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Polymer additives are commonly utilized to manipulate bubbly flows in various appli-
cations. Here we investigate the effects of clean and contaminated bubbles driven upward
(upflow) in Newtonian and viscoelastic turbulent channel flows. Interface-resolved direct
numerical simulations are performed to examine sole and combined effects of soluble
surfactant and viscoelasticity using an efficient three-dimensional finite-difference-front-
tracking method. The incompressible flow equations are solved fully coupled with the
FENE-P viscoelastic model and the equations governing interfacial and bulk surfactant
concentrations. The latter coupling is accomplished by a nonlinear equation of state that
relates the surface tension to the surfactant concentration. For Newtonian turbulent bubbly
flows, the effects of Triton X-100 and 1-pentanol surfactant are examined. It is observed
that the sorption kinetics highly affect the dynamics of bubbly flow. A minute amount of
Triton X-100 is found to be sufficient to prevent the formation of bubble clusters restoring
the single-phase behavior while even two orders of magnitude more 1-pentanol surfactant
is not adequate to prevent the formation of layers. For viscoelastic turbulent flows, it is
found that the viscoelasticity promotes formation of the bubble wall-layers and thus the
polymer drag reduction is completely lost for the surfactant-free bubbly flows, while the
addition of small amount of surfactant (Triton X-100) in this system restores the polymer
drag reduction resulting in 25% drag reduction for the Wi = 4 case.

DOI: 10.1103/PhysRevFluids.6.104302

I. INTRODUCTION

Multifluid and multiphase turbulent flows are ubiquitous in many natural processes and engi-
neering applications, for instance, rain droplet and mist in environmental flows, food processing,
bubble column reactors, and water vapor bubbles in nuclear reactor cooling systems. The recent
advancements in high-performance computing and development of efficient numerical methods
have made it possible to perform direct numerical simulations (DNS) of multiphase turbulent flows.
DNS of multiphase flows are far more challenging than DNS of single-phase turbulent flows. In
addition to the inherent difficulties arising from a wide range of length and timescales in turbulent
flows, the existence of evolving interfaces, the effects of surface tension, and discontinuous variation
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of the material properties across the phase boundaries make these flows extremely complicated. The
intricate multiphysics effects such as surfactant and viscoelasticity add further complexity and pose
a computationally challenging problem. Addition of surfactants and polymers introduces elasticity
(i.e., memory effects) to the interface and the bulk fluid, respectively. It is known that addition of
small amount of surfactant can alter the behavior of bubbly flows completely [1]. The long-chain
surfactant molecules do not only modify the interfacial properties (e.g., reduce the surface tension)
but they also make the host fluid viscoelastic [2]. Moreover, long-chain polymers are often added
to turbulent liquid flows for the purpose of drag reduction (DR) known as Toms effect [3,4].
The drag-reducing polymer molecules also act as a surfactant in multiphase flows. It is therefore
fundamentally important to understand the interactions and combined effects of the surfactant and
viscoelasticity on turbulent multiphase flows from both fundamental and application points of view.

Addition of polymers to single-phase turbulent flows leads to a significant drag reduction. Since
its discovery by Toms [3], drag reduction by polymer additives has been extensively studied for
single-phase flows. Such a phenomenon is very sophisticated and its full understanding remains
elusive [4]. Earlier explanations for the drag reduction can be classified into two schools of thought,
one focusing on viscous effects [5–7] and the other on elastic effects [8,9]. Even though both
theories have found experimental support, they have not achieved unequivocal conclusions. The
drag reduction can be further categorized into two distinct regimes known as low drag reduction
(LDR) and high drag reduction (HDR) [10]. Zhu et al. [11] have shown that the polymer-induced
drag reduction follows different mechanisms for these different regimes. For the LDR regime
(DR � 40%), near-wall vortices are suppressed and streamwise velocity fluctuations are enhanced
[12,13]. However, the statistical trends are similar to Newtonian flow, i.e., the mean velocity
profile follows a similar log-law slope with qualitatively similar velocity fluctuation profiles. On
the other hand, for HDR (40% < DR � 60%), streamwise velocity fluctuations almost vanish,
Reynolds shear stress becomes significantly smaller and the slope of the log-layer mean velocity
is dramatically modified. Furthermore, there is an upper limit on drag reduction referred to as the
maximum drag reduction asymptote (MDR) which depends on the Reynolds number (Re), i.e., the
friction factor is given by c−1/2

f = 19.0 log(Re c1/2f ) − 32.4 [14]. The recent study of Choueiri et al.
[15] has shown that polymers can reduce the drag beyond the suggested asymptotic limit due to a
relaminarization of the flow. More detailed review on the topic can be found in Xi [16]. Introducing a
second, gaseous phase with surfactant contamination into this problem results in even more complex
dynamics, as the two-fluid interface dynamics is tightly coupled with the elastic turbulence and the
local surfactant concentration.

DNS of bubbly flows in the absence of viscoelasticity and surfactants have been performed
previously for both spherical bubbles [17] and deformable bubbles [18]. Simulations of pressure-
driven turbulent bubbly channel flows [19–24] have shown that the distribution of bubbles in the
channel have significant effects on the overall flow dynamics. For instance, spherical bubbles
tend to accumulate at the wall, forming bubble clusters that result in a significant reduction of
the flow rate. Lu and Tryggvason [25,26] have also performed DNS of turbulent bubbly flows
undergoing topological changes. They examined the effects of various governing parameters on
the evolution of flow statistics such as the average flow rate, wall shear, and interface area. The
recent review by Elghobashi [27] encompasses the recent progress in the DNS of bubbly flows.
Clearly, the improvement of conventional closure models for turbulent multiphase flows to be used
in Reynolds-averaged, Favre-averaged, or filtered (large-eddy) simulations of the Navier-Stokes
equations [28–30] demands high-quality interface-resolved DNS data.

