha, C. J. Parkinson and A. VanSickle, *Can. J. Chem.*, 2001, **79**, 1562–1592.
- 33 G. R. Scarlato, J. A. DeMattei, L. S. Chong, A. K. Ogawa, M. R. Lin and R. W. Armstrong, J. Org. Chem., 1996, 61, 6139–6152.
- 34 K. Karisalmi and A. M. P. Koskinen, *Tetrahedron Lett.*, 2004, 45, 8245– 8248.
- 35 K. Karisalmi and A. M. P. Koskinen, Synthesis, 2004, 1331-1342.

- 36 E. J. Corey, H. Cho, R. Hidetsura, C. Ruecker and D. H. Hua, *Tetrahedron Lett.*, 1981, 22, 3455–3458.
- 37 S. R. Chemler and W. R. Roush, J. Org. Chem., 2003, 68, 1319– 1333.
- 38 S. D. Rychnovsky, B. Rogers and G. Yang, J. Org. Chem., 1993, 58, 3511–3515.
- 39 A. Rodriguez, M. Nomen, B. W. Spur and J. J. Godfroid, *Tetrahedron Lett.*, 1999, 40, 5161–5164.
- 40 S. Müller, B. Liepold, G. J. Roth and H. J. Bestmann, *Synlett*, 1996, 521–522.
- 41 T. Miyazaki, Y. Han-Ya, H. Tokuyama and T. Fukuyama, *Synlett*, 2004, 477–479.
- 42 T. Nakahata, S. Fijimura and S. Kuwahara, *Chem.-Eur. J.*, 2006, **12**, 4584-4593.
- 43 M. T. Crimmins and R. O'Mahony, J. Org. Chem., 1990, 55, 5894-5900.
- 44 C. Wang and C. J. Forsyth, Org. Lett., 2006, 8, 2997–3000 and references cited.
- 45 T. M. Trygstad, Y. Pang and C. J. Forsyth, J. Org. Chem., 2009, 74, 910–913.
- 46 V. Rauhala, K. Nättinen, K. Rissanen and A. M. P. Koskinen, *Eur. J. Org. Chem.*, 2005, 4119–4126.
- 47 R. K. Dieter, L. A. Silks, J. R. Fishpaugh and M. E. Kastner, J. Am. Chem. Soc., 1985, 107, 4679–4692.