
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Autiosalo, Juuso; Siegel, Joshua; Tammi, Kari
Twinbase

Published in:
IEEE Access

DOI:
10.1109/ACCESS.2021.3119487

Published: 01/01/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Autiosalo, J., Siegel, J., & Tammi, K. (2021). Twinbase: Open-source server software for the Digital Twin Web.
IEEE Access, 9, 140779-140798. https://doi.org/10.1109/ACCESS.2021.3119487

https://doi.org/10.1109/ACCESS.2021.3119487
https://doi.org/10.1109/ACCESS.2021.3119487

Received July 30, 2021, accepted September 25, 2021, date of publication October 13, 2021, date of current version October 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119487

Twinbase: Open-Source Server Software
for the Digital Twin Web
JUUSO AUTIOSALO 1,2, JOSHUA SIEGEL 2, AND KARI TAMMI 1
1Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland
2Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA

Corresponding author: Juuso Autiosalo (juuso.autiosalo@aalto.fi)

This work was supported in part by the Business Finland through MACHINAIDE under Grant 3508/31/2019.

ABSTRACT Digital twins are expected to form a network, a ‘‘Digital Twin Web,’’ in the future. Digital
Twin Web follows a similar structure to the World Wide Web and consists of meta-level digital twins that
are described as digital twin description documents and distributed via Digital Twin Web servers. Standards
must be established before the Digital Twin Web can be used efficiently, and having an easily accessible
server implementation can foster the development of those standards. Twinbase is an open-source, Git-based
Digital Twin Web server developed with user-friendliness in mind. Twinbase stores digital twin documents
in a Git repository, modifies them with Git workflows, and distributes them to users via a static web server,
from which the documents can be accessed via a client library or a regular web browser. A demo server
is available at https://dtw.twinbase.org and new server instances can be initialized free-of-charge at GitHub
via its browser interface. Twinbase is built with GitHub repository, Pages, and Actions but can be extended
to support other providers or self-hosting. We describe the underlying architecture of Twinbase to support
the creation of derivative and alternative server implementations. The Digital Twin Web requires permanent,
globally accessible, and transferable identifiers to function properly, and to address this issue, we introduce
the concept of digital twin identifier registry. Performance measurements showed that the median response
times for fetching a digital twin document from Twinbase varied between 0.4 and 1.2 seconds depending on
the identifier registry.

INDEX TERMS Cyber-physical systems, cyberspace, digital twins, digital twin web, Internet of Things,
internet topology, metadata, metamodeling, open-source software, semantic web, web services.

NOMENCLATURE
AAS Asset Administration Shell
API Application Programming Interface
DTDL Digital Twins Definition Language
CI Continuous/Content Integration
DT digital twin
DTID digital twin identifier
DTW Digital Twin Web
GADIT Git-based architecture for digital twins
HTTP(S) Hypertext Transfer Protocol (Secure)
IoT Internet of Things
IRI International Resource Identifier
JSON JavaScript Object Notation
URL Uniform Resource Locator
YAML Yaml Ain’t Markup Language
WoT TD Web of Things Thing Description
WWW World Wide Web

The associate editor coordinating the review of this manuscript and

approving it for publication was Xianzhi Wang .

I. INTRODUCTION
Digital twins (DTs) are virtual counterparts for real-world
entities. The contents of digital twins vary by use case
and application domain. Industrial cases have emphasized
simulation-focused tasks such as mirroring [1] the life of
space vehicles [2], [3], factory floor planning [4], and product
design [5]. Internet of Things researchers started from infor-
mation management focused digital twins to track physical
products with RFID tags [6] with applications in logistics [7]
and intelligent control of manufacturing [8]. Buildings are
adopting digital twins as well [9], ranging from small-scale
sensor experiments [10] to a complex case study of a uni-
versity campus with an array of data sources, multiple stake-
holders, and several different services [11]. Nowadays, digital
twins are being made for almost all physical things, including
humans [12], [13], cars [14], [15], water systems [16], and
ice cream machines [17], and even intangible entities, such
as organizations [18].

The twins are often implemented with software not origi-
nally made for creating digital twins or with project-specific

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 140779

https://orcid.org/0000-0003-3714-748X
https://orcid.org/0000-0002-5540-7401
https://orcid.org/0000-0001-9376-2386
https://orcid.org/0000-0001-9582-3445

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

custom software. Perhaps due to these fragmented ori-
gins, digital twins are commonly built as isolated entities
rather than as parts of fleets that span across stakehold-
ers. Also numerous security challenges [19]–[21] limit the
creation of networked digital twins. Despite the challenges
in practical implementation of networked twins, researchers
have expressed the vision to create a network of digital
twins [22]–[26].

Several standard methods for creating digital twins have
been proposed [27], although not all of them were made
specifically to create digital twins. Currently, the three most
prominent appear to be Web of Things Thing Description by
World Wide Web Consortium [28], Digital Twins Definition
Language byMicrosoft Azure [29], andAsset Administration
Shell by Plattform Industrie 4.0 [30]. Other standardization
and implementation efforts worth mentioning include ETSI
NGSI-LD [31], PADI Connection Profiles [32], and Eclipse
Ditto platform [33]. Still, none of the mentioned standards
has been accepted as the predominant digital twin standard.
A digital twin developer is not able to select one standard
when they want to create a networked twin that works across
several platforms.

Some of the existing standards also seem inappropriate
for use with digital twins due to terminological/philosophical
inconsistencies; they seem to use the terms thing and twin
interchangeably. A twin is a mirrored representation of a
thing, and a twin can include a description of the thing it
mirrors, but they are still two separate entities. It is okay for
users of digital twins to remain ignorant of this difference,
but standards must acknowledge and leverage this distinction.
Otherwise, building a global network of digital twins will
remain an unconquered challenge.

Stemming from the urge to create a global network of
digital twins, our three unsubstantiated yet experience-based
claims are: 1) most digital twins should have a publicly
available meta-level description, 2) relations between digital
twins should mimic the relations between real-world entities,
and 3) it should be trivial to initialize a public meta-level
digital twin for any real-world entity. These manifest-like
claims should provide a fertile ground for the creation of the
network of digital twins.

We are calling the global network of digital twins the
‘‘Digital Twin Web’’ (DTW) [26] to emphasize the intended
resemblance to the World Wide Web (WWW) [34]. The
standards of the DTW should be similarly purpose-specific,
openly available, connected to each other, and extendable as
the standards of the WWW. As a distinction, the DTW can be
built on top of the WWW, whereas the WWW is built on top
of the Internet. The foundations for the DTW were laid out
in the Feature-based Digital Twin Framework [25] and fur-
ther design principles along with first implementations were
presented by Ala-Laurinaho et al. [26]. This article presents
components that can be used to build the Digital Twin Web
as shown in Fig. 1.

This paper introduces ‘‘Twinbase,’’ a prototype plat-
form for managing and distributing meta-level digital twins,

FIGURE 1. The overall workflow for distributing digital twin documents
from owners to users with Twinbase and digital twin identifier registry.

i.e., a ‘‘Digital Twin Web server.’’ Twinbase stores digital
twin description documents in a Git [35] repository and
distributes them to human and machine users via a static
web server. The twin documents are public by default and
can be cross-referenced to each other, rendering Twinbase a
suitable tool for building a public network of digital twins.
Setting up a newTwinbase instance does not require program-
ming expertise, although a GitHub account is necessary as
Twinbase is currently built with three free-of-charge GitHub
tools [36]: a public Git repository, GitHub Actions, and
GitHub Pages. Using other service providers or self-hosting is
possible but not tested and requires expertise in programming
and web server administration. Intended future work aims
to make Twinbase independent from any specific software
provider. Twinbase software is available as open-source from
GitHub at https://github.com/twinbase/twinbase with a live
demo instance available at https://dtw.twinbase.org.

To support the development of alternative DTW servers,
we describe the underlying architecture of Twinbase as
generic software architecture, which we call ‘‘GADIT’’
(Git-based architecture for digital twins). GADIT intro-
duces the basic components that Twinbase uses in an
implementation-neutral manner. The GADIT architecture
requires a separate service that maintains digital twin identi-
fiers that are permanent, globally accessible, and transferable
to new owners. To address this need, we introduce the simple
yet novel concept of ‘‘digital twin identifier (DTID) registry.’’
These registries are thought to become a part of DTW infras-
tructure, similar to how domain registrars underpin theWorld
Wide Web.

The introduction of the DT identifier registry led to defin-
ing the generic structure of DTW, as shown in Figure 2.
Along with this structure, this article lays out practices that
may become parts of normative DTW standards, such as the
specifics of the DT identifier registry, how exactly to find
the DT description document, and multiple aspects about
the document itself need to be standardized before DTW
can flourish. However, the current paper does not attempt
to be a normative document but instead concentrates on
showcasing Twinbase as a prototype server for the DTW and
documenting any observations made during the development.
We hope that this prototype server can be used as a tool to
develop practices that are mature enough to be set as actual
standards.

140780 VOLUME 9, 2021

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

FIGURE 2. The generic structure of the Digital Twin Web. Twinbase can be used as a DTW server. The DT identifier registry is a redirecting
database that redirects DT identifiers to DT documents. The DT documents, i.e., the digital twins of the DTW, can be accessed by machine
users via a DTW client library and by human users with a regular web browser.

The main contributions of this paper are:
• Introduce the open-source platform Twinbase as the first
implementation of a Digital TwinWeb server. (Presented
in Section IV.) Source code available from GitHub:
https://github.com/twinbase/twinbase

• Conduct performance measurements of Twinbase to
provide the first estimations of its applicability for the
Digital Twin Web. (Section V)

• Refine the structure and design principles of the Digital
Twin Web. (Figure 2 and Section VI-D)

• Introduce the basic properties of DTID registries to
enable the allocation of permanent, globally accessible,
and transferable DT identifiers. (Section III-F)

• Introduce GADIT (Git-based architecture for digital
twins) as a general architecture for implementing Git-
based servers for the Digital Twin Web. (Section III).

The remainder of the paper is organized as follows.
Section I-A describes the motivation for creating Twin-
base and Section II presents related work. Section III intro-
duces GADIT as the underlying architecture of Twinbase,
and Section IV presents how Twinbase was implemented.
Section V shows the results of performance measurements
and Section VI discusses Twinbase from several viewpoints.
Section VII describes risks and limitations, Section VIII
summarizes the managerial implications of the work, and
Section IX concludes the article.

A. MOTIVATION
Despite the mass adoption of digital twins in recent years,
there are practically no digital twins online and ready to be
browsed on the Internet. The absence is peculiar as digital
twins are supposed to be heavily connected entities and,
e.g., the Gemini Principles of the Centre for Digital Built
Britain mention ‘‘public good’’ and ‘‘openness’’ as two of
nine basic principles [37]. The centre hosts a DT Hub whose
first annual report on year 2020 mentioned ‘‘openness’’ as
one of four ideas to improve and ‘‘Practical digital twin
examples’’ as one of four recommendations for next year
in its community response appendix [38]. A recent article
written by representatives from seven commercial organiza-
tions emphasizes the role of open standards and open-source
software in facilitating the adoption of digital twins [39].
In essence, the need for open digital twins has been recog-
nized, but implementation is not sufficient.

We surmise that the lack of internet-accessible twins stems
from three main reasons. First, implementations of the digital
twin concept were first made in locally run software, and
making twins accessible via internet platforms has been an
afterthought that has not yet caught on properly. Hence, there
is an apparent lack of tools for building internet-accessible
twins. Second, most digital twins contain confidential infor-
mation, and as most tools do not enable sharing twins only
partially, a culture of sharing digital twins has not been

VOLUME 9, 2021 140781

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

formed. Third, the demand for the creation of digital twins
comes from practitioners that usually do not have the pro-
gramming skills to create internet-accessible DTs. It also
seems that many DT practitioners even lack the basic under-
standing of why DTs should be accessible over the Internet,
although this may be a fallacy due to underdeveloped tool
offerings. Nevertheless, it seems that DT creators do not
have either motivation or skills to create internet-based digital
twins.