Numerous industrial applications involve bubbly flows, for example, bubble column reactors and
light water reactors. In these applications, contaminants such as surfactants are naturally present or
sometimes deliberately added to manipulate the dynamics of bubbly flows. Indeed, the presence of
surfactants has a drastic effect on the behavior of bubbly flows [1]. Takagi et al. [31] observed bubble
clustering phenomena in an upward bubbly channel flow in the cases of clean and small-enough
surfactant concentrations. Conversely, the presence of a large amount of surfactants, or a small
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amount of a strong surfactant type (Triton-X100), prevented the formation of bubble clusters near
the wall. Lu et al. [32] examined the effects of insoluble surfactant on turbulent bubbly flows by DNS
and showed that the contaminated bubbles remain distributed across the whole channel. Ahmed
et al. [33] have examined the effects of soluble surfactant on dynamics of a single bubble in a
wide range of flow conditions. They found that the surfactant can dramatically change the bubble
dynamics and reverse the direction of its lateral migration in a pressure-driven channel flow. The
surfactant-induced Marangoni stresses act to move the bubble toward the channel center and the
final position of the bubble is determined by the intricate interplay of the bubble deformability and
interfacial surfactant concentration. Soligo et al. [34,35] developed a modified phase field method
for simulations of turbulent flows with large and deformable surfactant-laden droplets. They used
this method to examine breakage and coalescence rates and size distribution of surfactant-laden
droplets in turbulent flow. They showed that addition of surfactant can hinder bubble and droplet
coalescence and thus significantly influences the final bubble and droplet distribution.

The interaction of a dispersed phase with turbulent flows of viscoelastic fluids is the subject
of active research due to its relevance to numerous environmental and engineering applications.
Recently several DNS works have considered viscoelastic turbulent channel flow laden with neu-
trally buoyant spherical rigid particles. Esteghamatian and Zaki [36] studied dilute suspensions.
They observed that, at low Weissenberg numbers (Wi), the drag reducing effect of viscoelasticity
is significantly attenuated. On the other hand, at high Weissenberg numbers the particles did not
show any effect on the drag. Later, Esteghamatian and Zaki [37] found that at moderate particle
concentrations, the drag showed nonmonotonic trend with Wi. Rosti and Brandt [38] found that the
drag reducing effect of polymer additives is completely lost for semidense suspensions. They also
observed that the drag increases more for suspensions in viscoelastic fluids than for suspensions in
Newtonian fluids.

On the other hand, DNS studies on turbulent bubbly flow with combined effects of viscoelasticity
and surfactants are scarce. To the best of our knowledge, Ahmed et al. [39] was the first study
analyzing the interplay of surfactant and viscoelasticity on the behavior of vertical turbulent bubbly
flows at Reτ = 127. It was found that the viscoelasticity promotes the formation of bubbly wall
layers and consequently the flow rate is reduced (i.e., drag increases). The formation of bubble wall
layers was related to the interplay of inertial, elastic, and Marangoni forces. However, their work
was focused on the numerical method and the parallelization algorithm, so they presented only a
few results for the combined effects of surfactant and viscoelasticity at a low Reynolds number in
a short channel with a small number of bubbles. In addition, they did not consider the effects of
sorption kinetics of surfactant. Therefore, a further investigation is needed to reveal the combined
effects of viscoelasticity and surfactants on turbulent bubbly flows. In the present study, we address
this question and systematically examine the sole and combined effects of soluble surfactant and
viscoelasticity on the dynamics of turbulent bubbly flows. For this purpose, extensive simulations
are performed at Reτ = 180, with a larger number of bubbles (Nb = 133). In addition, the realistic
physical properties of Triton-X100 and 1-pentanol surfactants are used to investigate the effects
of their kinetic properties on the dynamics of turbulent bubbly flows. The main objectives of the
present study are (i) to study effects of contamination on Newtonian turbulent bubbly flow, (ii) to
examine the effects of clean bubbles on polymer drag reduction of viscoelastic turbulent base flow,
(iii) to evaluate the effects of contaminated bubbly flow on polymer drag reduction of viscoelastic
turbulent base flow, and (iv) to analyze the velocity fluctuations and stress balance of bubbly flows
in the absence and presence of viscoelastcity and surfactant.

This paper is organized as follows. In the next section, we briefly describe the flow equations,
the numerical method and the computational setup. Subsequently, in Sec. III, we report and analyze
the results of our simulations, starting with a Newtonian suspending liquid laden with contaminated
bubbles, followed by the cases where the viscoelasticity effects are also considered. Finally, the
conclusions are drawn in Sec. IV.
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FIG. 1. Schematic representation of the computational setup considered in the present work. The flow is
forced in the opposite direction to the gravity resulting in an upflow. The vortical structures are visualized
using the Q criterion, i.e., the isosurfaces of the normalized second invariant of the velocity-gradient tensor,
Q∗/[V ∗

b /(h∗)]2 = 2.5, are plotted. The contours on the plane represent streamwise velocity with the scale
ranging from V ∗

b = 0 m/s (red) to V ∗
b = 20 m/s (yellow). The contours on the bubble surface represent

interfacial surfactant concentration with the scale ranging from 0 (blue) to 0.23 (green).

II. NUMERICAL APPROACH

A. Problem statement and computational setup

The computational domain illustrated in Fig. 1 corresponds to a vertical plane channel with
streamwise, spanwise, and wall-normal directions along the y, x, and z coordinates, respectively.
The flow is periodic in the streamwise and spanwise directions, while no-slip and no-penetration
boundary conditions are applied on the walls. The size of the domain (Ly × Lx × Lz ) is 6h × 3h ×
2h and is resolved with Ny × Nx × Nz = 576 × 288 × 240 grid points in streamwise, spanwise, and
wall-normal directions, respectively; h = 1 is the half channel width. The grid points are uniformly
spaced in the homogeneous directions and clustered close to the walls in the wall-normal direction
using the following hyperbolic tangent mapping function:

z(k) = 1 +
tanh

[
γ ( 2kNz

− 1)
]

tanh(γ )
, (1)

where the stretching parameter γ = 1.43 is used. The resulting inner-scaled resolution is �x+ =
�y+ = 1.875 and 0.498 � �z+ � 2.4.

As the initial conditions, spherical bubbles are randomly placed in a single-phase, fully developed
turbulent flow with a friction Reynolds number of Reτ = v∗

τ h
∗/ν∗

o = 180. Here the friction velocity
is defined as v∗

τ =√
τ ∗
wall/ρ

∗
o , where ρ∗

o and ν∗
o are the density and kinematic viscosity of the

suspending liquid, respectively. Note that, hereafter, unless otherwise stated, the superscript ∗ is
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TABLE I. Physical and computational parameters governing the flow.

