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Dynamic response of a cylinder cover under a moving load

Anssi T. Karttunena,∗, Raimo von Hertzena

aDepartment of Applied Mechanics, Aalto University, Finland

Abstract

Cylinders with thin covers are used in high-speed rolling contact industrial applications such as a two-
cylinder soft calender of a paper machine. In this paper, the dynamic behavior of an elastic cylinder cover
is studied using a 1D Pasternak-type foundation model with Kelvin-Voigt damping. The cover is subjected
to a moving point load, which is taken to represent a load resultant due to rolling contact. Analytical
expressions for the natural frequencies, vibration response, wave dispersion relation, total strain energy and
dissipation power of the cover are obtained. To validate the 1D approach, the calculated natural frequencies
and modes are compared to those given by a 2D plane strain finite element model, and a good agreement is
found. The critical load speed at which traveling waves first appear in the cover is derived for the undamped
analytical model on the basis of a resonance condition. The critical speed is shown to be also the minimum
phase velocity of the waves in the cover. When damping is included, the wave speeds decrease, lowering
also slightly the critical speed, which, in addition, becomes blurred due to the damping. Once a traveling
wave has emerged, it remains in the cover also at supercritical speeds due to a spectrum of resonant speeds
induced by wave dispersion. At supercritical speeds, reinforced resonances are observed when the head and
tail of a traveling wave interact. High shear damping leads to a substantial increase in dissipation power
related to heat generation and rolling resistance of the cover already at subcritical speeds.

Keywords: Pasternak foundation, moving load, critical speed, traveling wave, reinforced resonance, power
dissipation

1. Introduction

Along with the advances in materials science, the development of cylinder cover materials for rolling
contact industrial machines, for example soft calenders of paper machines, has taken major steps forward in
recent years. The replacement of the traditional metal-to-metal contact by novel polymers and composites
in high-speed rolling contact applications has proven to be beneficial in terms of end product quality and
modifiability. However, the covers induce and suffer from detrimental dynamic phenomena which have not
been fully explained yet, let alone dealt with. Examples of these phenomena are the self-excited vibration
mechanism, barring, which is caused by viscoelastic cover deformations acting as time-delayed feedbacks in
a rolling contact system [1, 2], and a contact-induced traveling wave phenomenon occurring at high rolling
speeds, which is the subject of this study.

The study of cylinder cover dynamics constitutes essentially a 2D plane strain problem where typically
a relatively long hard cylinder with a thin soft cover is rolling in contact with another cylinder. It is crucial
to note that the plane strain feature establishes a fundamental distinction between covered cylinders and,
for example vehicle tires and flexible train wheels, which are often studied by using ring or shell models.
In other words, the traveling waves in cylinder covers should not be viewed too closely in terms of other
circular structures.
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Only a few studies addressing traveling waves in thin cylinder covers can be found. In a recent paper,
Qiu developed a 2D semianalytical plane strain model for a covered cylinder rolling in contact with a rigid
surface [3]. He calculated the natural frequency spectrum for the covered cylinder and used the frequencies
to estimate the critical rolling speed at which traveling waves start to emerge in a cover. To understand the
nature of the traveling wave phenomenon to a deeper extent, we recently utilized a 2D plane strain finite
element (FE) model to study a polymer-covered cylinder rolling in contact with a steel cylinder [4]. We
found that at the critical speed of the covered cylinder, the minimum speed of Rayleigh waves in the cover
is actually reached and both primary and secondary Rayleigh waves arise at the leading edge of the contact
area. The superposition of the waves leads to the formation of a strong traveling wave in the cover. The
phenomenon may be considered as a Rayleigh wave resonance [5]. A similar wave propagation phenomenon
is encountered, for example, when a high-speed train approaches the Rayleigh wave speed of the train-track
subsoil, see, for example, [6].

The detailed account on the physical characteristics of the traveling wave phenomenon in a thin cylinder
cover under rolling contact [4] acts as a basis for the current study. The central novel feature of this paper
is that we show how the dynamic 2D plane strain cover problem can be essentially reduced to 1D. The
development of such a reduced model is motivated by the general notion that a 1D model should be more
convenient to work with both analytically and computationally than a 2D model.