Reaching a wider adoption rate of internet-based DTs will
require that they are much easier to create in several aspects.
In an optimal situation, the purpose of creating internet-based
digital twins is self-evident, their creation is instant, they
cost no money, require no maintenance, and do not create
vendor lock-in. (On the contrary, DTs create value by opening
multiple connections and using multi-vendor software offer-
ings.) And all of these requirements should apply even to
non-experts. Also, reliable and affordable support should be
readily available in case anything goes wrong. If taken as
absolutes, these are impossible requirements, but when given
some leeway, they in fact describe many existing, proven
technologies, and the physical world is full of these types of
basic products. For example, bolts, power cords, and light
bulbs are practically ubiquitous, meaning several different
companies manufacture them, and they are available at a
wide array of stores. Of course, they do cost money due to,
e.g., material, manufacturing, and logistics costs, but develop-
ment costs for these basic products are practically negligible,
and competition keeps prices low.

Digital products have no material, manufacturing, or logis-
tics costs, so development costs play a decisive role in the
price of digital products. When using freely licensed open-
source products, the basic products of the digital world, users
don’t pay for development costs directly. However, digital
products are often used and offered as services, which creates
server upkeep costs. We believe that the networked digital
twins of the Digital Twin Web will become such service-
based basic products. Hence, the creation and upkeep of
networked digital twinswill include twomain cost categories:
development and server upkeep costs. Additionally, there are
DT content updating costs, but they differ by use case and
require their own cost analysis and software solutions.

Development costs can be lowered significantly if DTs can
be created with open-source software. We assume that not all
the sophisticated features of DTs will be available as open
source, but the basic core service of DTs will become open
source. We expect it to be comparable to the free WWW
servers, such as Apache [40] and Nginx [41]. Twinbase is our
suggestion for an open-source DTW server implementation.

The server upkeep costs of DTs depend on how computa-
tionally intensive the server implementation is. If a DT needs
a whole server to itself, costs are high, typically around $10
per month. However, if several DTs can be served from a
single static web server, costs go down remarkably. Some
providers (e.g. GitHub Pages [42] and Netlify [43]) even
offer static web servers free-of-charge. Twinbase is built with

these free-of-charge services to keep server upkeep costs at a
minimum.

II. RELATED WORK
To the authors’ best knowledge, there is no other architec-
ture or implementation that allows serving meta-level digital
twins from a static web server that fetches its contents from
a Git repository. However, there are services that allow the
distribution of meta-level digital twins in other means.

Azure Digital Twins [44] is a cloud platform for creating
internet-based digital twins offered by Microsoft. It lever-
ages an open-source Digital Twins Definition Language
(DTDL) [29], also developed by Microsoft, and includes
other open source components, such as a visual explorer for
browsing a network of digital twins called Azure Digital
Twins Explorer [45]. The core of Azure Digital Twins is
closed source and offered as a pay-per-use service. Azure
Digital Twins has been used as a platform to build other
commercial services, such as e-Magic TwinWorX [46] and
MindSphere City Graph [47]. It remains to be seen if the
partly-open, partly-closed model of Azure Digital Twins will
be a successful method for building an ecosystem of net-
worked twins.

Asset Administration Shell (AAS) is the implementation
of digital twin by the Plattform Industrie 4.0 [30]. AAS is
used to describe the basic information of industrial products
similarly to the DT document. There are open-source soft-
ware available for viewing and editing AAS [48] as well
as for serving them over the internet [49]. AAS models are
defined in the technology-neutral UML language, and there
are mappings to OPC UA, XML, JSON, RDF, and Automa-
tionML. At the time of the writing, there was also a demo
server available at http://www.i40-aas.de showingAAS infor-
mation for 33 devices from 14 different manufacturers. The
drawbacks of AAS are the exclusivity to industrial equipment
and that it seems to offer no clear method for connecting
twin instances to each other, hence not being an ideal tool
for creating general networks of digital twins. Nevertheless,
a substantial amount of work has clearly been done for AAS,
and it seems especially suitable for describing various tech-
nical aspects of industrial devices.

Web of Things Thing Description (WoT TD) is a stan-
dard information model for describing things, developed by
the World Wide Web Consortium [28]. WoT TD is format-
ted as JSON-LD by default and includes the metadata and
interfaces of a thing. A WoT TD can represent a physical
or virtual entity, although an IoT device such as a lamp
seems to be the most common use case. Web of Things
and its Thing Description has attracted both open and closed
source server implementations. Active open-source projects
include Thingweb [50], a WoT implementation written in
Node.js with a REST interface, a web user interface, and
a validator playground, Eclipse ediTDor [51], a web-based
editor that assists in writing WoT TDs, and WoTPy [52],
a Python implementation for WoT. Regarding closed source
implementations, Philips Hue and Azure IoT has been said to

140782 VOLUME 9, 2021

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

FIGURE 3. A GADIT server system consists of a Git repository, a CI (Content Integration) system, and a static web
server. The Git repository contains DT documents and other files, which are updated by the CI system and
deployed to the static web server for distribution. The owner and the DTID registry are not parts of the server, but
they are required for the platform to function. The owner configures the GADIT server and performs CRUD
operations on DT documents and DTID records. The DTID registry manages the records and redirects DTIDs to the
corresponding twins on the static web server.

leverage WoT TDs [53], and EVRYTHNG [54] has provided
a commercial Web of Things platform since 2011, although
it is unclear if it leverages TDs. WoT TD is developed inside
the WWW Consortium, following the same proven methods
that gave us the web, and especially openness of decision-
making is at an excellent level. The downsides of WoT TD
are that it is focused on things instead of twins, making
its positioning unclear, and that the community seems to
be programmer-heavy, creating a language barrier between
digital twin engineers that concentrate on mirroring complex
physical phenomena.

All of the reviewed meta-level digital twin solutions have
attracted a noticeable amount of users and developers, but
none of them has become similarly ubiquitous as the WWW
standards. Therefore, exploring different solutions is neces-
sary until a common approach for building the Digital Twin
Web is found. This article attempts to provide a straightfor-
ward approach for distributing meta-level digital twins across
the Internet while leaving enough leeway so that further work
can combine it with other existing solutions.

The DTID registry has functionalities that resemble some
earlier work, such as the Auto-ID system [8] and the
DIALOG system [7]. When those were developed, physical
ID readers were scarce, and the systems did not reach wide
consumer outreach. Nowadays, smartphones with QR-code
readers are practically ubiquitous in developed countries,
which means that a digital twin identifier should be readable
with those to reach consumer acceptance. The IDs of Auto-
ID and DIALOG systems do not direct users to any addi-
tional information with regular QR-code scanner software,
which means that they are not useful with current technology.
In contrast, the Digital Link standard by GS1 [55] embraces
usability with smartphones. The standard is still partly under

development, and our plan is to synchronize the DTID reg-
istry concept with it when details are fixed.

III. ARCHITECTURE: GADIT
GADIT (Git-based architecture for digital twins) is a general
architecture for implementingDigital TwinWeb servers using
the Git version control system and its common peripherals.
The primary purpose of a GADIT server, as well as any
other DTW server, is to store, manage, and distribute DT
documents. The main components of GADIT are shown in
Figure 3 and described in Sections III-A–III-F. GADIT was
used to build Twinbase (Section IV) and can be used for
building alternative implementations.

GADIT follows the conceptual aspects of the Feature-based
Digital Twin Framework [25] and promotes ease-of-use and
openness as guiding principles as deemed appropriate by
Autiosalo et al. [56]. GADIT also adheres to the basic design
practices of the Digital Twin Web described in Section III of
Ala-Laurinaho et al. [26].

A. OWNER
Owner is a legal person who owns three types of entities
defined by GADIT: the server itself, the contents of digital
twin documents, and the identities of the digital twins. The
ownership of the server and the contents are defined by
the ownership of the Git repository (Section III-C) and the
ownership of the identities is recorded in a DTID registry
(Section III-F). The owner as a real entity is not a part of
the technical system, but being able to clearly manage the
ownership of the digital twins is a key feature of the archi-
tecture. Additionally, the meta-level digital twins made with
GADIT may link to external digital twin components whose
ownership is defined by the respective external system.

VOLUME 9, 2021 140783

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

Proper management of ownership keeps the legal situation
and responsibilities of different components of digital twins
clear. If one owner owns all components, the situation is
simple, but if, e.g., the identifier and the document are owned
by different legal entities, there is potential for conflict, ren-
dering a usage agreement appropriate.

B. CONTENT: DIGITAL TWIN DOCUMENT
DTWneeds away to describe the contents of the digital twins,
and we claim that the contents should be described in a digital
twin document similarly as the basic content of a web page
is described by an HTML document. We define a digital twin
document as a text file that provides a meta-level description
of a given digital twin. The document can directly describe
various aspects of a twin or provide pointers to external
components of the digital twin in the spirit of the ‘‘Data Link’’
feature introduced by Autiosalo et al. [25]. A DT document is
considered to be the master metadata source of a digital twin,
so if something is not mentioned in the twin document, it is
not considered a part of the twin. In GADIT, twin documents
are self-sufficient descriptions and can be moved as such to
another DTW server.

Digital twin document does not yet have a single
commonly agreed implementation format. Globally acknowl-
edged prospects include Digital Twin Description Language
(DTDL) [29], Web of Things Thing Description (Wot TD)
[28], Asset Administration Shell (AAS) [30], and other stan-
dards investigated by Jacoby and Usländer [27]. However,
each of these is already a complex standard, and leveraging
them currently requires going through a lot of documentation
which does not suit well the ease-of-use principle of theDTW.
It also seems that each of the existing standards is not compat-
ible with the other components of GADIT, which means that
a custom document format is currently required. The authors
are participating in the development of the DT document [26],
[57], which can be modified to accommodate any features
required by GADIT. For example, GADIT recommends that
the twin identifier (Section III-F), the hosting URL, and the
owner of the digital twin is included in the DT document.
Also, a document editing URL and a contact method are wel-
come additions. From a long-term perspective, we believe and
suggest that the various features of digital twin description
formats start converging and are merged with each other.

C. STORAGE: GIT REPOSITORY
Git is an open-source distributed version control software that
especially supports software source code management. Git
repository is a version-controlled file storage space that can
be used with Git clients. An easy way to set up an internet-
accessible Git repository is to use a Git service provider,
such as GitHub or GitLab. They provide web interfaces to
the repositories and offer both public and private repositories
free-of-charge at the time of the writing.

In GADIT architecture, a Git repository is used to store
both the DT documents of each DTW server instance and
the software code of the DTW server solution. The software

code consists of back-end code for continuous integration
(Section III-D) and front-end code for the static web server
(Section III-E). TheGit repository can be copied (or ‘‘forked’’
in Git terminology) by other users to create a new instance of
the platform, granted that the license terms allow copying.

The main advantages of using Git as the base technology
of a DTW server solution are:
• Files in aGit repository are version controlled by default,
which means it is possible to view the DT document at
any point in time, and the user who makes a change to
the DT document is recorded.

• Git is open source and freely licensed, which means
1) it can be downloaded easily and free-of-charge,

enabling the same for the DTW servers,
2) the interface definitions are open, so it is pos-

sible to create additional customized clients
independently,

3) longevity is guaranteed independently from origi-
nal developers, and

4) if deemed necessary at some point, it is possible to
independently create a GADIT-specific version of
Git.