Density and viscosity ratio ρ∗
i /ρ

∗
o , μ

∗
i /μ

∗
o 0.02, 0.02

Effective pressure gradient B∗ = d p∗
0

dy∗ + ρ∗
avg

∗ −1
Surface tension σ ∗

s 3.334
Gravitational acceleration g∗ −24
Weissenberg Number Wi = λ∗V ∗

b /h∗ 0/4/8
Solvent viscosity ratio β = μ∗

s /μ
∗
o 0.9

Extensibility parameter L 60

used to denote dimensional quantities, and variables without the superscript are nondimensional
(e.g., p∗ and p represent the dimensional and nondimensional pressure, respectively). The flow is
driven by an applied constant pressure gradient d p∗

0/dy
∗. At a statistically steady state, the average

wall shear stress τ ∗
wall is related to the pressure gradient and the weight of the bubble and liquid

mixture through the streamwise momentum balance:

τ ∗
wall = −

(
d p∗

0

dy∗ + ρ∗
avg

∗
)
h∗ = −B∗h∗, (2)

where ρ∗
av is the average density of the system (i.e., the total mass divided by the domain volume)

and h∗ is the channel half-width. Note that the effective pressure gradient B∗ determines bulk flow
direction, i.e., upflow (B∗ < 0) and downflow (B∗ > 0). The present case pertains to upflow.

A swarm of monodispersed bubbles (Nb = 133) is considered in this study, corresponding to a
void fraction of 3%. The bubbles are initialized with a spherical shape with a diameter d∗

b = 0.25 (in
viscous units, 45.5ν/uτ ) and Eötvös Number Eo = ρ∗

og
∗d∗2

b /σ ∗
s = 0.45. The Morton number (M =

g∗μ∗
o
4/ρ∗

oσ
∗
s
3) used here is M = 6.17 × 10−10, which is higher than the Morton number of M =

2.52 × 10−11 for an air bubble in water at 20◦C, but could be matched by using an aqueous solution
of sugar [40]. The physical parameters governing the flow are listed in Table I where subscripts “i”
and “o” denote the properties of the inner (dispersed) and the outer (continuous) fluids, respectively,
and λ∗ is the polymer relaxation time.

The sorption kinetic properties of Triton X-100 and 1-pentanol surfactants, widely used in
experimental studies [1], are considered in the present work. The corresponding physical adsorp-
tion (k∗

a ) and desorption (k∗
d ) properties are taken from Takagi et al. [41]. For Triton X-100,

k∗
a = 50 m3 mol−1 s−1 and k∗

d = 0.033 s−1, whereas for 1-pentanol, k∗
a = 5.08 m3 mol−1 s−1 and

k∗
d = 110.24 s−1. It is clear that Triton X-100 is adsorped by the interface much faster and is
desorped back into the bulk fluid much slowly than 1-pentanol, which makes Triton X-100 a more
effective surfacant as will be discussed under Results. The nondimensional numbers related to
the surfactants physical properties are listed in Table II; C∞ (= C∗

∞
C∗
ref
) and 
 (= 
∗


∗
max

) represent the
nondimensional initial bulk surfactant concentration and the nondimensional interfacial surfactant
concentration, respectively, where C∗

ref denotes the reference bulk surfactant concentration, taken
as the critical micelle concentration, and 
∗

max represents the maximum packing concentration. The

TABLE II. Nondimensional numbers for TritonX-100 and 1-pentanol surfactant cases.

TritonX-100 1-pentanol

Peclet number Pec = Pes = h∗V ∗
b /D∗

c 777 777
Biot number Bi = h∗k∗

d/V
∗
b 2 × 10−3 7.0

Damkohler number Da = 
∗
max/h

∗C∗
ref 0.456 0.0006

Langmuir number La = k∗
aC

∗
ref/k

∗
d 2.2 0.052

Elasticity number βs = R∗T ∗
∗
∞/σ ∗

s 0.5 0.5
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C∗
ref values for the Triton X-100 and 1-pentanol used are 1 and 100 ppm, respectively. We note that

the actual values of the Peclet number are much larger than the values in Table II for both surfactants
but the Peclet numbers are kept small to avoid thin mass boundary layer at the interface that requires
excessive grid resolution.

The bubble viscous response time can be estimated from Stokes drag as τ ∗
b = d∗

b
2/36ν∗

o =
0.3124. To determine the Kolmogorov timescale of the turbulent flow τ ∗

k = √
ν∗
o/ε

∗, the turbulent
energy dissipation rate (ε∗) can be estimated from the flow velocity field, or by ε∗ = v3

τ /(κz
∗
b ),

where κ = 0.42 is the von Kármán constant and z∗b is the bubble average distance to the wall [17].
Assuming a characteristic average distance z∗b = 0.5 [17], the Stokes number is estimated to be
St = τ ∗

b /τ ∗
k = 9.14.

B. Numerical method

The continuity and momentum equations for an incompressible viscoelastic fluid flow are dis-
cretized using a second-order finite-difference-front-tracking (FD-FT) method [42]. In this method,
a single set of governing equations is written for the entire computational domain, the variations of
the material properties across the interfaces are taken into account and the effects of the interfacial
surface tension are included in the momentum equations as a body force [42–44]. The governing
equations are nondimensionalized using a length scale L∗, a velocity scale U∗ and a timescale
T ∗ = L∗

U∗ . The length and velocity scales are taken as L∗ = h∗ and U∗ = V ∗
b whereV ∗

b is the average
liquid velocity of the Newtonian single-phase flow, i.e., V ∗

b = 15.56. The density and viscosity are
nondimensionalized using the density ρ∗

o and the total viscosity μ∗
o of the continuous phase while

the surface tension is normalized by the surface tension of the surfactant-free gas-liquid interface
σ ∗
s . The nondimensional momentum equation, accounting for the interphase coupling, is then given

by

∂ρu
∂t

+ ∇ · (ρuu) = −∇p− d p0
dy

j + (ρ − ρav)g

Fr2
+ ∇ · τ + 1

Re
∇ · μs(∇u + ∇uT )

+ 1

We

∫
A
[σ (
)κn + ∇sσ (
)]δ(x − xf )dA, (3)

where ρ, u, p, τ , μs, and σ are the nondimensional density, the velocity vector, the pressure, the
polymer stress tensor, the solvent viscosity, and the surface tension coefficient, respectively. The unit
vector g points in the direction of the gravitational acceleration. In Eq. (3), the last term on the right-
hand side represents the surface tension where A is the surface area, κ is twice the mean curvature,
n is the unit normal vector, and ∇s is the gradient operator along the interface defined as ∇s = ∇ −
n(n · ∇). The nondimensional numbers in Eq. (3) are the Reynolds number (Re = ρ∗

oU∗L∗/μ∗
o ),

the Froude number (Fr = U∗/
√
g∗L∗) with g∗ being the magnitude of the gravitational acceleration

and the Weber number (We = ρ∗
oU∗2L∗/σ ∗

s ). We emphasize that the surface tension is a function of
the interfacial surfactant concentration 
 and ∇sσ (
) represents the surfactant-induced Marangoni
stress. The surface tension is related to the interfacial surfactant concentration via the modified
Langmuir equation of state