In more detail, we study traveling waves in a cylinder cover subjected to a moving constant radial
point load using a 1D Pasternak-type foundation model with Kelvin-Voigt damping. The cover vibration is
investigated using a modal expansion technique and the wave propagation offers a complementary perspective
via wave dispersion analysis. The natural frequencies and modes calculated from the 1D analytical model
are compared to those given by a 2D plane strain FE model to show that the 1D model captures the essential
features of the 2D problem. A major outcome from the 1D approach is that it allows the effortless calculation
of the relevant resonant load speeds, dispersion curves and vibration response unlike semianalytical [3] or
purely numerical methods [4, 7–10]. The transient cover response sheds light on the emergence of traveling
waves in the cover. The calculated steady-state response demonstrates the effect of cover damping in
a detailed manner, showing how the retardation of the response with respect to the the moving load is
explained by sub- and supercritical modes; how the traveling waves emerge in the cover for different values
of cover damping; and how the damping affects the power dissipation of the cylinder cover at sub- and
supercritical speeds.

2. Theory and physical interpretation

2.1. Equation of motion and vibration response

The system under investigation is depicted schematically in Fig. 1. The 1D model consists of a non-
rotating rigid cylinder with a cover subjected to a moving radial point load P . In other words, an actual
case of rolling contact is studied as an inverted problem [11]. The effect of the rotation of the cylinder will
be discussed later, but it will turn out that it is not of crucial importance for the current study. In reality,
the load would be a distributed one, but since the contact area, the nip, is typically relatively small in rolling
contact machines, it is reasonable to present the load resultant as a point force acting at the load center.
The cover is modeled as a Pasternak-type foundation consisting of a shear layer attached to a Kelvin-Voigt
assembly.

When the traveling wave phenomenon takes place under rolling contact in a 2D system, the dominant
modes of vibration are those of the primary mode family (see Fig. 20 in [4]). Furthermore, at such an
instance, the displacement path of a point near the cover surface due to a traveling wave (Rayleigh wave) is
strongly elliptic with the radial displacements clearly dominating over the tangential ones. On the basis of
the foregoing, a single-mode approximation is used for the radial deformation u of the shear layer in the 1D
model to capture the primary mode family, but the tangential deformations are not taken into account. It
will be shown in Section 3.1 that this is a good approximation of the primary mode family of a 2D model.

The model in Fig. 1 is quite similar to the one by Chatterjee et al. [12]. Their treatment, however,
was largely different from ours. They used their model to study waves in rotating tires by formulating a
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Figure 1: 1D Analytical model for a covered cylinder subjected to circumferentially moving point load P . The cover is modeled
as a shear layer attached to a Kelvin-Voigt base, and u is the radial displacement of the shear layer.

non-linear boundary value contact problem associated with steady-state rolling conditions. We employ a
circumferentially moving point load catching the essentials of the traveling wave phenomenon in the cylinder
cover. In the following, the complete vibration response is derived for the system of Fig. 1.

The equation of motion in a coordinate system fixed to the cylinder in terms of the radial displacement
u of the shear layer reads

utt +
E

ρh2
u+

α

ρh2
ut −

κG

ρR2
uθθ −

κβ

ρR2
uθθt = P (θ, t) . (1)

Above, E is the Young’s modulus and G is the shear modulus of the cover, and α and β are the corresponding
strain rate damping parameters, respectively. The density and thickness of the cover are ρ and h, respectively.
The radius R = Rc + h/2 is used to determine the effective width of a material element. In addition,
we introduce a shape factor κ for the shear layer, which accounts for the total shear force on the cover
layer cross-section similarly to the shear coefficient of a Timoshenko beam. Thus, in principle, the shape
factor introduces a 2D effect to the model. The value of the shape factor is determined computationally
in Section 3.1 with the aid of a 2D plane strain FE model. For a moving constant point load, we have
P (θ, t) = P0δ(θ − Ωt), where P0 is the load amplitude and Ω is the angular velocity of the load. The
rotational frequency of the load is frot = Ω/2π. The model description is completed by the requirement of
continuity of the displacement and slope which leads to

u(0, t) = u(2π, t) and uθ(0, t) = uθ(2π, t) . (2)

Note that the term containing uθθ in Eq. (1) stems from the Pasternak foundation model and is typical
for all shear layer models. This term couples the adjacent material elements to each other. For a derivation
of the Pasternak foundation model, see [13], by the aid of which the dynamic equation of motion Eq. (1)
can be easily derived by taking into account the mass of the cover lumped to the shear layer.

Each natural mode, sin(nθ) or cos(nθ), of the free undamped cover consists of n full waves on the cover
circumference, with the exception of n = 0, which is the breathing mode. As n increases, the wavelength
in a mode decreases. The solution for the moving load problem can be expanded in terms of the natural
modes leading to

u(θ, t) =

∞∑
n=1

[cn(t) sin(nθ) + dn(t) cos(nθ)] + d0(t) . (3)

By substituting Eq. (3) into Eq. (1), the modal expansion coefficients cn, dn and d0 can be calculated from
the equations

c̈n + 2ζnωnċn + ω2
ncn =

P0

π
sin(nΩt) , (4)
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d̈n + 2ζnωnḋn + ω2
ndn =

P0

π
cos(nΩt) , (5)

d̈0 + 2ζ0ω0ḋ0 + ω2
0d0 =

P0

2π
, (6)

where the natural angular frequencies and modal damping ratios are given by (n = 0, 1, 2, . . .)