• Git is a well-established system with a wide community
of users in the software development domain. New fea-
tures are still being added, and they seem to be going
into directions favorable for GADIT, such as partial
clones [58].

• Git has attracted the integration of two common periph-
erals: continuous integration workflows and automatic
deployment to static web servers. These are essential
components of GADIT, and their use is described in
detail in Sections III-D and III-E.

• Git servers include their own access management solu-
tions, which means that a GADIT-based DTW server
doesn’t require its own access management solutions
even if it is hosted completely in the cloud.

D. CODE EXECUTION: CI SYSTEM
Continuous integration (CI) is a practice in which software
source code is integrated into the mainline code repository
continuously at the same pace as the developers are writing
it. Confusingly, CI also refers to a software solution, such as
Travis CI [59], GitHub Actions [60], or GitLab CI/CD [61],
that enables running tests and other actions for the modified
code during the general integration process. In this article,
we use CI to refer to the software solution.

In practice, CI is implemented by a configuration file and
scripts that together define a CI workflow. CI workflows can
be triggered in various ways, such as by a push to the repos-
itory or as time-based periodical runs. The workflows may
be run on Git provider servers or on separate runner servers.
Currently, different runner solutions use at least partly differ-
ent syntaxes to define the workflows, and to promote inter-
changeability, a Common Workflow Language [62] is under
development. It is common practice to store the workflow
files in the respective Git repository.

140784 VOLUME 9, 2021

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

The GADIT architecture uses CI to automate tasks in three
main purposes: configuring general settings, reacting to user
actions, and executing tests. Configuration workflows for
general settings can, e.g., detect the hosting URL and the
owner of the platform automatically and distribute them to
the whole platform and all DT documents. User actions, such
as edits to DT documents, trigger a workflow that implements
further changes to the respective document and to other files
if necessary. Tests ensure the platform is working properly.
For example, tests can validate the conformity to the DT doc-
ument standard and ensure the correct redirection of DTIDs.

E. DISTRIBUTION: STATIC WEB SERVER
Static web server is a web server that sends existing files from
their file system to clients such as web browsers. (In contrast,
dynamic web servers construct custom files each time they
receive a request from a client.) Static web servers can be
connected to a Git repository so that the files from the repos-
itory are deployed to the file system of the server, making the
repository contents available in a more user-friendly format.
Git providers offer repository-connected static web servers
as integrated parts of their platforms (e.g., GitHub Pages and
GitLab Pages), but repository owners can also use separate
web servers hosted by a wide variety of cloud providers
(e.g., Netlify or Amazon S3) or even self-host on their own
hardware with open-source software (e.g., Apache or Nginx).

GADIT leverages a static web server for both human and
machine interfaces. Firstly, the web server provides a normal
browser-readable interface, featuring a dedicated ‘‘DT page’’
for each digital twin hosted on the platform. A DT page
shows the contents of a DT document and may even leverage
browser-side scripts to display dynamic data from appropri-
ately documented external DT components. Secondly, the
static web server is used as a ‘‘static API server’’ [63],
meaning it also provides machine-readable DT documents to
software clients. The machine-readable DT document must
be accessible in a standard filename in a standard location,
similarly as current web servers have agreed to send the
‘‘index.html’’ file if the requested URL points to a folder.

In the future, it may be useful to replace the static web
server with a dynamic web server to reduce the time it takes
from editing a DT document to it being accessible on the
server. However, it is important to ensure that the master
version of the DT document remains in the Git repository and
that the editing history remains useful.

F. IDENTIFIERS: DIGITAL TWIN IDENTIFIER (DTID)
REGISTRY
Digital twin identifier (DTID) is a special identifier type
that is used to identify digital twins, similarly as IRIs are
used to identify any kind of web resources. DTID registry
is a functional database that keeps a record of DTIDs, their
respective hosting IRIs, and their owners. DTID registries are
comparable to the domain name registrars of the WWW as
they redirect DTIDs to hosting IRIs and keep track of the
ownership of DTIDs. DTID registries are operated by entities

that are neutral in respect to the owners of the DTIDs. DTID
registry is not a part of a GADIT platform but a separate
service required for the platform to function to the full extent.
In fact, the DTID registry is rather a part of the Digital
Twin Web architecture and described as part of GADIT only
because the DTW architecture is not yet defined.

The purpose of DTID registries is to provide permanent,
globally accessible, and transferable identifiers for digital
twins. We elaborate on these three requirements in the fol-
lowing three paragraphs.

Permanence means that a DTID stays as the identifier
of a digital twin and its real-world counterpart indefinitely,
unaffected by outside events. A permanent identifier allows
referring to a physical thing throughout its lifetime, enabling
a comprehensive record of its history, which is one of the
key conceptual requirements for a digital twin. The primary
mechanism of ensuring permanence is to use an identifier
whose only functionality is to be a DTID. The functional
separation allows freedom in defining other features of a
DTW server, such as the folder structure, as it might be
convenient to reorganize the DTs in ways that better support
the new company product portfolio. Even the domain name
of a DTW server might change in case of company mergers.
DTIDs must survive these unexpected events because of how
they are used: a common use case for a DTID is to attach it
physically into a device where it stays for decades. A simple
way to guarantee permanence is to use a separate neutral and
trusted DTID registry.

Global accessibility means that the DTID can be used to
query the corresponding hosting IRI from anywhere around
the Internet, although the query may require authentication
if deemed necessary. Accessibility also means that the ID
itself is in such form that people and commonly used soft-
ware can intuitively understand how to use the ID. Intuitive
understanding is important because a DTID located in the
physical world should be recognized as an interface to a
digital twin. Examples of current commonly understood
globally accessible identifiers include IRIs that start with a
common protocol in the scheme part (e.g., https://orcid.org/
0000-0003-3714-748X) or at least use a recognizable
domain from the Domain Name System (e.g., orcid.org/
0000-0003-3714-748X) to define the hostname. The ID needs
to be recognizable also in the physical world, where a
QR-code seems to currently be the most prominent method
of ensuring overall accessibility.

Transferability of a DTIDmeans that it is possible to trans-
fer the ownership of the DTID to another legal person. The
ownership needs to be changed when a physical product is
sold to ensure the new owner’s proper control of the product.
Transferability is especially important if the product has a
physically hardcoded DTID, as the new owner should be able
to control where that DTID points to, typically to their own
digital twin of the device. And even if a physical ID is not
used, external links to the digital twin of the physical product
should stay intact regardless of the owner. To ensure trans-
ferability, the DTID itself should not contain any information

VOLUME 9, 2021 140785

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

FIGURE 4. Twinbase consists of the same components as the GADIT architecture, implemented with three
GitHub services: GitHub repository, GitHub Actions, and GitHub Pages. URL redirection services are used to
achieve the functionality of DTID registries.

that identifies any current owner, and ownership is instead
defined solely by the record stored in the DTID registry.
Hence, theDTID registry needs to be trusted by both the seller
and the buyer.

In the future, DTID registries may develop services not
mentioned here. For example, the DTID record may be
fetched from a standard location in the owner’s DT document.
It might also be possible that a DTID registry enables the use
of a DTID also as a hosting IRI if each DT is assigned its
own subdomain, although there may be technical limitations
or conventions that limit this practice.

DTID registries already share many similarities with the
Domain Name System (DNS), although they point to digital
twins instead of IP addresses. As the DNS clearly works
very well, future research should find out if DTIDs should
be resolved even more with the same methods that the
DNS uses. For example, a DTID registry could have sev-
eral record types for different purposes, similarly to DNS
records [64].

As related work, Azure Digital Twins uses Digital Twin
Model Identifiers [65] and Asset Administration Shells are
required to have a unique identifier [30]. Both support
IRI/URL identifiers, but the documentation is unclear, and
it seems that the three requirements ‘‘permanent, globally
accessible, and transferable’’ are not met by default.

IV. IMPLEMENTATION: TWINBASE
Twinbase is our open-source implementation of the GADIT
architecture, distributing digital twin documents to users via
a Git repository. The source code of Twinbase is avail-
able from GitHub at https://github.com/twinbase/twinbase
and licensed under the permissive MIT License. The source
code can be forked or used as a template to create a new
Twinbase instance that can be hosted directly on GitHub’s
free-of-charge services. A demo server can be viewed

at https://dtw.twinbase.org. The following two subsections
present the components (Section IV-A) and user interfaces
(Section IV-B) of Twinbase.

A. COMPONENTS OF TWINBASE
Twinbase implements the components of GADIT described
earlier in Sections III-A to III-F. The components and their
relations are shown in Fig. 4.

1) OWNER
The Twinbase server and the DT documents stored are owned
and controlled by the owner of the respective GitHub repos-
itory. The owner of the DTIDs of the twins is defined by
the DTID registry, which is problematic as proper DTID reg-
istries do not yet exist. However, there are two URL redirect-
ing services that can be considered to record ownership and
enable ownership change adequately. The w3id.org service
seems to be recording the ownership of the DTIDs through a
community-based effort, and dtid.org is offered by the authors
as a supposedly neutral DTID registry.

2) DIGITAL TWIN DESCRIPTION DOCUMENT: DT
DOCUMENT STANDARD DRAFT DEVELOPED
AT AALTO UNIVERSITY
Twinbase uses the DT document format introduced by Ala-
Laurinaho et al. [26]. This format was selected for two main
reasons. The authors have the possibility to modify it accord-
ing to the special requirements that appear during Twinbase
development, and the YAML format [66] used by the DT
document suits the ease-of-use design philosophy of DTW,
making the twin documents approachable with the current
human user interface solution of Twinbase.

The format of the twin document is developed as a living
standard in GitHub [57]. The format is at an alpha phase and
may change substantially in the future. Our intention is to

140786 VOLUME 9, 2021

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

leverage existing standards as much as possible. For example,
the WoT TD, DTDL, AAS, or other potential standards iden-
tified by Jacoby andUsländer [27]may be leveraged as part of
the DT document, or the proven features of the DT document
standard may be integrated as part of those. However, it is
possible that especially the IoT-rooted standards cannot be
used as a base format for digital twins because of the simple
distinction described earlier: twins and things are different
entities, and this distinction needs to be leveraged in the DT
document.

3) GIT REPOSITORY: GitHub
Each Twinbase instance uses a Git repository hosted by
GitHub to store its source code and DT documents. The
Twinbase template repository can be duplicated either with
the ‘‘Use this template’’ feature of GitHub or by creating a
fork of the repository. The recommended method for updat-
ing Twinbase is not yet defined, as more experimentation
is required to define a robust workflow that ensures user-
friendly update procedures. Twinbase uses public repositories
by default, but customized solutions with private repositories
can also be built.

The user-facing contents of Twinbase, i.e., the files that are
distributed with the static web server, are stored in the docs/
folder of the repository. The DT documents are located in
their own folders to keep the twins organized and to give a
simple hosting URL for the twins. Users can modify twin
documents directly in the browser interface of the GitHub
repository.

The advantages of using GitHub as the Git repository
provider of Twinbase are:
• Free-of-charge services that are suitable for implement-
ing GADIT.

• Widely recognized service with a large user base.
• User-friendly features.
The main disadvantage of using GitHub is that GitHub

itself is closed source, rendering Twinbase unusable if
GitHub decides to shut down a service that Twinbase uses.

4) CI SYSTEM: GitHub ACTIONS
Twinbase uses GitHub Actions to execute CI workflows
that configure general settings, react to user actions, and
perform tests as defined earlier in Section III-D. The
Actions are defined in the file-modifier.yml file in
the .github/workflows/ folder, which utilizes some
longer scripts stored in the .github/ folder. The file-
modifier.yml workflow is triggered every time something is
pushed into the repository.