σ = Max[εσ , 1 + βs ln(1 − 
)], (4)

where εσ = 0.05 is used to limit excessive reduction in surface tension at high concentrations. For
the surfactants used here, the value of εσ is typically higher than this value, e.g., εσ ≈ 0.3 for
Triton X-100 [45] but it does not have any influence on the present results since 
 remains much
lower than the maximum packing concentration in all the simulations. The present soluble surfactant
methodology is the same as that developed by Muradoglu and Tryggvason [43,46] and have been
extensively used in various previous studies [33,47,48]. However, the method is briefly described
here for completeness.
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The evolution equation for the interfacial surfactant concentration has been derived by Stone
[49]. In the front-tracking framework, it can be expressed in the nondimensional form as

1

A

D
A

Dt
= 1

Pes
∇2

s 
 + BiṠ
, (5)

where A is the surface area of an element of the interface and Pes = U∗L∗
D∗

s
is the interfacial Peclet

number with D∗
s being the diffusion coefficient along the interface. The Biot number is defined as

Bi = k∗
dL∗

U∗ , where k∗
d is the desorption coefficient. The nondimensional source term Ṡ
 is given by

Ṡ
 = LaCs(1 − 
) − 
, (6)

where Cs is the bulk surfactant concentration near the interface and La is the Langmuir number
defined as La = k∗

aC
∗
ref

k∗
d

with k∗
a being the adsorption coefficient. The bulk surfactant concentration is

governed by an advection-diffusion equation of the form

∂C

∂t
+ ∇ · (Cu) = 1

Pec
∇ · (Dco∇C), (7)

where Pec = U∗L∗
D∗

c
is the Peclet number based on bulk surfactant diffusivity. The coefficient D∗

co is
related to the molecular diffusion coefficient D∗

c and the phase indicator function I as

D∗
co = D∗

c I (x, t ). (8)

The source term in Eq. (6) is related to the bulk concentration by

Ṡ
 = − 1

PecDa
(n · ∇sC)interface, (9)

where Da = 
∗
max

L∗C∗
ref

is the Damköhler number. Following Muradoglu and Tryggvason [43], the
boundary condition at the interface given by Eq. (9) is first converted into a source term for the
bulk surfactant evolution equation. In this approach it is assumed that all the mass transfer between
the interface and bulk takes place in a thin adsorption layer adjacent to the interface. Thus, the
total amount of mass adsorbed on the interface is distributed over the adsorption layer and added
to the bulk concentration evolution equation as a negative source term. Equation (7) thus takes the
following form:

∂C

∂t
+ ∇ · (Cu) = 1

Pec
∇ · (Dco∇C) + Ṡc, (10)

where Ṡc is the source term evaluated at the interface and distributed onto the adsorption layer in a
conservative manner. The details of this treatment can be found in Ref. [43].

The rheological properties of the suspending fluid are taken into account using the FENE-P
model [50] for the polymeric stress tensor τ . The model equations can be written in the nondimen-
sional form as

∂B
∂t

+ ∇ · (uB) − (∇u)T · B − B · ∇u + 1

Wi
(FB − I) = 0, F = L2

L2 − trace(B)
, (11)

τ = 1

ReWi
(1 − β )(FB − I), (12)

where B, Wi, L, and I are the conformation tensor, the Weissenberg number, the maximum
polymer extensibility, and the identity tensor, respectively. In the present study, the viscoelasticity is
characterized by the Weissenberg number defined as Wi = λ∗U∗

L∗ , where λ∗ is the polymer relaxation
time. The viscoelastic constitutive equations are highly nonlinear and notoriously difficult to solve
at high Weissenberg numbers. In the present work, the log-conformation method is used [51] to deal
with the so-called highWeissenberg number problem. More details can be found in Refs. [39,44,52].
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TABLE III. Specifications for surfactant-contaminated cases.

Name Surfactant 
initial C∞

Case 1 Triton X-100 0 0.05–1.0
Case 2 1-pentanol 0 0.01 and 1.0
Case 3 Triton X-100 
eq 0.1, 0.25, and 0.5

All the field equations are solved on a fixed Eulerian grid with a staggered arrangement where
the velocity nodes are located at the cell faces while the material properties, the pressure, the bulk
surfactant concentration and the extra stresses are all located at the cell centers. The interfacial
surfactant concentration evolution equation is solved on a separate Lagrangian grid. The spatial
derivatives are discretized with second-order central differences for the diffusive terms, while the
convective terms are discretized using a QUICK scheme [53] in the momentum equation, and a
fifth-orderWENO-Z [54] scheme in the viscoelastic and the bulk surfactant concentration equations.
The equations are integrated in time with a second-order predictor-corrector method in which the
first-order solution (Euler method) serves as a predictor that is then corrected by the trapezoidal
rule [42]. A pressure splitting technique [55] is employed to turn the variable-coefficient Poisson
equation into a constant-coefficient pressure Poisson equation. The corresponding linear system is
solved directly using the FFT-based direct Poisson solver [56] of the open-source DNS code CaNS.
More details of the present numerical method are given in Ahmed et al. [39].

III. RESULTS AND DISCUSSION

Simulations are first performed to examine the effects of surfactant in the Newtonian turbulent
bubbly flows using the physical properties of Triton X-100 and 1-pentanol. Then we examine the
interplay and combined effects of surfactant and viscoelasticity. We particularly investigate the
effects of surfactant on polymer drag reduction in turbulent bubbly flows at fixed void fraction
of 3%.

A. Effects of surfactant

Simulations of Newtonian bubbly flow have been performed for two types of surfactants,
Triton X-100 and 1-pentanol, with nondimensional concentration C∞ varying between 0 and 1.
In addition, the effects of initial conditions of interfacial surfactant concentration 
 are examined.
More specifically, we consider initially clean bubbles with 
initial = 0 and contaminated bubbles
with 
initial = 
eq, where 
eq is the interfacial surfactant concentration at equilibrium with the bulk
conditions. More details of the different sets of simulations are given in Table III.