ωn =

√
1

ρ

(
E

h2
+
κG

R2
n2
)
, (7)

ζn =
α/h2 + κβn2/R2

2ρωn
, (8)

respectively. With zero initial conditions, u(θ, 0) = 0 and ut(θ, 0) = 0, all the initial conditions for the modal
equations also become zero. Thus, when the system is initially at rest, the complete vibration response can
be shown to be

u(θ, t) =

∞∑
n=1

An cos [n(Ωt− θ)− φn] +
P0

2πω2
0

−
∞∑
n=1

Ane−ζnωnt

{
1√

1− ζ2n

[
ζn cos(nθ + φn) +

nΩ

ωn
sin(nθ + φn)

]
sinωdnt+ cos(nθ + φn) cosωdnt

}

− P0

2πω2
0

e−ζ0ω0t

(
ζ0√

1− ζ20
sinωd0t+ cosωd0t

)
, (9)

where the top row represents the steady-state response and the rows below provide the transient response.
The amplitudes An and the phase shifts φn are calculated from the expressions

An =
P0

π

√
[ω2
n − (nΩ)2]

2
+ (2ζnωnnΩ)2

, (10)

tanφn =
2ζnωnnΩ

ω2
n − (nΩ)2

, 0 ≤ φn < π (n = 1, 2, . . .) , (11)

and the damped natural angular frequencies ωdn from

ωdn = ωn
√

1− ζ2n (n = 0, 1, 2, . . .) . (12)

The amplitude An reaches its peak value at nΩ = ωpn = ωn
√

1− 2ζ2n (ζn < 1/
√

2). The total strain
energy of the cover in steady-state can be decomposed into compression and shear parts as

Etot = Ec + Es =
πREl

2h

( ∞∑
n=1

A2
n +

P 2
0

2π2ω4
0

)
+
πκGhl

2R

∞∑
n=1

n2A2
n , (13)

where l is the length of the cylinder in axial direction. Analogously, the total dissipation power of the cover
in steady-state becomes

Ptot = Pc + Ps =
πRαl

h
Ω2

∞∑
n=1

n2A2
n +

πκβhl

R
Ω2

∞∑
n=1

n4A2
n . (14)
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2.2. Critical speed and wave propagation considerations

It can be seen from Eq. (10) that without damping the nth mode is in resonance when ωn = nΩ.
Therefore, the resonant angular velocity Ωn of the load for each mode is given by

Ωn =
ωn
n

=

√
1

ρ

(
E

n2h2
+
κG

R2

)
, (15)

which is of the same form (Ωn = ωn/n) as the one given by Soedel and Padovan [14–16] for the tire standing
wave phenomenon, where traveling waves arise from the contact patch between road and vehicle tire. The
lowest resonant speed is achieved in the limit n→∞, which leads to the critical angular speed of the system

Ωcr =

√
κG

ρR2
. (16)

In terms of tangential load velocity on the cover surface, the critical speed in the undamped case is

vcr = R̂

√
κG

ρR2
, (17)

where R̂ = Rc + h. It can be seen from Eq. (16) that the critical speed is independent of the Young’s
modulus of the cover. Note that the critical angular speed is an accumulation point of the angular velocities
Ωn for n → ∞. Therefore, at the critical speed, a large number of natural modes are in resonance or very
close to it simultaneously.

To further elucidate the dynamic behavior of the system, the dispersion relation for traveling waves in

the shear layer is obtained from Eq. (1) by a solution of the form u = ei(kR̂θ−ωt), which leads to

ω(k) = ±

√
1

ρ

(
E

h2
+
κG

R2
R̂2k2

)
, (18)

where k = 2π/λ is the wavenumber. The phase velocity is defined as v = ω/k. Thus, in the small wavelength
limit k →∞, Eq. (18) yields for the minimum phase velocity the expression

vmin = R̂

√
κG

ρR2
≡ vcr . (19)

Therefore, the critical speed based on the resonance condition equals the minimum phase velocity of the
waves in the shear layer. Similarly, for a 2D cover model the critical speed can be estimated in elastic and
quasi-elastic cases according to the Rayleigh wave velocity, which is a certain portion of the shear wave
velocity of an elastic half-space [4].