Twinbase workflows include several functionalities whose
details can be reviewed from the source code. The essential
ones are:
• Modifying DT documents, e.g., adding an editing URL.
• Converting YAML document to JSON document.
• Generating a base YAML file with a list of hosted twins.
• Copying index.html file to each new twin folder.
• Testing if DTIDs redirect to hosting URLs.

5) STATIC WEB SERVER: GitHub PAGES
Twinbase uses GitHub Pages as a static web server that hosts
the user interface defined in the /docs folder of the repos-
itory. By default, Twinbase is hosted from URL in the form
https://<GitHub username>.github.io/<repository name>, but
customized domains are also supported via GitHub Pages
settings. When creating a new Twinbase, the Pages need
to be enabled from repository settings manually. The user
interfaces hosted by GitHub Pages are further described in
Section IV-B.

6) DTID REGISTRY: URL FORWARDING SERVICES
As actual DTID registries do not yet exist, various URL redi-
rection services were used while developing Twinbase. The
basic technical functionality of a DTID registry is achieved
by redirecting DTIDs to the corresponding Twinbase hosting
URLs with HTTP status code 301 or 302. On top of this,
a DTID registry needs to manage the ownership of the DTID,
and on the owner’s request, modify the DTID record or
transfer its ownership.

DTID registry is not a component of Twinbase, but the
twins of Twinbase rely on DTIDs. Each DT document
includes its DTID, and the relations between the twins of
Twinbase instances are made through DTIDs. To ensure that
all twins are functioning properly, Twinbase checks if the
DTID mentioned in a DT document redirects to the hosting
URL of that document with the mentioned HTTP status
codes 301 or 302.

The main difficulty of using general URL redirection ser-
vices as DTID registries is that the ownership of the redirected
IRIs is not properly defined. Also, the permanence of the
redirection is not guaranteed in the level of reliability that is
preferred for twin instances of DTW, and in many redirection
services, the target address cannot be changed. However,
there are two redirecting services that can be considered to
fulfill the requirements, one as a general service and one
upkept by the authors.

The Perma-ID service [67] hosted by the W3C Permanent
Identifier Community Group offers free-of-charge URL redi-
rection from the w3id.org domain. The redirections are man-
aged via a GitHub repository with maintainers from several
organizations that pledge to ensure the continuation of the
service. Anyone, including anyone outside those organiza-
tions, can add redirections to the service but are required to
leave a contact method. The approval of that contact person
is required for modifying a redirection before a practice
maintainer approves the change, even though this practice is
not explicitly stated in the instructions. Hence, the identifiers
have owners, and the ownerships seem to be transferable. The
identifiers are also claimed to be permanent, which seems
justified with the governance model. The Perma-ID service
seems to fulfill the requirements for a DTID registry, but as
the identifiers are manually handled, the service is likely not
suitable for users that need hundreds of identifiers.

The authors set up a DTID registry at dtid.org domain
with the Rebrandly [68] service because Rebrandly provides

VOLUME 9, 2021 140787

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

FIGURE 5. Twinbase front page with a list of hosted twins at the bottom.
New twins are automatically added to the page. Blue text indicates a
clickable link. The interface could be viewed at https://dtw.twinbase.org
at the time of writing.

an API to the redirection records and enables the use of
custom domains in the free-of-charge service. (In general,
paid redirection services are disproportionately high-priced
for the added value they provide as their pricing does not
take DTID registries into account.) Rebrandly also includes
a text note in the redirection record, which is used to store
information about the owner of that DTID. Outsiders can add
their records manually through a template at https://dtid.org.
The main downside of the dtid.org registry is that it relies
solely on the authors, which may not seem reliable enough
for outside parties, especially from the perspective of the
permanence of the identifiers.

B. USER INTERFACES OF TWINBASE
Twinbase supports both human and machine user interfaces,
presented in two following subsections.

1) HUMAN USER INTERFACE
Twinbase uses the graphical user interface of a static website
as its primary client-side human user interface. The web inter-
face enables browsing the twins as shown in the example front
page of Twinbase (Fig. 5) and a selected twin page (Fig. 6).
For actions that require creating and modifying DT docu-
ments, Twinbase directs users to correct locations in GitHub’s
web interface. Experienced users can also use anyGit client to
fetch, modify, and create documents. New Twinbase instance
can be created in GitHub according to the instructions in the
README.md file. Therefore, Twinbase currently supports
four main actions for human users: browsing twins, creating
a new Twinbase, creating a new twin, and modifying a twin,
which are further specified in Table 1.

FIGURE 6. The twin page of an overhead crane. The DT document of the
crane on the white background has been partially expanded by clicking
the arrows on the left. The interface was accessible via the DTID
http://dtid.org/6a303315-d9e5-48ef-a1da-d37bcaa10c57 at the time of
the writing.

2) MACHINE INTERFACE
The static web server of Twinbase provides an HTTP(S)
machine interface as it hosts DT documents as YAML and
JSON files with standardized names in standard locations.
This interface only provides a read interface to the documents,
and the machine users need to use a Git client to create and
modify the DT documents in the Git repository. There is no
machine interface for creating a new Twinbase.

We additionally developed a Python client library that only
supports fetching the hosting URL and the DT document
with a DTID but can be later developed to include also
other operations. The source code for the Python client is
available at https://github.com/juusoautiosalo/dtweb-python
and the library is also available directly from Python Package
Index as ‘‘dtweb.’’

V. PERFORMANCE MEASUREMENTS
To evaluate the basic functionality of DTW, GADIT, and
Twinbase, we conducted two types of performance measure-
ments. First, we compared the DT document fetch times of
eight DTID registries (Section V-A), and second, we mea-
sured the fetch times of a series of six networked twin doc-
uments for three registries (Section V-B). Hosting servers

140788 VOLUME 9, 2021

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

TABLE 1. Four actions supported by Twinbase human and machine interfaces along with additional actions and access requirements. Numbered lists
indicate alternative methods in the order of intended convenience.

were not compared because Twinbase currently supports
only GitHub Pages, and initial tests showed consistent fetch
times at approximately 0.1 seconds also for other host-
ing providers (Domainhotelli and users.aalto.fi were tested).
The python scripts used for the measurements are available
from GitHub at https://github.com/juusoautiosalo/dtweb-
measurements. The violin plot method [69] was used for
plotting as it provides a granular view of the measurement
data, showing that the samples did not follow a normal
distribution. The twins used for the measurements were
served from a single Twinbase hosted by GitHub Pages at
https://juusoautiosalo.github.io/twinbase-for-measurements.

A. DTID REGISTRY COMPARISON
Figure 7 shows the total time of fetching a DT document with
different DTID registries. The time consists of two parts: first
fetching the hosting URL of the DT document from a DTID
registry, and then fetching the document from the static web
server that hosts Twinbase. The fastest registry was d-t.fi with
a median of 0.4 seconds, and the slowest was w3id.org with
a median of 1.15 seconds. The variation of fetch times inside
each registry was more consistent across registries, as the first
99%of samples arrived in a timewindow of 0.4 to 0.6 seconds
for all registries.

B. FETCHING A NETWORK OF TWINS
Fetching a network of twins represents a use case where
a user wants to fetch DT documents that are consecutively
referenced in the DT documents, such as searching for key-
words across the contents of related twins. Figure 8 shows the
measurement results for the fetch times of an origin DT and
its five consecutive children. Three registries were selected
for network measurements: d-t.fi was among the fastest ones,
whereas dtid.org and w3id.org have unique functionalities

FIGURE 7. Total times for fetching DT documents with DTIDs at different
DTID registries. The times include both fetching the hosting URL and the
DT document. The gray areas represent the distribution of samples with
the violin plot method, and the black horizontal lines from lower to
higher are quantiles 0.00 (minimum), 0.50 (median), and 0.99. The sample
size was 1000 for each registry, constituting a total of 8 000 fetches for
the measurement. Samples over 2 seconds were excluded from the plot
and reported as anomalies. All documents were hosted at the same
Twinbase hosted by GitHub Pages, giving consistent fetch times of about
0.1 seconds.

and represent the slow end. The measurement script imple-
mented the measurements in the following phases:

0) Fetch DT document of origin DT (depth 0) and read the
DTID of its child DT (depth 1).

VOLUME 9, 2021 140789

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

FIGURE 8. Total times for fetching DT documents referenced in other DT documents. The gray areas represent the distribution of samples with the violin
plot method, and the black horizontal lines from lower to higher are quantiles 0.00 (minimum), 0.50 (median), and 0.99. The measurement started by
fetching the DT document of the origin DT (depth 0) and continued to its child (depth 1) and so on until the last child (depth 5) had been fetched. The
sample size is 1000 for each DT in each registry, constituting a total of 18 000 fetches for the three measurements. All documents were hosted at the
same Twinbase hosted by GitHub.

1) Fetch DT document of child DT (depth 1) and read the
DTID of its child DT (depth 2).

2-4) Fetch DT document of child DT (depth n) and read the
DTID of its child DT (depth n + 1)

5) Fetch DT document of origin DT (depth 5) and notice
that it has no children.

The last DT document arrived at the client at a median
of about 2.0 seconds for d-t.fi, 4.1 seconds for dtid.org, and
6.8 seconds for w3id.org. The arrival times grew linearly for
each registry.

VI. DISCUSSION
Twinbase and other DTW solutions presented in this article
appear to be capable tools for building a global network of
digital twins but can be improved in several ways and should
be validated in real-life use cases. The following subsections
discuss the presented solutions from the viewpoints of perfor-
mance, usability, security, standardization, openness, and as
a tool to build the Digital Twin Web.

A. PERFORMANCE
The performance of the static web servers used for Twinbase
was fast and consistent with response times of approximately
0.1 seconds, but DTID registries introduced significant laten-
cies to the total DT document fetch time as shown in Fig. 7.
For the three fastest registries, approximately half of the

documents arrived in less than approximately 0.4 seconds,
and 99% of the samples arrived in less than 0.65 seconds,
whereas for the slowest registry, the same quantiles took place
at 1.15 and 1.30 seconds. As the sample size was 1000, this
can be considered a reliable result with the test setup. The
results were also consistent between various measurement
runs conducted on different days. As such, this difference
clearly impacts the user experience of browsing the DT doc-
uments based on the DTIDs.

The difference multiplies when fetching networked twins
as the median for the fetch time of the depth 5 DT document
is approximately 2.0 seconds for the fastest registry and
6.8 seconds for the slowest. Fetching six levels of DTs is
decent with the fastest registry but completely impractical
with the slowest. This type of network fetch might be per-
formed, e.g., when searching for a temperature sensor from
a room whose devices have interlinked DT documents. The
search process might include iterating with the search terms
similarly as people conduct Internet searches. The iterative
searches would be frustratingly slow with the fastest registry
and unmanageable with the slowest.

The performance measurements demonstrate that the pre-
sented DTID registry approach is sufficient for some types
of basic applications but clearly too slow for more complex
use such as search. Therefore, improvements will be wel-
come, especially on the response times of DTID registries.
Incremental improvements can enhance performance up to

140790 VOLUME 9, 2021

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

a certain point, but even the whole approach could be
rethought. One approach would be to build a system similar
to the Domain Name System for DTIDs. Even the existing
DNS infrastructure could be used if the identifying part of
DTIDs would be put into a subdomain, although this would
require new software for theDTID registry. Another approach
is to build search indexes of DTW similarly as search engine
providers, such as Google, are building search indexes of
WWW resources. The users of a DTW index would search
from the index through its interfaces and access the content
via the actual DTW servers. Building a search index is possi-
ble with the current DTID and Twinbase solutions, although
a clear flag that a page is part of DTW would help make the
index with crawlers. Also, an intelligent cache service akin
to the technologies used by Google and product recommen-
dation systems could help improve the user experience of the
iterative searches. As related work, a discovery service has
been proposed for the Web of Things Thing Description [70]
and a Google-style search service called Swoogle has been
made for the Semantic Web [71].