Figure 2 shows the transient behavior of the skin friction coefficient c f = 2τ ∗
wall/ρ

∗
ov

∗
o
2, with

v∗
o being the average bulk liquid velocity, normalized by the value of the Newtonian single-phase

flow, c f ,0 ≈ 8.3 × 10−3. For the clean case (C∞ = 0), c f increases monotonically, until it reaches a
plateau of c f /c f ,0 ≈ 3.2. Let us now consider the cases where initially clean bubbles are exposed
to the bulk surfactant (
initial = 0). For Triton X-100, c f first increases reaching a peak, followed
by a decrease approaching the value of the corresponding single-phase flow c f = c f ,0 at the steady
state. The value at the peak and the time to reach the steady-state decrease with increasing C∞. For
1-pentanol, however, the time-evolution of c f is similar to the clean case. Moreover, high surfactant
concentrations are needed to cause a clear effect of 1-pentanol. The curve for this surfactant atC∞ =
0.01 is almost identical to the clean case. When increasing the surfactant concentration further up
toC∞ = 1.0, the behavior for 1-pentanol remains qualitatively similar, with only difference that the
upper limit of c f /c f ,0 decreases to ≈2.6. Finally, we see a large effect of the initial conditions for
Triton X-100. The 
initial = 
eq cases for Triton X-100 follow a nearly the corresponding single-
phase case. The vast variation between different initial conditions could be attributed to the very
low desorption rate of Triton X-100. Surfactant molecules at the leading part of bubble surface
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FIG. 2. Skin friction coefficient (c f ) of the bubbly flow normalized by that of fully developed single-phase
flow (c f ,0). We note that Triton X-100 cases show low drag, while 1-pentanol ones results in high values.

are transported to the trailing part of bubble surface. Thus, large surface concentration gradient
generates strong Marangoni stresses which prevent the lateral migration of the bubbles toward the
wall [33,39].

The increase in drag for a turbulent bubbly flow, compared to a turbulent single-phase flow,
is related to the formation of bubble wall-layers, as can be seen for the clean case (C∞ = 0) in
Figs. 3 and 4. The lateral migration of the bubbles to the wall is due to the inertial lift force. The
aerodynamic lift force acts perpendicular to both the direction of motion and the rotation of the
spherical bubble [59]. The presence of a bubble wall layer affects the liquid velocity profile, as
shown in Fig. 3. The velocity profile for the clean case C∞ = 0 does not show a clear viscous
sublayer near the wall due to the presence of the bubble clusters which, as we will see, dampen the
Reynolds stresses. As shown in Fig. 4, surfactant prevents the formation of these bubble wall layers
and thus, alleviate the increase in skin friction coefficient and the mean velocity resembles those
of single-phase turbulent channel flow. Clearly, flow dynamics strongly depends on the specific
kinetics of surfactant absorption, as a minute amount of Triton X-100 is sufficient to prevent the
bubble wall layers, while 100 times more concentration of 1-pentanol is not very effective. This is
due to the amount of surfactant adsorbed on the bubble surface, which is much larger for Triton
X-100 than the 1-pentanol, as can be seen in Fig. 4. The adsorption rate of Triton X-100 is hence
about 10 times larger than that of 1-pentanol, and the desorption rate is about 3300 times smaller. In
the case of Triton X-100, a larger amount of surfactant and its nonuniform distribution on the surface
of bubble generates a strong Marangoni-induced force which prevents the motion of bubbles toward
the channel wall. For C∞ = 1 of Triton X-100, the void fraction near the wall slightly increases,
as the surfactant distribution becomes more uniform. Figure 4 also shows the turbulent structures,
visualized using the Q criterion [58] (Q∗/[V ∗

b /(h∗)]2 = 0.8), where Q is the second invariant of the
velocity gradient tensor. Indeed, it is clear that forC∞ = 0 andC∞ = 1 of 1-pentanol, the turbulence
is strongly attenuated, whereas for Triton X-100, the flow is in a turbulent state.

Figures 5(a)–5(c) shows the root mean square of the liquid velocity fluctuations for the clean
and contaminated bubbly flow (Triton X-100). For the entire C∞ range, the contaminated bubbles
slightly increase the liquid velocity fluctuations in all directions with respect to the corresponding
single-phase flow. This increase can be attributed to the localized disturbances caused by the wakes
of the bubbles. For the clean case (C∞ = 0), the fluctuations in all directions are much lower than
the single-phase flow due to the significant reduction in the flow rate. However, a small peak can be
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FIG. 3. Surfactant Triton X-100: [(a) and (b)] Average liquid velocity scaled by vτ vs wall-normal distance.
The computed inner-scaled mean velocity profile (solid line) are compared with the law of the wall, i.e., v+ =
z+ in the laminar sublayer (dashed line) and v+ = 2.5 ln z+ + 5.5 in the logarithmic region (dash-dotted line).
The solid lines represent the current results and the symbols are the DNS data of Vreman and Kuerten [57].
(c) Average void fraction at a statistically steady state.

seen near the wall in the spanwise direction (u′
rms). This is due to the presence of horizontal bubble

clusters in the spanwise direction. Figure 5(d) presents the bulk turbulent kinetic energy defined as
TKE = (1/Lz )

∫ Lz
0 [(u′

rms)
2/2 + (v′

rms)
2/2 + (w′

rms)
2/2] dz for all the cases. As expected the clean

(C∞ = 0) case shows a significant reduction in the TKE due to presence of the bubbles near the
walls—a reduction of 50% when compared to the single-phase case, contrasting of an increase of
about 15% for the C∞ = 0.05 and 0.1 cases. Finally, a further increase in C∞ reduces the TKE,
approaching the values of the single-phase case at C∞ = 1.