To form a standing wave vibration mode in the cover from two identical waves traveling in opposite
directions, the wavenumber must satisfy k = n/R̂, that is, the cylinder circumference must be divisible by
the wavelength λn = 2πR̂/n of the wave. In this case, the discrete dispersion relation and wave propagation
velocities of the traveling waves are given by

ω(n) = ±

√
1

ρ

(
E

h2
+
κG

R2
n2
)
, (20)

v(n) = ±R̂

√
1

ρ

(
E

n2h2
+
κG

R2

)
or

Ω(n) = ±

√
1

ρ

(
E

n2h2
+
κG

R2

)
, (21)
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respectively. It can be seen that Eqs. (15) and (21) are equivalent, and Eq. (21) describes how the wave
velocity increases due to wave dispersion at lower values of n. We can conclude that when a vibration
resonance due to the moving point load takes place in the cylinder cover, from a different point of view, a
traveling wave arises in the cylinder cover as a result of the superposition of waves, similarly to the Rayleigh
wave resonance [4, 5].

By taking the damping of the cylinder cover into account, the discrete dispersion relation (Eq. (20))
becomes

ωd(n) ≡ ±ω(n)
√

1− ζ2n = ±ωdn , (22)

which shows that for high values of n the decrease in the wave frequencies becomes marked because of
the high modal damping ratios ζn, see Eq. (8). Furthermore, the frequency decrease causes the waves
propagating in the cover to slow down, which in turn might reduce the critical speed for the traveling wave
phenomenon. However, as can be seen from Eq. (10), at the same time the modal amplitudes An are
effectively made lower by the damping, especially for higher modes, as both n and ζn increase. Due to this,
it is difficult to determine a certain critical speed at which the traveling waves due to the moving load can
be first observed explicitly. Therefore, the critical speed in the damped case becomes blurred in contrast
to the well-defined critical speed of the undamped case. Ultimately, this provides the motive to study the
emergence of the traveling waves in the damped case by computational means in this paper.

2.3. The effect of rotation

Let us briefly study the case of a rotating cylinder. If the covered cylinder were to rotate with an angular
velocity Ω, the centrifugal force acting on the cover due to rotation would be taken into account in Eq. (1)
by adding the term Ω2(R+ u) on the RHS. The term Ω2R would superpose a constant displacement

u0 =
Ω2R

E/(ρh2)− Ω2
(23)

to the general solution given by Eq. (9), which could be combined with the already existing constant P0/2πω
2
0

in the solution. This would only change the compressional (or extensional) strain energy by a constant but
would have no effect on the dissipated power or on the traveling wave phenomenon. Therefore, Eq. (23) has
no essential significance to the solution.

The term Ω2u on the RHS could be combined with the term E/(ρh2)u on the LHS of Eq. (1), leading
to the term [E/(ρh2) − Ω2]u on the LHS. It can be seen that all equations developed in Sections 2.1 and
2.2 would still be valid provided that the substitution E/(ρh2)→ E/(ρh2)−Ω2 was made. The undamped
natural angular frequencies and modal damping ratios, in particular, would be given by

ωn,cen =

√
1

ρ

(
E

h2
+
κG

R2
n2
)
− Ω2 , (24)

ζn,cen =
α/h2 + κβn2/R2

2ρωn,cen
, (25)

respectively. Note, however, that the relation 2ζn,cenωn,cen = 2ζnωn is valid. In this case, the resonant
angular velocities would be calculated from

Ωn,cen =

√
n2

n2 + 1
·

√
1

ρ

(
E

n2h2
+
κG

R2

)
. (26)

It can be seen that the centrifugal force does not change the critical angular speed of the system, since still
Ωn,cen →

√
κG/(ρR2), when n → ∞. The centrifugal force, on the other hand, affects the resonant load

angular velocities at low mode numbers n, that is, at very high speeds. The effect of the centrifugal force
on the steady-state solution is accounted for by substituting the natural angular frequencies of Eq. (7) by
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Table 1: Parameter values for the system of Fig. 1 adapted from an industrial test machine.

Young’s modulus E = 18 MPa
Shear modulus G = 6 MPa
Compression damping parameter α = 50 Ns/m2

Shear damping parameter β = 16.67 Ns/m2

Poisson ratio ν = 0.5
Density ρ = 2000 kg/m3

Cover thickness h = 0.01 m
Cylinder radius Rc = 0.204 m
Cylinder length l = 0.2 m
Shape factor κ = 6/7

those given by Eq. (24) in Eqs. (10) and (11). For the value ν = 0.5 of the Poisson ratio of a polymeric
cylinder cover, we have E = 3G, and it is easy to see that

ωn,cen
ωn

=

√
1− (Ω/Ωcr)2

3R2

κh2 + n2
. (27)