Outside the conducted measurements, we assume that the
number of records in a DTID registry should not affect their
performance. The performance of updating DTID records
was not measured either but seemed responsive enough to
be unnoticed by human users. Measuring the baseline perfor-
mance of both of these metrics would be useful for planning
future work. However, these performance metrics depend on
the implementation of each DTID registry, and we recom-
mend developing the fundamental technologies of the reg-
istries further before starting to optimize their performance.

B. USABILITY CONSIDERATIONS
In earlier work, ease-of-use was found as one of the most
important characteristics of tools that are used for building
digital twins [56]. Twinbase leverages this observation by
providing an as easy-to-use platform for distributing DT doc-
uments as possible. However, Twinbase is only at an early
stage of development and its usability can be improved in
various ways, as described in the following subsections.

1) BROWSING THE TWINS
Currently, Twinbase provides a web interface to browse the
twins, which means that the documents can be accessed with
virtually any internet-capable device, including any phone
and laptop, without installing new software. The web inter-
face shows some basic information about each twin and
presents the DT document in collapsible tree form. This
interface provides a basic level of usability even for people
who are not experts in programming. However, no particular
thought has been put on how the information on the twin page
should be arranged to provide the most useful information
as efficiently as possible. For example, users might find it
convenient if the most used features and links were brought
to the top of the twin page, even if they happen to be at
the bottom in the DT document. Furthermore, the relations
between the twins could be presented as a graphical web of

twins, similarly as with the Azure Digital Twins Explorer.
As even further development, it would be interesting to test
the usability of a mixed reality explorer app that presents the
contents of a DT document when it detects a QR code that
contains a DTID.

A DT document can provide a lot of information about the
twin and its real-world counterpart. However, this can lead to
an information overload for the average users of digital twins.
For example, when a restaurant visitor scans a DTID at the
door, they probably don’t care about most details expressed
in the DT document. Rather, they might like to be directed
directly to a page that displays the menu of the restaurant.
A link to the Twinbase page could be added to that page so
that thorough customers can check any details that interest
them. This approach could also be adjacent to an external
DT reader app that crawls the DT document according to
user preferences, for example, letting the visitor know right
away if the restaurant has vegan-friendly meals or uses meat
that has been certified according to animal welfare standards.
Average CO2 emissions and calories per meal could also be
available. These approaches require further development of
the techniques expressed in this paper as well as domain-
specific standardization but are still very much possible with
Twinbase as the root server for DT documents.

2) EDITING THE TWINS
Twinbase adds a link to the GitHub editing interface to each
DT document, so users need only one click from the twin page
to start editing the document. Nevertheless, users still need to
know what to write on the document. To provide better guid-
ance, Twinbase could provide an editor that suggests adding
popular fields to the twin and makes sure that the document
is syntactically correct before pushing it to the repository.
The workload for implementing this kind of embedded editor
should be manageable by creating a JSON Schema [72] for
the DT document and leveraging that in conjunction with
the Ace editor [73] like JSON Editor Online [74] does, but
for YAML files similarly to the YAML extension for Visual
Studio Code [75]. JSON Schema is an open specification, and
the other tools are permissibly licensed open-source software,
so they can be modified if necessary.

On the machine user side, there should be a library that
enables editing DT documents stored in Twinbase. Further-
more, the time it takes from making an edit until the edit
is visible on the twin page should be made faster and more
consistent.

3) CREATING NEW TWINS
Twinbase provides a guided process to create a new DT
document through a link on the front page. However, adding
fields to the document is not a guided process. If the creator
wants any informative fields in addition to the basic fields
added by the new twin creation process, the creator needs
to browse the DT document specification and manually add
the necessary fields. As an improvement to this approach,
it would be useful to have DT document templates for various

VOLUME 9, 2021 140791

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

types of twins and even have a DT document initializer that
allows the creator to add appropriate fields from a list. As a
technical improvement to the new twin creation process, the
latency from creating the twin to it being accessible on the
server should be lowered.

4) CREATING NEW TWINBASE
A public Twinbase instance can be created without config-
uring any server hardware by using free-of-charge GitHub
services. A new instance of Twinbase is created by forking
the repository or using the repository as a template, and the
newly created repository will launch itself up after the new
owner has enabled GitHub Actions and Pages. The Twinbase
template repository includes instructions on how to create a
new Twinbase.

The Twinbase creation process could be made easier
through automation, but in the opinion of the authors, it is
already easy enough as creating a new Twinbase is fairly rare.
Instead, an update mechanism should be put in place as soon
as possible.

C. SECURITY CONSIDERATIONS
The security of the solutions proposed in this article is at a
decent level, but there are many opportunities for improve-
ment. The solutions rely on two primary sources of security:
traditional web security and the security measures taken by
the Git provider. The traditional web security applies mainly
to the user interface, whereas the Git provider takes care
of back-end security. We also present methods on how to
improve the security of DTIDs with cryptographic measures.
The solutions also potentially open up new attack vectors
from a privacy perspective, but their investigation is left for
further studies.

The traditional web security measures of GADIT servers
include the HTTPS protocol and the Domain Name System
(DNS), although there are manymore security mechanisms in
various layers of the Internet. HTTPS is an extension of the
HTTP protocol that relies on certificate authorities to ensure
the privacy and integrity of the network traffic between the
DTW server and the client. HTTPS is not the most foolproof
mechanism of ensuring security as it relies on separate author-
ities, but it does provide a significant upgrade from normal
HTTP. DNS resolves the domain name of a URL into an
IP address. DNS is used by DTW for two tasks: the current
DTIDs rely on DNS as a root authority, and the routing of
traffic to the hosting servers is handled by DNS. There are a
number of possible attacks on the DNS system, such as DNS
spoofing, hijacking, and rebinding. These problems mainly
stem from the time when the Internet was considered a safe
space, and now there are ways to prevent these attacks, for
example, DNSSEC (Domain Name System Security Exten-
sions) and DNS over HTTPS. DNSSEC verifies the integrity
of DNS records via cryptographic authentication, and DNS
over HTTPS increases privacy. In conclusion, traditional web
security methods provide the same basic level of security
as the web that we so commonly use, but as digital twins

are expected to be used for critical physical world functions,
DTW technologies and standards will need to go through an
additional risk analysis.

Git providers act as centralized authorities that ensure
the security of Git repositories in contrast to the distributed
security measures of the web. It is clear who is responsible
for the security of a Git repository, which has likely con-
tributed to the existence of good security practices in Git
services. As baseline security, Git providers require sign-in to
make modifications to the Git repository, but on top of that,
e.g., GitHub allows users to enforce two-factor authentica-
tion for their accounts. Git repositories may be owned by a
single user or by an organization that has multiple members.
In GitHub, an organization may require two-factor authen-
tication for all of its members. As a recent feature, GitHub
has enabled users to verify their commits (i.e., edits to Git
repository) with a signature, so viewers can have additional
verification on who created the commit. Overall, the security
level of Git services can be considered good, and they can
and have been trusted for critical functions. Alternatively to
using external Git providers, it is also possible to self-host
a Git repository, although this approach has imposed serious
security vulnerabilities [76].

In addition to the existing security practices of DTW,
GADIT, and Twinbase, there are multiple opportunities for
improvement. As an apparent addition, Twinbase should
enable the creation of a private server. Luckily, there seem
to be no obstacles for creating private servers. The authors
decided to start with public server implementation mainly
to enhance the adoption rate of DTW through visibility, and
while the public servers also have the advantage of leverag-
ing free-of-charge services, creating a private Twinbase that
works on private hardware should be just a matter of work.

In the future, cryptographic measures could be used to
ensure the integrity of DT documents through signature pro-
cedures. For example, the DT identifier could include the
hash of a public key, and the private key could be used to sign
the DT document. As the public keys and their hashes should
(for security reasons) be long enough to be unique, DTID
could be defined as [domain]/[(hash of) public
key]. DTW server owner would then sign all DT documents,
and DT document users can check that the document has
been signed by the issuer of the DTID. This works as long
as the holder of the private key can be trusted by the DTW
server owner. However, this is not the case if the DTID is
generated by the owner of a twin and the twin is sold to a new
owner. Hence, the private key should be held by a neutral,
trusted party, such as a DTID registry operator. In this case,
the registry operator would sign the DT documents at the
request of the DTID owner. This style also poses a risk that
a DTID becomes permanently insecure if the private key is
compromised.

As an alternative to permanently attaching the pub-
lic key to the DTID, the public key could be added as
an extension. The WWW standards already have defined
query strings [77] as a method for sending parameters

140792 VOLUME 9, 2021

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

as parts of URL. Hence, the DTID coupled with an
extension would be in the form: [domain]/[unique
identifier]?[algorithm id]=[(hash of) pu-
blic key]. A query string is the part of the URL after the?
sign, and it consists of a key-value pair divided by = sign. The
algorithm id can be used to define the version of the signing
algorithm used. It should be standardized so that both the
client and the server know what algorithm to use when ensur-
ing the integrity of the DT document. The query string should
be included with the DTID whenever the user might want to
ensure the integrity of theDT document behind theDTID. For
example, it may be convenient to include the string in a QR
code that is attached to the physical counterpart of the twin. A
query string does not create a conflict with redirection, so it
can be used truly as an extension of the DTID, working even
with DTID registries that might not specifically support this
feature. However, it may cause confusion about when the key
should be used and who should hold the private key.

As a further development goal, digital twins could use
self-sovereign identities to be independent of identifier issu-
ing authorities. These methods are being developed by the
authors. Also, the use of role-based access control (RBAC)
and attribute-based access control (ABAC) methods should
be investigated for securely providing access either to com-
plete records or to specific fields that should not be publicly
visible.

D. STANDARDIZATION CONSIDERATIONS
This article has discussed two topics that are considered
subjects of standardization: the Digital Twin Web in general
and the DT document. The DTW needs to be standardized so
that users all over the web know how to find and access DT
documents, while the contents of DT documents need to be
standardized so that the users can leverage them efficiently.
The two following subsections do not define the standards but
rather describe what should be standardized.

1) DTW STANDARDIZATION
The Digital Twin Web is at its inauguration, and the topics
for standardization should start from the very basics. There
are three main topics: DTID, DT document, and the protocol
on how to fetch a DT document based on its DTID. The
topics are similar to the WWW, which has the domain name
system, HTML documents, and HTTP protocol. Each of the
three DTW standardization topics contains several details
that need to be standardized. The standardization process can
be similar to the WWW as well, i.e., an iterative process
involving both technical implementations and standardiza-
tion efforts. Despite the similarities, there are two main dif-
ferences between DTW and WWW. First, the WWW was
built on top of early Internet standards, whereas DTW is
mainly built on top of WWW. Second, while the WWW
was made to contain pretty much any digital resources, the
DTW is made only for digital twins. These differences pose
both advantages and difficulties for DTW development. It is
useful to have the WWW as a basis, but some of its solutions

may not be optimal for DTW, which means some parts
of the DTW standards need to be very detailed. A digital
twin is also more conceptually difficult to grasp than a web
page. While having a ‘‘twin page’’ (Fig. 6) may provide
enough value for some applications, for many, it might be too
little.

We expect the DTW standards to become a collection of
multiple standards rather than a single document. One devel-
opment direction is to become a collection of a very large
amount of small definitions similar to the Request For Com-
ments (RFC) documents upkept by the Internet Engineering
Task Force. An RFC is not normative by default, but some
of the RFCs are promoted to the level of Internet Standard if
they are mature enough and provide significant benefit to the
Internet community. This type of approach seems appropriate
also for the DTW, although the community should be digital
twin specific.