Next, the shear stress balance is studied. Equation (3) can be averaged over the two phases, along
a wall-normal distance [60]. As a result, the mean total shear stress τ 23 can be decomposed as

∫ z

0

[(
ρ − ρav

Fr2

)
g
]
dz

︸ ︷︷ ︸
τB

+ μ

Re

dv

dz︸ ︷︷ ︸
τN

− ρv′w′︸ ︷︷ ︸
τR

+τ p +
∫ z

0

1

We
Fσdz︸ ︷︷ ︸

τ S

= τw(1 − z)︸ ︷︷ ︸
τ 23

, (13)

Fσ =
∫
A
[σ (
)κn + ∇sσ (
)]δ(x − xf )dA, (14)
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(a) (b)

(c) (d)

FIG. 4. Newtonian flow: Vortical structures at a statistically steady state for Triton X-100 (a) C∞ = 0.0,
(b) C∞ = 0.1, and (c) C∞ = 1.0 and for 1-pentanol (d) C∞ = 1.0. The vortical structures are visualized
using Q criterion [58], i.e., the isocontours of the normalized second invariant of the velocity-gradient
tensor, Q∗/[V ∗

b /(h∗)]2 = 0.8, are plotted. The contours on the bubble surface represent interfacial surfactant
concentration (
).

where τw is the average wall shear stress. From left to right, the terms are the buoyancy stress (τB),
the viscous stress (τN ), the Reynolds stress (τR), and the surface stress (τ S). Note that τ p is zero
for a Newtonian flow. Figures 6(a)–6(c) show the stress balance for the clean and contaminated
bubbly flows at a statistically steady state. In Fig. 6(d) we present contribution of each stress τ i to
the skin friction coefficient c f using the FIK (Fukagata, Iwamoto, and Kasagi) identity [61,62]. The
normalized contribution can be expressed as c f i = ∫ 1

0 6(1 − z)τ i dz. For C∞ = 0, the formation of
bubble clusters near the wall completely alters the stress balance compared to the single-phase flow.
Due to the high void fraction near the wall, the applied pressure gradient is balanced by the weight
of the mixture in the middle of the channel. The Reynolds and viscous stresses decrease resulting
in enhancement of buoyancy and surface stresses. Indeed, Fig. 6(d) clearly shows that the relative
contribution of τR to c f decreases from 74% for the single-phase flow to 23% for the clean case
(C∞ = 0), consistently with the observed turbulence attenuation in the presence of wall layers. For
C∞ = 0.1, the stress balance of contaminated bubbly flow becomes similar to the single-phase flow,
i.e., the major contributors to the total shear stress are viscous and Reynolds stresses. Reynolds stress
is even slightly higher than that of the single-phase flow but for C∞ = 1.0, it slightly decreases due
to the increase in the void fraction near the wall. Surface stress for both C∞ = 0.1 and 1.0 become
nearly zero and the buoyancy term becomes slightly negative near the wall due to very low void
fraction and elimination of bubble clusters.

B. Combined effects: Viscoelasticity and surfactants

Next, simulations are performed to examine the combined effects of viscoelasticity and surfactant
(Triton X-100) on dynamics of bubbly flow. For this purpose, single-phase viscoelastic turbulent
flow is first simulated for Wi = 4 and Wi = 8. Then, we add randomly positioned contaminated
bubbles at fixed volume fraction of 3% to the viscoelastic base flow. For contaminated bubbles,
simulations are performed varying the surfactant concentration C∞ = 0.1, 0.25, and 0.5, at a fixed
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FIG. 5. Newtonian flow: [(a)–(c)] Effect of surfactant (Triton X-100) on liquid velocity fluctuations scaled
by vτ versus wall-normal distance at statistically steady state. u′

rms, v
′
rms, and w′

rms are the fluctuations in the in
the spanwise, streamwise and wall-normal direction, respectively. The solid lines represent the current results
and the symbols represent the DNS data of Vreman and Kuerten [57]. (d) Turbulent kinetic energy (TKE) for
the different bulk surfactant concentrations.

Weissenberg number (Wi = 4). After that, the Weissenberg number is changed from Wi = 4 to
Wi = 8, while keeping C∞ = 0.5.

The results are visualized in Fig. 7 and quantified in Figs. 8–11. As seen in Fig. 7, the clean
bubbles move upward and toward the wall for both the Newtonian and viscoelastic cases, which
could be attributed to the combined effects of inertial and elastic lift forces. Note that, the elastic
lift force acting on the bubbles is induced by normal stress differences [39,63]. On the other hand,
the contaminated ones follow more complicated paths due to additional Marangoni-induced force
caused by the nonuniform interfacial surfactant concentration. The inertial lift force and elastic force
push the bubbles toward the channel wall, while the Marangoni-induced force opposes them. At
Wi = 4, initially the elastic and the inertial forces prevail, leading to formation of the wall layers.
However, later the Marangoni-induced force becomes sufficiently large resulting in migration of
bubbles toward the core region. On the other hand, at Wi = 8, the elastic forces become stronger
and thus the combined effect of inertial and elastic forces overcome the Marangoni-induced force
promoting the formation of wall layers. Note that, in this case, the wall layers are not affected by
the surfactants. Figure 7 shows the vortices for the clean and contaminated viscoelastic turbulent
flows, compared with the corresponding Newtonian case. As can be seen, the clean (C∞ = 0)
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FIG. 6. Newtonian flow (Triton X-100): [(a)–(c)] Stress balance at a statistically steady state forC∞ = 0.0,
C∞ = 0.1, and C∞ = 1.0 respectively. Dotted lines show the corresponding single-phase stress balance. τN is
viscous stress, τR is Reynolds stress, τB is buoyancy stress, τ S is surface stress, and τ 23 is total shear stress. All
stress profiles are scaled with the wall stress τw . (d) Contribution of different stresses to the friction coefficient
at variousC∞ values.

Newtonian [Fig. 7(a)] and viscoelastic [Wi = 4, Fig. 7(b)] bubbly flow cases show strong turbulence
attenuation and the vortical structures are only concentrated around the bubbles. For the contami-
nated bubbly flows (C∞ = 0.1), the turbulent structures reappear, but are stronger in the Newtonian
case [Fig. 7(c)] than those in the viscoelastic case [Wi = 4, Fig. 7(d)]. Increasing concentration
to C∞ = 0.5 results in less vortical structures especially at Wi = 8 where a significant amount of
bubbles form wall layer [Fig. 7(f)].

Although the focus of the present work is on the bubbly flows, we also performed simulations to
quantify the effects of viscoelasticity on drag reduction in single-phase flows. For the single-phase
viscoelastic base flow, the drag reduction (DR) for Wi = 4 and Wi = 8 is found to be approximately
23% and 37%, respectively, which falls in the LDR regime of polymeric drag reduction [12].
The drag reduction for single-phase flow is determined as DR = (c f ,0 − c f ,0,Wi)/c f ,0 where c f ,0
is the skin friction coefficient for the Newtonian single-phase case and c f ,0,Wi is the corresponding
viscoelastic case.