We can estimate that typically for covered cylinders 3R2/κh2 & 1000. Then, for Ω ≤ 3Ωcr, excluding
extremely high rotational speeds, we get

1 ≥ ωn,cen
ωn

≥ 0.995 for all n . (28)

Note also that near the critical speed the steady-state response is dominated by the resonating modes for
which n ≥ 100, leading to 1 ≥ ωn,cen/ωn ≥ 0.9996. It can be concluded that for rotational speeds accessible
to real machines the centrifugal force has a negligible effect on the system response and, thus, the inverted
approach with a load moving on a non-rotating cylinder is suitable for the study of the traveling wave
phenomenon. This is also demonstrated by example calculations for the material parameters used in this
work in Figs. 3(b) and 8(a).

3. Computational results and discussion

3.1. Comparison between 1D and 2D cover models and the dynamic properties of the 1D model

The parameters used in the calculations are listed in Table 1. With the damping parameter value
α = 50 Ns/m2, the damping ratio attains the value of 1 for the mode n = 2968, that is, ζ2968 = 1. In
this paper, we use the modes n = 0, 1, 2, . . . , 1000 in the computations. In Fig. 2(a), the undamped natural
frequencies fn = ωn/2π of the 1D analytical model calculated from Eq. (7) for two different cover thicknesses
are compared to those given by a 2D plane strain FE model similar to the one utilized in [4]. The same
parameter values are used for both models, apart from the shape factor κ present only in the analytical
model and obtained by adjusting the analytical 1D results to those calculated from the 2D FE model. With
the shape factor κ = 6/7, we find a good agreement between the two different models, especially at higher
natural modes. Interestingly, the same shape factor is obtained from the widely-used Cowper’s formula
κ = 10(1 + ν)/(12 + 11ν) for a rectangular cross-section Timoshenko beam with the Poisson ratio ν = 0.5
[17].

Fig. 2(b) presents the normalized radial displacements for the modes n = 35 and n = 100 in the case
of both the 1D analytical model and the 2D FE model. For the 1D model the displacements are given by
sin(nθ) and for the 2D model the displacements are those calculated at the cover surface. For n = 100,
the calculated natural frequencies for the 1D and 2D models are 4146 and 4147 Hz, respectively. The
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Figure 2: (a) Undamped natural frequencies of both the 1D analytical cover model (solid lines) and the 2D FE model (dashed
lines) for cover thicknesses of 10 and 15 mm. The results are in good concordance, especially at the higher modes. (b)
Normalized radial displacements for the modes n = 35 and n = 100 along the cylinder cover circumference for the cover
thickness 10 mm. For the 1D analytical model the displacements are given by sin(nθ) and the displacements of the 2D FE
model are those calculated at the cover surface.

correspondence between the models is good and the mode shapes coincide also at higher and lower modes.
The differences in the natural frequencies between the two models at the lower modes in Fig. 2(a) are due to
the distinctive throughout-thickness behavior of the two cover models. The difference is biggest for n = 35,
for which the calculated natural frequencies are 2001 and 2558 Hz for the 1D and 2D models, respectively.
The 2D model captures the dispersive wave characteristics of the cylinder cover in a more detailed manner,
especially in the case of lower modes, since these modes penetrate deeper into the cover and interact with the
bottom of the cover layer. However, the higher modes are of primary interest in the study of the traveling
waves, mainly due to the fact that they appear at lower load speeds and indicate the speed range of the
system within which the traveling waves first start to appear. We conclude that the 1D model captures the
essential features of the 2D cylinder cover problem.

To see, which modes resonate at a given rotational frequency of the load, we consider the resonance
condition (15) divided by 2π in the form frot,n = fn/n. Fig. 3(a) shows the resonant rotational frequencies
fn/n and fdn/n in the undamped and damped cases, respectively. In addition, the corresponding curve
fpn/n for the modal amplitude peak response is presented. In the undamped case, the critical rotational
frequency of the load under which no modes are in resonance is 38.65 Hz. In terms of the tangential load
velocity, the undamped critical speed is 52 m/s, which equals the minimum phase velocity of the traveling
waves in the cover and is practically the same as the Rayleigh wave speed in an elastic half-space for the
current material parameters [18]. It can be seen that in the damped case the resonances start to take place
at rotational frequencies lower than 38.65 Hz and one may ask whether traveling waves should also start to
arise in the cover below the undamped critical speed. Note, however, that the higher natural modes, and
traveling waves associated with them, are damped effectively so that it is impossible to determine from Fig.
3(a) a certain critical speed at which the behavior characteristic to the traveling wave phenomenon could
be first detected. Similar conclusions can be drawn from the modal amplitude peak curve. The onset of the
traveling wave phenomenon in the presence of damping will be discussed in the next section.
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Figure 3: (a) Resonant rotational frequencies for the undamped, damped and peak amplitude cases fn/n, fdn/n and fpn/n
as a function of the resonating mode number n, respectively. (b) Effect of the centrifugal force on the resonant load angular
velocities. The centrifugal force decreases the resonant speeds of the lowest modes.