2) DT DOCUMENT STANDARDIZATION
Defining a digital twin-specific information model is one of
the most important DTW standardization activities, enabling
the efficient use of DT documents across the diverse appli-
cations of the web. Standardization must include both the
default format of the document and the contents that describe
the actual information model.

The format needs to provide both technical functionality
and user-friendliness. Twinbase currently uses YAML for DT
documents thanks to its user-friendliness, even in raw text
form. However, plain YAML is not technically capable of
describing ontologies, so it should be extended to include
similar properties as JSON-LD. While waiting for a stan-
dardized linked data format in YAML, we recommend that
JSON-LD be used as the master format of the DT document,
and the YAML file can be used as an interface by converting
JSON-LD to YAML and back.

The digital twin informationmodel standardwill likely be a
mix of digital twin-specific and domain-specific ontologies.
This work concentrates only on the DT-specific ontologies,
i.e., defining the default variables of all DT documents.
A basic goal is that a DT document always includes the
information that meta-level digital twins need to function
properly. The necessary information can mean both univer-
sally mandatory terms and terms that are mandatory only on
specific platforms, such as Twinbase.

DTID, along with the whole DTID registry record, proved
to be an integral part of the DTW. While the master data lies
in the DTID registry, we recommend that each DT document
contains a copy of its DTID record:
• DTID (permanent),
• hosting IRI (changeable), and
• the owner of the DT (preferably the DTID of the owner,
changeable).

When the record is stored in both places, the DTW server can
periodically check the validity of the record, which might be
especially important to avoid data loss in the beginning as
DTID registries are still being developed.

VOLUME 9, 2021 140793

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

Many further topics need to be standardized before DT
documents can be used efficiently, and we are able to
mention only some of them as our work concentrated on
platform development instead of application development.
The method(s) to define relations to other twins should be
standardized promptly to be able to create proper networks
of digital twins. The coupling to the real-world counterpart is
generally considered as the main requirement for all digital
twins, and hence, further work should develop a set of meth-
ods to identify the real counterpart of the twin and include
them as standard entries in the DT document. Contact infor-
mation is another useful term that may affect the functionality
of the DTW in general. As further development, it might
be useful to define different mandatory fields for different
types of DTs. For example, a person might have different
mandatory fields than an industrial machine.

E. OPENNESS CONSIDERATIONS
In the authors’ opinion, building a network of twins on a scale
similar to the WWWwill only be possible if DTW standards
are similarly free and openly accessible as the standards of the
WWW. More specifically, the open standards of DTW need
to describe the communication protocols in such detail that
a new DTW server or client can be developed from scratch.
If these standards were in place, Twinbase would not need to
be open source, but at the current stage, it is very useful to
have an open-source DTW platform to show where the needs
for the standards come from. Furthermore, having an open-
source server implementation for a DTW server will likely
promote its growth and adoption.

Open source can also aid in synchronizing the lifetimes
of digital and physical products. Digital products have a
notoriously short life span which does not match the long
lifespan of physical products. For example, an industrial
crane might be fulfilling its purpose just fine after fifty years
of service, whereas a web browser has reached the end of
support long before the five-year mark. Digital products can
be updated relatively easily, but this does not help if the
provider decides to discontinue their closed-source service
or the updated mainline software becomes incompatible with
certain physical products. With open-source software prod-
ucts, users can buy updates from an alternative provider or
update the software themselves. For example, if the authors
would discontinue Twinbase development for some reason,
a community of users could start updating it, and the physical
products leveraging Twinbase would stay functional.

F. BUILDING THE DIGITAL TWIN WEB WITH TWINBASE
Digital Twin Web is supposed to become a primarily open
network of digital twins, i.e., the fabric connecting the physi-
cal and digital worlds together. Achieving this kind of promi-
nent open network requires that a critical mass of users
receive value from the time and money they invest in DTW
solutions. Twinbase aids in gathering that mass by lower-
ing the total cost of publishing DT documents. The value
proposition of DTW is not yet crystallized and will inevitably

vary by use case, although most cases will probably include
optimizing the use of physical resources by providing the
right information at the right place at the right time. The cases
need to be developed one-by-one until we have libraries of
standard solutions.

At the current stage, extended use of Twinbase is hindered
by the lack of comprehensively defined DTW standards. The
most immediate need seems to be a DT document standard
that has provided value in real-world applications. The stan-
dards can only be specified after gaining experience of what
works and what does not, and we expect Twinbase to be
a useful tool for developing the standards because its user-
friendliness allows a high number of iterations by a large
group of users.

Twinbase also points out concrete technical requirements
for the DTW standards as it is a working technological
solution instead of a conceptual architecture. In addition
to identifying needs for technical details such as having a
protocol to transfer DT documents, the overall architecture
of Twinbase has shown the demand for various external ser-
vices. DTID registry is considered mandatory in the current
architecture, but there can also be others, such as a search
index that enables the efficient discovery of DT documents.
The experimentation with various services starts forming the
larger picture of how the first value-adding version of DTW
will actually work.

Twinbase makes the need for publicly available twins
apparent. Each house, street, city, country, and continent
should have its own twin so that other twins can describe
their relationship with them. This ability enables positioning
the twins to cyberspace in a similar manner that real-world
entities are positioned in regard to each other, leading to a
situation where the DTW starts to resemble the real world.
Public twins may contain only little information, as the mere
existence of a digital twin of a street is enough to link the
houses on that street together in the DTW. Privacy is also
ensured as owners of twins can decide the publicity level
of their twins, so all objects inside a house can be entirely
private. Nevertheless, the new ability to describe real-world
things on the Internet brings up a question of where the
boundaries between public and private information should
stand. The conversation has already started with the images
saved in Google Street View, and the development of DTW
will likely hasten this discussion. Nevertheless, we hope that
public meta-level digital twins provide a shared digital infras-
tructure on which other solutions can be built.

Ownership of digital twins deserves special attention.
We suggest that each twin is owned by the party that owns
the real-world counterpart. For example, the digital twin of
a privately owned thing, such as a crane, should be owned
by the owner of the physical crane, and the manufacturer can
describe extensions to that twin in its own systems via the
permanent DTID. An extension is a twin as well and owned
by whoever creates the extension, such as the manufacturer or
any other user who wants to attach information to the crane.
Extensions can be private or public. Public goods should

140794 VOLUME 9, 2021

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

have their twins too, and the corresponding public institutions
should own them. For example, the twins of the public streets
located in the City of Espoo should be owned by the City
of Espoo. However, Twinbase enables the creation of public
digital twins by anyone for anything, and hence ‘‘rogue’’
twins may start appearing if the real owners are not creating
the necessary twins. Then it is the responsibility of users to
determine whose digital twin to use and trust, and in the lack
of better options, some rogue twins may become the ‘‘de
facto’’ public twins. It will probably take years before this
problem becomes timely for digital twins, but on the other
hand, citizens already receive a large part of their information
on public infrastructure from private solutions such as Google
Maps.

VII. RISKS AND LIMITATIONS
This article has shown that DTW and Twinbase can work
technically in limited use but require further development
before providing value to users. To reach full potential, the
development of DTWwill require awide community of users,
which might be difficult to attract as there are no concrete
examples of value-adding use cases. However, related work
demonstrates interest in developing meta-level digital twins
frommany fronts, so the conceptual and technical experimen-
tation presented in this article should provide useful general
knowledge even if the Twinbase platform itself is not used.

The DT document standard is at the draft stage and heav-
ily under development. The structure of the document is
unfinished, and some aspects of the standard will likely be
backward incompatible. Hence, the documents along with
Twinbase cannot yet be used to their full potential, and some
of the work put into creating them will likely have to be
redone. The DT document standard is planned to be merged
or cross-used with other specifications, but technical or other
difficulties might arise to prevent this.

Currently, Twinbase does not allow hosting DT documents
privately, which means that it cannot be used for sensitive
information, leaving out many potential use cases. However,
public-first is a conscious strategical choice that should attract
a critical mass of public DT documents that act as infrastruc-
ture for the private ones. Creating private implementations
of Twinbase will require some development but should be
possible.

The hosting URL can be mistakenly used for referring to
the DT instead of using the DTID. The URL works at first
but will cause problems when the hosting URL changes due
to, e.g., DT ownership change, transfer to another Twinbase,
or other change in base hosting URL. This problem could
be prevented by providing proper client libraries and clear
instructions to users or by developing a DTID registry that
allows twin documents to be hosted from the DTID.

VIII. MANAGERIAL IMPLICATIONS
Should your company start using Twinbase right now? In
production, no. In the research department, we recommend
getting familiar with DT document standards and their

distribution technologies, such as Twinbase. During your
exploration, it is good to keep in mind that the benefits of DT
documents vary drastically by use case, and the best business
cases may arise from anywhere in the company, e.g., from
sales.

While Twinbase and the whole Digital Twin Web initiative
are in the very early days of their development, the race to
define many related standards is already going strong as big
industry players are describing their digital twins in various
formats, including AAS, DTDL, andWoT TD. These formats
describe knowledge on various layers and have their own
emphasis points, so the competition between them may not
become a VHS vs. Betamax style either-or competition, but
rather each standard may find its place in the future set of
digital twin standards.

Current commercial digital twin platforms seem to be
missing a method to create permanent, globally accessible,
and transferable identifiers for digital twins. These identifiers
are not needed for digital twin networks that are limited
to one company or consortium, so within these boundaries,
it is possible to solve complex technical tasks with digital
twin networks created with the existing platforms. However,
to reach a Digital Twin Web that opens up a similar multi-
tude of business opportunities as the World Wide Web has
opened in the last thirty years, a global standard for proper
digital twin identifiers must be developed. The DTID registry
concept presented in this paper is one method for creating
good enough identifiers, but future developments may show
systems similar to the DNS or even new types of identifiers
conforming with the Self-Sovereign Identity concept.

Defining the publicity level of the DT documents needs
special attention. Publicly available DT documents might
attract developer communities across the globe and turn your
products into thriving business platforms, but to remain com-
petitive, companies need to categorize the publicity level of
their meta-level digital twins strategically. While business-
critical information naturally stays internal or with trusted
partners, not all remaining material should be published
because public data needs to be updated carefully, increasing
maintenance costs. Companies need to develop processes on
how to add new material to public DT documents to avoid
leaking confidential information and to identify metadata that
leads to increased cash flow when published.

IX. CONCLUSION
This article introduced Twinbase, its underlying architecture
GADIT, the basic structure of Digital TwinWeb, and the con-
cept of digital twin identifier (DTID) registry. These solutions
can be used to distribute digital twin documents from owners
to users, as displayed in Fig. 1.We implemented initial perfor-
mance measurements and conclude that the overall approach
seems promising but should be improved in several ways
described throughout the article. The solutions also need to
be validated and guided by real-life use cases. To promote the
adoption of Digital Twin Web technologies, we introduced
four openly accessible resources, listed in Table 2.

VOLUME 9, 2021 140795

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

TABLE 2. Openly accessible resources introduced in this article.

Twinbase is an open-source platform for distributing dig-
ital twin documents as effortlessly as possible. People with
no experience in programming or server administration can
create a public and free-of-charge instance of Twinbase using
only a web browser. Twinbase leverages GitHub repository,
GitHub Actions, and GitHub Pages by default but can be
modified to use their alternatives.

GADIT is a general architecture that describes how a Git
repository can be used as a Digital Twin Web server when
coupled with a CI system that updates files and a static
web server where the contents are deployed. GADIT was
used for Twinbase but can also be used to create alternative
implementations.

Digital Twin Web is a proposed information system where
digital twins are described by DT documents, identified by
digital twin identifiers, and accessible over the Internet. The
structure of the Digital Twin Web highly resembles the struc-
ture of theWorldWideWeb, but in distinction, each twin mir-
rors a real-world counterpart. The twins should be interlinked
according to the relations of their real-world counterparts so
that the accumulation of the twins starts to mirror the real
world. Digital Twin Web is formed through a combination
of standards and technologies whose development will be a
demanding task.