Figure 8 shows the transient behavior of the skin friction coefficient (c f ) for the clean and
the contaminated bubbly flows. The addition of clean bubbles to the viscoelastic turbulent flow
has drastic effects on the polymeric drag reduction. As can be seen, c f /c f ,0,Wi increases with the
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. The vortical structures at the statistically steady state. (a)C∞ = 0.0, Wi = 0; (b)C∞ = 0.0, Wi =
4; (c) C∞ = 0.1, Wi = 0; (d) C∞ = 0.1, Wi = 4; (e) C∞ = 0.5, Wi = 4; (f) C∞ = 0.5, Wi = 8. The vortical
structures are visualized using Q criterion [58], i.e., the isocontours of the normalized second invariant of
the velocity-gradient tensor, Q∗/[V ∗

b /(h∗)]2 = 0.8, are plotted. The contours on the bubble surface represent
interfacial surfactant concentration (
).

FIG. 8. Skin friction coefficient (c f ) of the viscoelastic bubbly flow normalized by the value of the
corresponding single-phase flow (left panel) and by the value of the Newtonian single-phase flow (right panel)
at a statistically steady state.
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FIG. 9. The statistically steady-state mean profiles of (a) the mean velocity, (b) the void fraction, and (c) the
polymer stretching, plotted against wall-normal distance. In (a), the computed inner-scaled mean velocity
profiles are compared with the law of the wall, i.e., v+ = z+ in the laminar sublayer (black dash-dotted line)
and v+ = 2.5 ln z+ + 5.5 in the logarithmic region (red dash-dotted line), as well as the MDR asymptote,
v+ = 11.7 ln z+ − 17 (magenta dash-dotted line).

Weissenberg number, whereas c f /c f ,0 only slightly changes with Wi. Overall, viscoelasticity results
in a significant drag increase in a clean bubbly flow. This is in sharp contrast with the expectations
from single-phase flow, where we observe drag reduction by viscoelasticity. Conversely, for the
bubbly flow in the presence of surfactant, the drag reduction of viscoelastic turbulent flow is
restored, in line with the corresponding single-phase flows. This revival of the drag reduction for
the contaminated bubbly flow depends on the net effect of Marangoni, elastic and aerodynamic
forces. The loss of drag reduction for clean bubbly flow is due to the formation of bubble wall
layers—the clean bubbles are pushed toward the channel wall due to combined aerodynamic and
elastic lift forces [33]. Thus, the addition of polymers into the clean turbulent bubbly flow results
in a drag increase due to the elastic induced lift forces which increase with Wi. In the presence
of surfactant, the Marangoni forces prevent the formation of bubble clusters by opposing the
aerodynamic and elastic induced forces. Thus, for the Wi = 4 and C∞ = 0.1 case, c f approaches
the corresponding single-phase value. Note that the drag slightly increases withC∞ which could be
attributed to decrease in Marangoni induced force due to more uniform surface concentration [33].
For Wi = 8 andC∞ = 0.5, on the other hand, c f increases again, showing that the Marangoni forces
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FIG. 10. [(a)–(c)] Liquid velocity fluctuations scaled by vτ versus wall-normal distance at statistically
steady state. u′

rms, v′
rms, and w′

rms are the root mean square of the velocity fluctuations in the spanwise,
streamwise, and wall-normal direction, respectively. (d) Transient result: Nwall/Ntotal is the number of bubbles
in the bubble wall layer. The width of the bubble wall layer is defined as a diameter of bubble.

are not strong enough to counter the elastic induced lift force. For viscoelastic turbulent bubbly flow
with contamination, the polymer drag reduction hence depends on the intricate interplay of the
aerodynamic, Marangoni and elastic forces.

To quantify the combined effects of surfactants and viscoelasticity, time-averaged quantities are
plotted in Fig. 9 against the wall units for various single- and multiphase cases. For single-phase
cases in the viscous sublayer (z+ � 10), the profiles follow each other in a linear manner (v+ =
z+). On the other hand, away from the wall (z+ � 30), the velocity mainly increases with Wi,
which is consistent with the decrease in c f . In fact, the mean velocity profiles vary between the von
Karman law [60] for the Newtonian case and the MDR asymptote (v+ = 11.7 ln z+ − 17) [14] for
the Wi = 4 and Wi = 8 cases. As expected, the velocity profile stays parallel to the Newtonian one
and move upward with Wi. Moreover, the viscoelastic cases considered in the present work fall in
the LDR regime and thus are far from the MDR asysmptote. These findings are consistent with the
observations in previous works [4]. For the multiphase cases, a similar linear variation is observed in
the viscous sublayer. In the log-law region, profiles change nonmonotonically with C∞ at Wi = 4.
ForC∞ = 0 (clean), the flow presents strong turbulent attenuation. On the other hand, forC∞ = 0.1,
the profile approaches the corresponding turbulent single-phase case. Increasing further to C∞ =
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FIG. 11. [(a)–(c)] Stress balance at the statistically steady state for Wi = 4 and C∞ = 0.0, Wi = 4 and
C∞ = 0.1, and Wi = 4 and C∞ = 0.5 respectively. Dashed lines show the corresponding single-phase stress
balance. τN is viscous stress, τR is Reynolds stress, τP is polymeric stress, τB is buoyancy stress, τ S is
surface stress, and τ 23 is total shear stress. All stress profiles are scaled with the corresponding wall stress
τw . (d) Contribution of different stresses to the total friction factor at Wi = 4 for various bulk surfactant
concentrations.

0.25, the profile slightly moves downward and does not change further at C∞ = 0.5. Figure 9(b)
shows variation of the average void fraction along the wall normal. As expected for the clean case
at Wi = 4, there is a clear peak of average void fraction near the wall indicating formation of the
wall layer. Moreover, the variation of the peak shows nonmonotonic trend with C∞ at Wi = 4.
The wall layer is inhibited at C∞ = 0.1, whereas it is enhanced at C∞ = 0.25 and 0.5. Note that
significant peak is restored near the wall at C∞ = 0.5 and Wi = 8. The formation of bubble wall
layers does not only affect the drag reducing property of polymers, but also causes a significant
drag increase for clean bubbly flows. The drag-reducing property of polymers is attributed to the
polymer stretching. Figure 9(c) plots average polymer stretching [Tr(B̄)/L2] for Wi = 4 andWi = 8
cases. The stretching profile is maximum in the vicinity of the wall and minimum on the centerline.
For the single-phase case, the profile moves upward with Wi. Moreover, the polymeric stretching
is highly affected by the formation of bubble clusters. As can be seen, the polymeric stretching
becomes minimal for the clean bubbly flow at Wi = 4. For the contaminated case at Wi = 4, the
Tr(B̄)/L2 profile coincides with the corresponding single-phase case. Also, it does not change with
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an increase in C∞ from 0.1 to 0.5. At Wi = 8 and C∞ = 0.5, the profile is attenuated with respect
to its corresponding single-phase case. This could be attributed to the increased near-wall peak in
the void fraction.