The effect of the centrifugal force on the resonant speeds is studied in Fig. 3(b). The figure shows the
relative difference between the resonant angular velocities calculated from Eqs. (15) and (26). It can be seen
that the centrifugal force is significant only for the lowest modes (n < 10) corresponding to very high load
velocities, which are of secondary interest in the study of the emergence of the traveling waves.

Fig. 4 presents the steady-state modal phase shifts φn (n = 1, 2, . . .) calculated from Eq. (11) as a function
of the rotational frequency of the moving load. The parameters given in Table 1 are used. The effect of
damping can be clearly seen in the figure. For lower modes, the modal damping is small and the phase
shift of 180 degrees in the vicinity of resonance occurs quickly, whereas for higher modes the change is not
that steep. The small damping of lower modes causes the resonance modal amplitudes to be notably larger,
in general, for the lower modes. It should be noted, however, that a large number of higher modes are in
resonance nearly simultaneously when the traveling waves start to arise slightly below 40 Hz in contrast to
high load speeds with only one lower mode being clearly dominant at a time.

3.2. Vibration response of the cylinder cover

In Fig. 5, the complete vibration response of the cover calculated from Eq. (9) is presented in a case in
which the rotational frequency of the load is 46.09 Hz, which has been chosen according to the resonant
speed of mode n = 60. The load is applied at t = 0 s for zero displacement and velocity initial conditions.
As the load moves, a traveling wave front can be seen to form. The first wave in the front grows quickly to
its full extent and others soon follow. At the point of entry (θ = 180o), the cover is left to vibrate freely in
a harmonic manner radiating waves to both directions. As the transient phase fades out, only the traveling
steady-state wave front remains in the cover. The wave front which is almost in steady-state is well-depicted
between t = 8− 10 ms and θ = 270− 340o.

Fig. 6 shows the steady-state response of the cover at three different rotational frequencies of the moving
point load P . In Fig. 6(a) the response is clearly quasi-static in the sense that there are no traveling waves
present. The displacements are practically symmetric with respect to the loading point. In Fig. 6(b), at
the rotational frequency of 40 Hz, an incipient traveling wave can be seen on the trailing edge of the load.
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Figure 4: Steady-state modal phase shifts of the cylinder cover natural modes. The bright white curve corresponds to the
phase shift value of 90o, and it divides the plane into subcritical and supercritical excitation regimes. In the area of higher
modes, this curve becomes almost vertical at the undamped critical rotational frequency 38.65 Hz. Strong damping causes the
resonance phase change to occur in a milder fashion for the higher modes.

Figure 5: Complete vibration response of the cylinder cover. The moving point load with the rotational frequency 46.09 Hz is
applied at t = 0 s at θ = 180o. A horizontal cut gives a momentarily picture of the waves around the cylinder circumference.
The curved patterns are related to the transient response.
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Figure 6: Deformed shape (i.e., the radial displacements) of the cylinder cover at three different rotational frequencies of the
load. (a) 10 Hz, a quasi-static case; (b) 40 Hz, an incipient traveling wave on the trailing edge and (c) 100 Hz, strong traveling
wave around the whole cylinder circumference. The dotted line indicates the location of the point load.

Near the loading point, the radial displacement minimum has more than tripled in comparison to Fig. 6(a).
The load has also started to “climb up the hill” from the displacement minimum in the same manner as in
the case of an elastic ring [19]. By the aid of the current model, the climbing is explained by the fact that
for the supercritically excited modes, the cover response lags the excitation due to the post-resonance phase
shift, while subcritically excited modes are still nearly in the same phase with the excitation. The climbing
is more evident in Fig. 6(c), in which a strong traveling wave is present at a higher speed. Note that the
steady-state response (see Eq. (9)) is symmetric with respect to the location θ = Ωt if the phase shifts φn
are all zero. Therefore, since at low rotational frequencies φn ≈ 0, the response is practically symmetric.
When the rotational frequency increases, the phase shifts start to grow from zero (see Fig. 4), which destroys
the symmetry of the response and, finally, leads to the generation of the traveling wave. In Fig. 6(c), the
locations of the minimum and maximum radial displacements are pointed out; they are always located in
the same manner behind the load when a traveling wave is present.