DTID registries store permanent, globally accessible, and
transferable identifiers for digital twins. The concept requires
further development, and as proper DTID registries do not
exist yet, we used a selection of URL redirection services in
their place.

Performance measurements suggest that the overall
approach is feasible for simple use cases, but more com-
plex cases demand further development. The static web
servers used for Twinbase proved to be consistently fast
with a response time of approximately 0.1 seconds across
three server providers, but the URL redirection services used
as DTID registries showed surprisingly great and consis-
tent variation. The median times for fetching a DT docu-
ment ranged from 0.4 seconds for the fastest registries to
1.1 seconds for the slowest. When fetching a series of six
interrelated twins, the median time for the last document to
arrive was 2.0 seconds for the fastest registry and 6.8 for the
slowest.

Twinbase is still work-in-progress, and its usefulness is
limited by the capabilities of the DT document standard.
However, by providing an effortless solution for hosting
public DT documents, Twinbase may be able to boost DT

document standard development. A prominent next step
would be to map existing standards [27] to the DT document
standard draft and to automatically convert between them on
the Twinbase server.

ACKNOWLEDGMENT
The authors would like to thank Pekka Nikander for bounc-
ing ideas on how to enhance security with cryptography.
JUUSO AUTIOSALO also would like to thank KAUTE
Foundation and Walter Ahlström Foundation.

REFERENCES
[1] M. Grieves and J. Vickers, ‘‘Digital Twin: Mitigating unpredictable,

undesirable emergent behavior in complex systems,’’ in Transdisci-
plinary Perspectives on Complex Systems: New Findings and Approaches,
F.-J. Kahlen, S. Flumerfelt, and A. Alves, Eds. Cham, Switzerland:
Springer, 2017, pp. 85–113, doi: 10.1007/978-3-319-38756-7_4.

[2] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne, and
L. Wang, ‘‘Modeling, simulation, information technology & processing
roadmap,’’ NASA, Washington, DC, USA, Tech. Rep. 11, 2010. [Online].
Available: http://www.nasa.gov/pdf/501321main_TA11-MSITP-DRAFT-
Nov2010-A1.pdf

[3] E. Glaessgen and D. Stargel, ‘‘The digital twin paradigm for future NASA
and US Air Force vehicles,’’ in Proc. 53rd AIAA/ASME/ASCE/AHS/ASC
Struct., Struct., Dyn. Mater. Conf., Honolulu, HI, USA, Apr. 2012, p. 1818,
doi: 10.2514/6.2012-1818.

[4] F. Tao andM. Zhang, ‘‘Digital twin shop-floor: A new shop-floor paradigm
towards smart manufacturing,’’ IEEE Access, vol. 5, pp. 20418–20427,
2017, doi: 10.1109/ACCESS.2017.2756069.

[5] F. Tao, F. Sui, A. Liu, Q. Qi, M. Zhang, B. Song, Z. Guo,
S. C.-Y. Lu, and A. Nee, ‘‘Digital twin-driven product design frame-
work,’’ Int. J. Prod. Res., vol. 57, no. 12, pp. 3935–3953, 2019, doi:
10.1080/00207543.2018.1443229.

[6] M. Langheinrich, F. Mattern, K. Römer, and H. Vogt, ‘‘First steps
towards an event-based infrastructure for smart things,’’ in Proc.
Ubiquitous Comput. Workshop, 2000, p. 34. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.9512

[7] M. Kärkkäinen, T. Ala-Risku, and K. Främling, ‘‘The product cen-
tric approach: A solution to supply network information management
problems,’’ Comput. Ind., vol. 52, no. 2, pp. 147–159, Oct. 2003, doi:
10.1016/S0166-3615(03)00086-1.

[8] D. McFarlane, S. Sarma, J. L. Chirn, C. Y. Wong, and K. Ashton,
‘‘Auto ID systems and intelligent manufacturing control,’’ Eng. Appl.
Artif. Intell., vol. 16, no. 4, pp. 365–376, Jun. 2003, doi: 10.1016/S0952-
1976(03)00077-0.

[9] J. C. Camposano, K. Smolander, and T. Ruippo, ‘‘Seven metaphors
to understand digital twins of built assets,’’ IEEE Access, vol. 9,
pp. 27167–27181, 2021, doi: 10.1109/ACCESS.2021.3058009.

[10] S. H. Khajavi, N. H. Motlagh, A. Jaribion, L. C. Werner, and
J. Holmstrom, ‘‘Digital twin: Vision, benefits, boundaries, and creation
for buildings,’’ IEEE Access, vol. 7, pp. 147406–147419, 2019, doi:
10.1109/ACCESS.2019.2946515.

[11] Q. Lu, A. K. Parlikad, P. Woodall, G. Don Ranasinghe, X. Xie, Z. Liang,
E. Konstantinou, J. Heaton, and J. Schooling, ‘‘Developing a digital twin
at building and city levels: Case study of west Cambridge campus,’’
J. Manage. Eng., vol. 36, no. 3, May 2020, Art. no. 05020004, doi:
10.1061/(ASCE)ME.1943-5479.0000763.

[12] B. R. Barricelli, E. Casiraghi, J. Gliozzo, A. Petrini, and S. Valtolina,
‘‘Human digital twin for fitness management,’’ IEEE Access, vol. 8,
pp. 26637–26664, 2020, doi: 10.1109/ACCESS.2020.2971576.

[13] R. Saracco, J. Autiosalo, D. de Kerckhove, F. Flammini, and L. Nisiotis.
(Apr. 2020). Personal Digital Twins and their Role in Epidemics Control.
[Online]. Available: https://digitalreality.ieee.org/images/files/pdf/PDT-
role-in-Epidemics_FINAL.pdf

[14] G. Pappas, J. Siegel, and K. Politopoulos, ‘‘VirtualCar: Virtual mirroring
of IoT-enabled avacars in AR, VR and desktop applications,’’ in Proc.
Int. Conf. Artif. Reality Telexistence Eurograph. Symp. Virtual Environ.
Posters Demos, T. Huang, M. Otsuki, M. Servières, A. Dey, Y. Sugiura,
D. Banakou, and D. Michael-Grigoriou, Eds. Stockholm, Sweden: The
Eurographics Association, 2018, pp. 1–13, doi: 10.2312/egve.20181381.

140796 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-319-38756-7_4
http://dx.doi.org/10.2514/6.2012-1818
http://dx.doi.org/10.1109/ACCESS.2017.2756069
http://dx.doi.org/10.1080/00207543.2018.1443229
http://dx.doi.org/10.1016/S0166-3615(03)00086-1
http://dx.doi.org/10.1016/S0952-1976(03)00077-0
http://dx.doi.org/10.1016/S0952-1976(03)00077-0
http://dx.doi.org/10.1109/ACCESS.2021.3058009
http://dx.doi.org/10.1109/ACCESS.2019.2946515
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000763
http://dx.doi.org/10.1109/ACCESS.2020.2971576
http://dx.doi.org/10.2312/egve.20181381

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

[15] J. E. Siegel, ‘‘Cloudthink and the Avacar: Embedded design to create
virtual vehicles for cloud-based informatics, telematics, and infotainment,’’
M.S. thesis, Dept. Mech. Eng., Massachusetts Inst. Technol., Cambridge,
MA, USA, 2013.[Online]. Available: http://hdl.handle.net/1721.1/92230

[16] A. N. Pedersen, M. Borup, A. Brink-Kjár, L. E. Christiansen, and
P. S. Mikkelsen, ‘‘Living and prototyping digital twins for urban water
systems: Towards multi-purpose value creation usingmodels and sensors,’’
Water, vol. 13, no. 5, p. 592, Jan. 2021, doi: 10.3390/w13050592.

[17] A. M. Karadeniz, I. Arif, A. Kanak, and S. Ergun, ‘‘Digital twin
of eGastronomic things: A case study for ice cream machines,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–4, doi:
10.1109/ISCAS.2019.8702679.

[18] R. Parmar, A. Leiponen, and L. D.W. Thomas, ‘‘Building an organizational
digital twin,’’ Bus. Horizons, vol. 63, no. 6, pp. 725–736, Nov. 2020, doi:
10.1016/j.bushor.2020.08.001.

[19] H. Laaki, Y. Miche, and K. Tammi, ‘‘Prototyping a digital twin
for real time remote control over mobile networks: Application of
remote surgery,’’ IEEE Access, vol. 7, pp. 20325–20336, 2019, doi:
10.1109/ACCESS.2019.2897018.

[20] J. Siegel and S. Sarma, ‘‘A cognitive protection system for the Internet of
Things,’’ IEEE Secur. Privacy, vol. 17, no. 3, pp. 40–48, May 2019, doi:
10.1109/msec.2018.2884860.

[21] J. E. Siegel, S. Kumar, and S. E. Sarma, ‘‘The future Internet of Things:
Secure, efficient, and model-based,’’ IEEE Internet Things J., vol. 5, no. 4,
pp. 2386–2398, Aug. 2018, doi: 10.1109/JIOT.2017.2755620.

[22] A. Canedo, ‘‘Industrial IoT lifecycle via digital twins,’’ in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth., Oct. 2016, p. 1. [Online]. Available:
https://ieeexplore.ieee.org/document/7750990

[23] S. P. A. Datta, ‘‘Emergence of digital Twins—Is this theMarch of reason?’’
J. Innov. Manage., vol. 5, no. 3, pp. 14–33, Nov. 2017, doi: 10.24840/2183-
0606_005.003_0003.

[24] R. Rosen, J. Fischer, and S. Boschert, ‘‘Next generation digital twin: An
ecosystem for mechatronic systems?’’ IFAC-Papers Line, vol. 52, no. 15,
pp. 265–270, 2019, doi: 10.1016/j.ifacol.2019.11.685.

[25] J. Autiosalo, J. Vepsalainen, R. Viitala, and K. Tammi, ‘‘A feature-based
framework for structuring industrial digital twins,’’ IEEE Access, vol. 8,
pp. 1193–1208, 2020, doi: 10.1109/ACCESS.2019.2950507.

[26] R. Ala-Laurinaho, J. Autiosalo, A. Nikander, J. Mattila, and K. Tammi,
‘‘Data link for the creation of digital twins,’’ IEEE Access, vol. 8,
pp. 228675–228684, 2020, doi: 10.1109/ACCESS.2020.3045856.

[27] M. Jacoby and T. Usländer, ‘‘Digital twin and Internet of Things-current
standards landscape,’’ Appl. Sci., vol. 10, no. 18, p. 6519, Jan. 2020, doi:
10.3390/app10186519.