To characterize the turbulent flow the liquid velocity fluctuations are shown in Fig. 10. For the
single-phase case, the peak in the velocity fluctuations increases in the streamwise direction (v′

rms)
and decreases in the other directions. Note that the peak of v′

rms shows slightly nonuniform trend with
Wi, i.e., it first increases and then slightly decreases at Wi = 8. Indeed, this could be attributed to
the fact that the Wi = 8 case is approaching the HDR regime. This statistical trend is typical for the
LDR and the HDR regimes [12,13]. On the other hand, the trend for bubbly flow is more complex.
The fluctuations for the clean case are the same as those observed for the Newtonian bubbly flow. For
the contaminated case at Wi = 4 andC∞ = 0.1, there is a little difference between the single-phase
case for u′

rms and w′
rms profiles, but for v′

rms profile, the peak is smaller than that in the single-phase
case. Further increase in concentration to C∞ = 0.25 results in attenuation of fluctuations (u′

rms,
v′
rms, w

′
rms) away from the wall. Moreover, the reduction of v′

rms near the wall can be attributed to the
increase in the frequency of bubbles leaving or entering in the bubble wall layer. Indeed, as shown
in Fig. 10(d), evolution of the number of bubbles in the wall layer (Nwall) highly depends on the
concentration. Initially, aerodynamic and elastic induced forces dominate, pushing the most of the
bubbles to the wall region. The first peak decreases with concentration due to Marangoni forces. As
Marangoni forces prevail, Nwall starts to decrease. Higher concentration leads to stronger decay in
the evolution. The evolution strongly oscillates due to interplay of different forces. In the statistically
steady state, Nwall increases with C∞. Increasing concentration from C∞ = 0.25 to C∞ = 0.5 at
Wi = 4 does not show any significant effect in the steady state. At Wi = 8 and C∞ = 0.5, after
the first peak Nwall does not change significantly and oscillates around Nwall/Ntotal ≈ 0.6. Note that,
as we increase the bulk surfactant concentration, the interface becomes more rigid approaching a
solid particle [48]. In fact, Esteghamatian and Zaki [36] have recently found that inclusion of dilute
suspension of spherical particles leads to decrease fluctuations in the turbulent viscoelastic flow.

To examine the drag reduction phenomenon in more details, the shear stress balance across the
channel is shown in Figs. 11(a)–11(c). Moreover, contribution of different stresses to the friction
coefficient is shown in Fig. 11(d). For the clean case [Wi = 4 and C∞ = 0; Fig. 11(a)], the stress
balance is completely different from the corresponding single-phase flow (shown by the dashed
lines). The surface stress (τ S) and buoyancy stress (τB) have significant contribution to the total
shear stress (τ 23). Due to the significant reduction in the flow rate, the viscous stress (τN ) near
the wall reduces. The polymeric stress (τP) almost vanishes for the clean bubbly flow. Similarly
to the Newtonian case, the Reynolds stress also significantly diminishes due to presence of wall
layers. Conversely, for the Wi = 4 and C∞ = 0.1 case, the stress balance becomes similar to the
corresponding single-phase flow, as the major contribution to the total shear stress (τ 23) comes
from the Reynolds stress, the viscous stress and polymeric stress. In comparison to the clean case
at Wi = 4, the surface and the buoyancy stresses significantly reduce, while the polymeric stress
increases. Also, the Reynolds stress is slightly lower for the contaminated bubbly flow than that
in the corresponding single-phase flow, and further decreases for higher surfactant concentrations
(Wi = 4 andC∞ = 0.5). As more bubbles migrate toward the wall atC∞ = 0.5, the surface and the
buoyancy stresses prevail and the Reynolds stresses attenuate, especially at Wi = 8 and C∞ = 0.5
(not shown here).

IV. CONCLUSIONS

Extensive interface-resolved direct numerical simulations have been performed to examine the
effects of clean and contaminated bubbles on Newtonian and viscoelastic turbulent channel flows.
It is found that the formation of bubble-rich wall layers plays a major role in turbulent bubbly flows
and its prevention is of crucial importance in realizing the polymer drag reduction. For the clean
case, the earlier findings are verified: Bubbles move toward the wall due to the hydrodynamic lift
force and form a dense wall layer, which dramatically increases the drag and completely suppresses
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the polymer drag reduction. Prevention of bubble clusters near the wall by surfactant has been also
examined by using the sorption properties of Triton X-100 and 1-pentanol. It is found that the
sorption kinetics highly affects the dynamics of turbulent bubbly flow. For Triton X-100, a minute
amount of surfactant (e.g., C∞ = 0.1) is found to be sufficient to prevent the formation of bubble
clusters while, for 1-pentanol, even C∞ = 1.0 is not high enough. The flow rate for both Wi = 4
and Wi = 8 is similar to that of the Newtonian (Wi = 0) clean bubbly flow. We also showed that
the addition of small amount of surfactant (contaminated bubbles) can revive the polymer drag
reduction effect for turbulent bubbly flows. It is found that viscoelasticity promotes formation
of the bubble wall-layer. Thus the benefit of drag reduction by polymers in single phase flow is
completely lost in the bubbly flows unless a strong-enough surfactant is added to the system. Drag
reduction for contaminated bubbly flows depends on the intricate interplay of the hydrodynamic,
elastic, and Marangoni-induced forces. For Wi = 4 and C∞ = 0.5, almost the same drag reduction
was achieved in bubbly flow as in the respective single-phase flow, but for Wi = 8 and C∞ = 0.5,
the drag reduction did not approach its single-phase value. The reason for the difference can be
found in the elastic-induced lift force, which increases with Wi, and promotes the formation of
bubble wall-layers. Marangoni-induced force, on the other hand, pushes bubbles to the center of
the channel and counteracts the elastic-induced lift force. At Wi = 4, Marangoni-induced force is
sufficient to balance the elastic-induced lift force, but at Wi = 8, the bubbly wall layers started to
reappear.
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