In Fig. 7, the steady-state response of the cylinder cover for the rotational frequency range 1–100 Hz
of the moving load is shown. The response can be seen to be rather quasi-static up till 40 Hz, after
which a traveling wave forms. Near 60 Hz, the wave goes around the whole cylinder circumference. It can
be also seen that when the rotational frequency increases, so does the wavelength of the traveling wave.
The determination of an exact critical speed in the damped case may be difficult, since the wave emerges
gradually. Thus, pointing out a narrow critical speed range, in which the waving clearly starts to occur, may
be more sensible. Similarly, Padovan concluded that there does not exist a single so-called critical speed
when damping is included into a tire model, but there is a range of speeds over which the tire standing wave
phenomenon appears to develop [16].

Fig. 8 displays the minimum and maximum wave displacements within the cover circumference in the
rotational frequency range 1–100 Hz for three different values of the damping parameter α (β = α/3).
With the low damping parameter value α = 5 Ns/m2, the peaks of umin and umax occur at the rotational
frequencies of 39.2 and 40 Hz, respectively. With even smaller damping, the peaks come closer to each other.
With higher damping, the peaks of umin and umax take place at higher rotational frequencies. With α = 100
Ns/m2, for example, the peak of umax occurs at frot = 48.5 Hz. At rotational frequencies above the peaks,
the displacements for high damping start to settle down to more moderate values.

With low damping, umax and umin can be clearly seen to exhibit local maximums and minimums at
supercritical rotational frequencies at which a traveling wave extends over the cylinder’s circumference.
At rotational frequencies, at which umax and umin attain local maximums and minimums, respectively,
the displacement response of the traveling wave is dominated by a resonating mode. Note that the mode
resonances become more distinct at higher speeds. If the mode number of the resonating mode is n, the
traveling wave appears as if it was a decaying harmonic wave containing an integer number of full waves
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Figure 7: Steady-state response of the cylinder cover for the rotational frequency range 1–100 Hz of the moving point load. A
vertical cut gives the steady-state response picture of the waves around the cylinder circumference.
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Figure 8: Minimum and maximum displacements of the cover in the rotational frequency range 1–100 Hz for three different
values of the damping parameter α [Ns/m2], (a) umin and (b) umax. In (a), the balls mark results calculated with the centrifugal
force included for α = 5. The centrifugal force has a negligible effect on the system response, as discussed in Section 2.3. With
small damping, umax starts to increase from zero at a higher rotational frequency than with high damping, implying that the
traveling wave phenomenon starts later with small damping due to higher wave phase velocities, see the insert in (b).
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Figure 9: (a) Total, compressive and shear strain energies and (b) compressive and shear dissipation powers of the cylinder
cover for α = 50 Ns/m2. When the wavelength of a traveling wave in the cylinder cover is short, that is, the curvature of
the deformation is high, the shearing dominates both the deformation energy and power dissipation. At higher rotational
frequencies, longer wavelengths become dominant, and compressive energy and power dissipation take over.

with the wavelength λn = 2πR/n around the cylinder circumference. When the moving point load revolves
around the cylinder, it excites the resonating mode n locally via the modal load (see Eqs. (4) and (5)).
Furthermore, since the load always returns back to a point after one revolution and it is in phase with the
oscillations generated at earlier visits, the cover vibration is reinforced. It is tempting to call this situation a
reinforced resonance or a dual resonance. Note that this works also vice versa, that is, the traveling wave is
weakened when the head and tail of the wave meet in antiphase at a rotational frequency which is between
two consecutive resonant speeds. Similar resonances have also been found in the case of an elastic ring
subjected to a moving load [19].

One way of evaluating the speed range within which the traveling wave phenomenon starts is to consider
the ascent of the maximum displacement umax from zero when the rotational frequency increases. This speed
range is shown in detail in Fig. 8(b). It can be seen that with higher damping values, umax starts to build up
at lower rotational frequencies. This means that the critical speed range is lowered for increasing values of
damping. The difference between the cases α = 5 and α = 100 Ns/m2, for example, is about 3 Hz as can be
seen in Fig. 8(b). A straightforward explanation from the wave propagation point of view is that additional
damping drops the wave phase velocity, causing the traveling waves to appear earlier. It should be noted,
however, that with high damping values the wave amplitudes rise slower and stay at relatively low values
around the cylinder circumference. Therefore, the earlier appearance of the highly-damped traveling waves
may be of minor practical importance in contrast to the case of low damping, where the wave amplitudes
jump suddenly to high values around the whole cylinder circumference when the critical speed range is
crossed. As mentioned earlier, Fig. 3(a) cannot alone say much about when the wave really starts to arise
due to the wave attenuation caused by the damping.