[28] S. Kaebisch, T. Kamiya, M. McCool, V. Charpenay, and M. Kovatsch.
(Jun. 2020). Web of Things (WoT) Thing Description. [Online]. Available:
https://web.archive.org/web/20210325091547/

[29] Contributors. (Jul. 2020). Digital Twin Definition Language. [Online].
Available: https://github.com/Azure/opendigitaltwins-dtdl

[30] Plattform Industrie 4.0. (Nov. 2020). Details of the Asset
Administration Shell. [Online]. Available: https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the
_Asset_Administration_Shell_Part1_V3.pdf?blob=publicationFile&v=5

[31] ETSI. (Feb. 2021). ETSI GS CIM 009 V1.4.1 Context Information Man-
agement (CIM): NGSI-LD API. [Online]. Available: https://portal.etsi.
org/webapp/workprogram/Report_WorkItem.asp?WKI_ID=61461

[32] Harbor Research. (Mar. 2021). An Open-Source Fabric for Digital Twins.
[Online]. Available: https://harborresearch.com/connected-complexity/

[33] E. Ditto. (Mar. 2021). Protocol Specification Eclipse Ditto a Digital Twin
Framework. [Online]. Available: https://www.eclipse.org/ditto/protocol-
specification.html

[34] World Wide Web Consortium. (2021). Standards—W3C. [Online].
Available: https://www.w3.org/standards/

[35] Git Community. Accessed: Jul. 26, 2021. [Online]. Available: https://git-
scm.com/

[36] GitHub. (2021). GitHub Features: The Right Tools for the Job. [Online].
Available: https://github.com/features

[37] A. Bolton, L. Butler, I. Dabson, M. Enzer, M. Evans, T. Fenemore,
F. Harradence, E. Keaney, A. Kemp, A. Luck, N. Pawsey, S. Saville,
J. Schooling, M. Sharp, T. Smith, J. Tennison, J. Whyte, A. Wilson,
and C. Makri, ‘‘Gemini principles,’’ Apollo-Univ. Cambridge Repository,
Cambridge, U.K., Tech. Rep. CDBB_REP_006, 2018, doi: 10.17863/
CAM.32260.

[38] S. Chorlton, T. Hughes, A. Robasto, and T. Au, ‘‘GBDT hub annual
benchmark report 2020,’’ Center Digit. Built Britain, Cambridge, U.K.,
Tech. Rep., Mar. 2021. [Online]. Available: https://digitaltwinhub.co.
uk/files/file/72-annual-benchmark-report/

[39] E. Barnstedt, B. Boss, E. Clauer, D. Isaacs, S.-W. Lin, S. Malakuti,
P. van Schalkwyk, and T. W. Martins. (Mar. 2021). Open Source Drives
Digital Twin Adoption. [Online]. Available: https://www.iiconsortium.
org/pdf/2021_March_JoI_Open_Source_Drives_Digital_Twin_SA.pdf

[40] (Jul. 2021). Apache HTTP Server. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Apache_HTTP
_Server&oldid=1035340123

[41] (Jul. 2021). Nginx. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=Nginx&oldid=1032222228

[42] GitHub Pages. Accessed: Jul. 26, 2021. [Online]. Available: https://pages.
github.com/

[43] Netlify. Accessed: Jul. 26, 2021. [Online]. Available: https://www.netlify.
com/

[44] Azure Digital Twins. Accessed: Jul. 26, 2021. [Online]. Available:
https://azure.microsoft.com/en-us/services/digital-twins/

[45] Azure Digital Twins Explorer. Accessed: Jul. 26, 2021. [Online]. Available:
https://docs.microsoft.com/en-us/samples/azure-samples/digital-twins-
explorer/digital-twins-explorer/

[46] Products—E-Magic TwinWorX Software Executive Summary. Accessed:
Jul. 26, 2021. [Online]. Available: https://e-magic.ca/products/

[47] Mindsphere City Graph Software. Accessed: Jul. 26, 2021. [Online]. Avail-
able: https://www.siemens-advanta.com/cases/mindsphere-city-graph

[48] Contributors. (Jul. 2021). Admin-Shell-Io/Aasx-Package-Explorer.
[Online]. Available: https://github.com/admin-shell-io/aasx-package-
explorer

[49] Contributors. (Jul. 2021). Admin-Shell-Io/Aasx-Server. [Online].
Available: https://github.com/admin-shell-io/aasx-server

[50] Thingweb. Accessed: Jul. 26, 2021. [Online]. Available: http://www.
thingweb.io/

[51] Contributors. (Jul. 2021). Eclipse/Editdor. [Online]. Available: https://
github.com/eclipse/editdor

[52] A. G. Mangas. (Jul. 2021). Agmangas/Wot-Py. [Online]. Available:
https://github.com/agmangas/wot-py

[53] E. Korkan, H. B. Hassine, V. E. Schlott, S. Käbisch, and S. Steinhorst,
‘‘WoTify: A platform to bring Web of Things to your devices,’’ 2019,
arXiv:1909.03296. [Online]. Available: https://arxiv.org/abs/1909.03296

[54] Evrythng. Accessed: Jul. 26, 2021. [Online]. Available: https://evrythng.
com/

[55] GS1. (2021). Digital Link—Standards GS1. [Online]. Available:
https://www.gs1.org/standards/gs1-digital-link

[56] J. Autiosalo, R. Ala-Laurinaho, J. Mattila, M. Valtonen, V. Peltoranta, and
K. Tammi, ‘‘Towards integrated digital twins for industrial products: Case
study on an overhead crane,’’ Appl. Sci., vol. 11, no. 2, p. 683, Jan. 2021,
doi: 10.3390/app11020683.

[57] R. Ala-Laurinaho, A. Nikander, and J. Autiosalo. (May 2021).
AaltoIIC/DT-Document. [Online]. Available: https://github.com/AaltoIIC/
dt-document

[58] D. Stolee. (Dec. 2020). Get Speed With Partial Clone and Shallow Clone.
[Online]. Available: https://github.blog/2020-12-21-get-up-to-speed-with-
partial-clone-and-shallow-clone/

[59] Travis CI. Accessed: Jul. 26, 2021. [Online]. Available: https://travis-
ci.com/

[60] GitHub Actions. Accessed: Jul. 26, 2021. [Online]. Available: https://
github.com/features/actions

[61] GitLab CI/CD. Accessed: Jul. 26, 2021. [Online]. Available: https://docs.
gitlab.com/ee/ci/

[62] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijaniá,
H. Ménager, S. Soiland-Reyes, B. Gavrilovic, and C. Goble, ‘‘Methods
included: Standardizing computational reuse and portability with the com-
mon workflow language,’’ 2021, arXiv:2105.07028. [Online]. Available:
http://arxiv.org/abs/2105.07028

[63] E. Bouças. (Sep. 2017). Creating a Static API from a Repository. [Online].
Available: https://css-tricks.com/creating-static-api-repository/

[64] (Mar. 2021). List of DNS Record Types. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=List_of_DNS_record
_types&oldid=1012819785

[65] A. Mannegal. (Feb. 2021). Digital Twin Model Identifier. [Online]. Avail-
able: https://github.com/Azure/digital-twin-model-identifier

[66] The Official YAML. Accessed: Jul. 26, 2021. [Online]. Available:
https://yaml.org/

[67] W3C Permanent Identifier Community Group. (2021). Permanent Identi-
fiers for the Web. [Online]. Available: https://w3id.org/

[68] Rebrandly. (2021). Rebrandly Custom URL Shortener, Branded Link Man-
agement, API. [Online]. Available: https://rebrandly.com/

VOLUME 9, 2021 140797

http://dx.doi.org/10.3390/w13050592
http://dx.doi.org/10.1109/ISCAS.2019.8702679
http://dx.doi.org/10.1016/j.bushor.2020.08.001
http://dx.doi.org/10.1109/ACCESS.2019.2897018
http://dx.doi.org/10.1109/msec.2018.2884860
http://dx.doi.org/10.1109/JIOT.2017.2755620
http://dx.doi.org/10.24840/2183-0606_005.003_0003
http://dx.doi.org/10.24840/2183-0606_005.003_0003
http://dx.doi.org/10.1016/j.ifacol.2019.11.685
http://dx.doi.org/10.1109/ACCESS.2019.2950507
http://dx.doi.org/10.1109/ACCESS.2020.3045856
http://dx.doi.org/10.3390/app10186519
http://dx.doi.org/10.17863/CAM.32260
http://dx.doi.org/10.17863/CAM.32260
http://dx.doi.org/10.3390/app11020683

J. Autiosalo et al.: Twinbase: Open-Source Server Software for DT Web

[69] (Jan. 2021). Violin Plot. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=Violin_plot&oldid=1000379419

[70] L. Sciullo, C. Aguzzi,M.Di Felice, and T. S. Cinotti, ‘‘WoT store: Enabling
things and applications discovery for the W3C web of things,’’ in Proc.
16th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), Jan. 2019,
pp. 1–8, doi: 10.1109/CCNC.2019.8651786.

[71] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. Doshi, and J. Sachs, ‘‘Swoogle: A search and metadata engine
for the semantic web,’’ in Proc. 13th ACM Int. Conf. Inf. Knowl.
Manage., New York, NY, USA, Nov. 2004, pp. 652–659, doi:
10.1145/1031171.1031289.

[72] JSON Schema. Accessed: Jul. 26, 2021. [Online]. Available: https://json-
schema.org/

[73] ACE—The High Performance Code Editor for the Web. Accessed:
Jul. 26, 2021. [Online]. Available: https://ace.c9.io/

[74] J. D. Jong. JSON Editor Online. Accessed: Jul. 26, 2021. [Online]. Avail-
able: http://jsoneditoronline.org

[75] YAML—Visual Studio Marketplace. Accessed: Jul. 26, 2021. [Online].
Available: https://marketplace.visualstudio.com/items?itemName=redhat.
vscode-yaml

[76] T. Anderson. (Mar. 2021). PHP Repository Moved to GitHub After
Malicious Code Inserted Under Creator Rasmus Lerdorf’s Name.
Accessed: Mar. 31, 2021. [Online]. Available: https://www.theregister.
com/2021/03/29/php_repository_infected/

[77] (Jul. 2021). Query String. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=Query_string&oldid=1031686388

JUUSO AUTIOSALO received the B.Sc. and
M.Sc. degrees from Aalto University, Espoo,
Finland, in 2015 and 2017, respectively, where he
is currently pursuing the Ph.D. degree. He was
a Visiting Research Scholar with Michigan State
University, in 2020. He has instructed six master’s
theses and two bachelor’s theses and performed
teaching activities at three university courses.
He was the Project Manager of the DigiTwin
project executed in tight collaboration with indus-

try partners. His research interests include the practical implementation
and network effects of digital twins. Before focusing on the intersection
of the Internet of Things and machine design, he implemented several
study projects on mechatronics and wrote his M.Sc. thesis on hydraulic
accumulators.

JOSHUA SIEGEL received the Ph.D., S.M., and
S.B. degrees in mechanical engineering from
the Massachusetts Institute of Technology (MIT).
He is currently an Assistant Professor in computer
science and engineering with Michigan State Uni-
versity and the Lead Instructor of the MIT, ‘‘Inter-
net of Things’’ and ‘‘DeepTech’’ Bootcamps.
He and his automotive companies have been rec-
ognized with accolades including the Lemelson-
MIT Student Prize and the MassIT Government

Innovation Prize. He has multiple issued patents, published in top scholarly
venues, and been featured in popular media. His ongoing research develops
architectures for secure and efficient connectivity, applications for pervasive
sensing, including to vehicle diagnostics and new approaches to automated
driving.

KARI TAMMI received the M.Sc., Lic.Sc., and
D.Sc. degrees from the Helsinki University of
Technology, in 1999, 2003, and 2007, respectively.
He received teaching pedagogical qualifications
with the Häme University of Applied Sciences,
in 2017. He has been working as an Associate Pro-
fessor with Aalto University, since 2015. He also
works the Finnish Administrative Supreme Court
as a Chief Engineer Counselor. Earlier, he worked
as a Research Professor, the Research Manager,

and the Team Leader and in other positions with the VTT Technical Research
Centre of Finland, from 2000 to 2015. He has been a Postdoctoral Researcher
with North Carolina State University, USA, from 2007 to 2008, and a
Researcher at CERN, the European Organization for Nuclear Research,
in 2000. He has authored more than 90 peer-reviewed publications cited in
more than 5000 other publications. He currently serves as the Deputy Chair
for IFTOMM Finland.

140798 VOLUME 9, 2021

http://dx.doi.org/10.1109/CCNC.2019.8651786
http://dx.doi.org/10.1145/1031171.1031289