Fig. 9(a) shows the total strain energy Etot and its compressive and shear parts Ec and Es, respectively,
as a function of the rotational frequency of the moving load. Fig. 9(b) shows the compressive and shear
dissipation powers Pc and Ps, respectively. The strain energies grow strongly when the traveling waves start
to emerge. The shear part is dominant in the vicinity of the critical speed, that is, at shorter wavelengths,
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Figure 10: Total dissipation power for three different values of the damping parameter α [Ns/m2]. High damping causes a
remarkable increase in the total dissipation power at subcritical rotational frequencies, whereas low damping results in a high
peak value and strong oscillations of the dissipation power in the supercritical area.

whereas at longer wavelengths the shearing of the cover reduces and the compressive strain dominates the
deformation. In Fig. 9(b), it can be seen that the large dissipation power for incipient waving is almost
completely due to shearing. However, at higher rotational frequencies the compressive damping becomes
the dominant source of dissipation.

The dissipation power relates to the heat generation and rolling resistance of the cylinder cover. Excessive
heating hastens the cover failure, and the power required to rotate a covered cylinder of an industrial machine
increases in proportion to the dissipation power of the cylinder cover for increasing speeds. In practice, the
traveling wave behavior is often observed only indirectly by monitoring the power levels. Fig. 10 presents
the total dissipation power Ptot for three different values of the damping parameter α. With high damping,
the dissipation power exhibits a significant increase already at subcritical rotational frequencies similarly
to the rolling resistance of Qiu’s 2D covered cylinder model [3]. The rise of the dissipation power is rather
moderate within the critical speed range, and the dissipated peak power remains at a relatively low level.
With low damping, the dissipation power remains low up to rotational frequencies quite close to the critical
speed range. Then the power experiences a steep rise up to a very high peak value which is followed by an
equally steep fall. Qiu studied the rolling resistance only at subcritical speeds, but the current model shows
that, at supercritical speeds, the power oscillations start due to the dual resonances explained earlier. It can
be seen that at the resonances the dissipated power attains high values, whereas between the resonances the
power comes very close to zero. It can be concluded that high damping is a safe and predictable, although a
power-consuming alternative, and can provide essential benefits in terms of the mitigation of the maximum
vibratory response of a machine. Low damping, on the other hand, offers an opportunity to save power at
both sub- and supercritical speeds, provided that the machine can be rapidly accelerated over the critical
speed range and run accurately between the resonances in the supercritical area.

14



4. Conclusions

In this study, traveling waves in a cylinder cover subjected to a moving constant radial point load
were investigated using a 1D Pasternak-type foundation model with Kelvin-Voigt damping. The model
was validated by showing that the calculated natural frequencies and modes were in good concordance
with those calculated from a more detailed 2D plane strain FE model. That is to say, the dynamic 2D
plane strain problem can be essentially reduced to 1D. It was also shown that the centrifugal force has an
inconsequential effect on the traveling waves in the cover of a cylinder rotating at realistic speeds; thus, the
inverted approach with a moving load on a non-rotating cylinder was used for the study of the traveling
waves. The main benefits from the 1D modeling approach are that the model is suitable to analytical study
to a good extent, and in dynamic simulations the model can be faster by up to three orders of magnitude
than the 2D FE model, depending on the nature of the simulation. The developed model also lends itself to
further development through the use of complex elastic moduli to describe the cylinder cover as a frequency-
dependent viscoelastic material, and may be used as a computationally cost-effective part of a larger model
addressing also other dynamic aspects of a rolling contact machine.

It was shown analytically that in the undamped case the critical speed of the moving point load according
to a resonance condition at which traveling waves first appear is also the minimum phase velocity of the
waves in the cover. Wave dispersion causes the traveling waves to arise also at supercritical speeds. The
phenomenon is analogous to the Rayleigh wave resonance in a 2D rolling contact case [4]. We want to
emphasize that looking in detail at both of the interconnected aspects, vibration and wave propagation,
may greatly facilitate in understanding the details and gaining a broader view on similar traveling wave
phenomena.

The damped case was studied in detail computationally. With the addition of strain rate damping to
the cover, the critical speed dropped along with the wave speeds and became blurred. Increasing damping
caused the waves to emerge at even lower speeds. However, strong damping attenuates the waves efficiently
around the cylinder circumference. With low damping, in particular, reinforced resonances could be observed
at supercritical speeds when the head and tail of a traveling wave joined smoothly. In such a situation, one
resonating mode dominates the cover response, which can be also viewed as an aide to wave propagation.
High damping, although helpful in the mitigation of vibrations, caused considerable power dissipation already
at subcritical speeds. With low damping, power can be saved, but the system exhibits a powerful shock-like
response if the critical speed is approached.
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