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We theoretically study the transport properties of a single graphene layer between two insulating 

materials, i.e., a ferromagnetic EuO thin film and a nonmagnetic SiC substrate. An exchange 

interaction between the charge carrier spins in graphene and the localized magnetic moments in the 

ferromagnetic insulator is assumed. This proximity effect and the large spin fluctuations at 

temperatures close to the ferromagnetic transition temperature TC lead to spin disorder scattering, 

which is calculated using a Green's function technique. Numerical results indicate that at 

temperatures close to TC the contribution of the spin disorder scattering to the total electron mobility 

is clearly observable even in the case of a weak exchange interaction and a low background 

mobility of the graphene layer. This enables the experimental determination of the exchange 

interaction parameter using the present model and a simple resistivity measurement. 

 

1 Introduction 

Graphene, an atomically thin layer of carbon atoms arranged in a honeycomb lattice, continues to 

attract enormous interest because of its unusual physical properties as well as due to its applications 

in carbon based electronics [1-5]. A number of peculiar transport phenomena, such as finite 

minimal conductivity [2], the unusual half-integer quantum Hall effect [6], and Klein paradox [7] 

have been studied in graphene. In graphene-based electronics [5] the high carrier mobility [8, 9] is 

one of the most attracting properties. Due to the small spin–orbit coupling [10], weak hyperfine 

interaction with the underlying nuclear spin system, and potentially long spin lifetimes graphene 

also is a promising material for spintronic applications (see, e.g., Ref. [11] and refs. therein). Spin 

relaxation lengths on the order of micrometers have been observed [12] together with spin 

relaxation times of hundreds of picoseconds. Also spin injection from ferromagnetic Co into 

graphene has been achieved [13]. Recently highly efficient spin transport in epitaxial graphene on 

SiC has been reported showing spin transport efficiencies up to 75% and spin diffusion lengths 

exceeding 100 μm [14]. Several approaches for controlling the spin-dependent transport in graphene 

nanostructures have been proposed. For instance, graphene quantum dots have been identified as an 

ideal host for spin qubits [15, 16]. Also the spin polarized states induced by the edge defects in 

zigzag graphene nanoribbons have been studied in a number of works [17-20], and it has been 

predicted theoretically that graphene nanomesh structure should show magnetic properties [21]. 

An alternative approach to graphene-based spintronics has been proposed by Semenov et al. [22] 

and Haugen et al. [23], who theoretically studied spin dependent transport properties of graphene 

having a ferromagnetic insulator deposited on top of the graphene layer. Here the spin manipulation 
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is achieved via the exchange interaction between the spins of the itinerant electrons in graphene and 

the spins of the localized magnetic electrons in the magnetic atoms at the surface of the 

ferromagnetic insulator. Also the possibility to control the spin dependent electrical current using a 

ferromagnetic gate has been discussed in several works [24-28]. Due to the spin splitting of the 

electronic states a spin polarized current is generated, and it can be controlled by the gate voltage. A 

drawback in these structures is that due to the lack of the energy band gap, the spin polarization in a 

2D monolayer graphene is limited [24-26]. The situation is more favorable in bilayer graphene due 

to its specific electronic structure, as discussed by Semenov et al. [28] and Hung Nguyen et al. [29]. 

Strong resonant tunneling effects and large magnetoresistance behavior have been predicted [29, 

30] in the case of the ferromagnetic insulator/bilayer graphene-structures. So far the exact value of 

the strength of the exchange interaction in the graphene/ferromagnetic insulator-interface is 

unknown, but in the EuO/Al-interface an estimate of Jexch = 15 meV has been obtained 

experimentally [31]. This value would be large enough to cause, e.g., a significant spin splitting of 

the electronic states in graphene [23]. Recently even a much larger value for the exchange 

parameter in an EuO/graphene-system was estimated based on first-principle calculations [32]. 

In the present paper, we theoretically study the effect of the proximity exchange interaction and the 

consequent spin disorder scattering on the electrical transport in a single layer graphene between 

two insulating layers, i.e., a nonmagnetic SiC substrate and the ferromagnetic EuO thin film on top 

of the graphene layer. The spin disorder scattering has not been treated in the previous works [22-

30] on ferromagnetic graphene. Our aim is to show that since graphene has a very high electron 

mobility, which is very sensitive to external perturbations, the effect of the proximity exchange 

coupling could easily be seen in the measurements of the electron mobility versus temperature and 

magnetic field. In this way also an estimate for the exchange coupling parameter Jexch could be 

obtained, which is the key parameter in all the modeling of the graphene-based spintronic devices 

utilizing the proximity effect. The EuO/graphene/SiC-structure was chosen as a model system, 

because EuO is an ideal isotropic ferromagnetic insulator, the magnetic properties of which are well 

known. Furthermore, the fabrication of ferromagnetic EuO thin films on graphene has been 

demonstrated recently [33, 34]. The advantage of the SiC substrate is that an existence of a band 

gap has been reported in the graphene/SiC system [35]. Later the results of Zsou et al. [35] have 

been questioned by other groups [36-38]. However, there are alternative proposals for insulating 

substrates or nanostructures, which also should induce a band gap in graphene, such as hexagonal 

boron nitride (h-BN) [39], graphene nanomesh [40], hydrogenated h-BN [41], and nanoperforated 

graphene [42]. Therefore, our assumption of a band gap in graphene is reasonable. Finally, the 

existence of the band gap is not critical for the spin disorder scattering, since strong spin disorder 

scattering is observed in ferromagnetic metals having no band gap [43-45]. We have chosen the 

model system with a band gap, since the band gap and the existence of ordinary charge carriers with 

a finite effective mass make the calculations of the mobility more straightforward. 

Originally the theory of the spin disorder scattering, also known as critical scattering, was 

developed for ferromagnetic metals by de Gennes and Friedel [43], later by Fisher and Langer [44], 

and more recently by Majumbar and Littlewood [45]. The spin disorder scattering in magnetic 

semiconductors was discussed first by Haas [46], and later the mobility model was improved by 

Sinkkonen [47], who estimated the relaxation time of the charge carriers from the imaginary part of 

the self-energy in the self-consistent Born approximation. Also the transport anomalies observed in 

diluted magnetic semiconductors typically have been explained using various versions of the theory 

of spin disorder scattering [48-54]. In the present work, we estimate the spin disorder scattering rate 

from the second order self-energy, which is calculated using a Green's function technique in the 

case of a proximity exchange interaction between the spins of the itinerant electrons in graphene 
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and the spins of the localized magnetic electrons of the magnetic Eu atoms in EuO at the 

EuO/graphene interface. 

2 Model and formulation 

We study the ferromagnetic graphene system shown in Fig. 1. The epitaxial single layer graphene 

layer (denoted by C–C in Fig. 1) is sandwiched between an insulating non-magnetic substrate such 

as SiC and a ferromagnetic insulator (FMI), which we assume to be a EuO thin film. The gate metal 

(G) on top of the FMI layer is optional, i.e., it will not be considered further in the present work, but 

it is important if the structure of Fig. 1 is used in a transistor-like operation. We start the 

presentation of the model by reviewing briefly the standard “massless Dirac-fermion” model [55, 

56], and then we add to it the effects of the insulating substrate and the ferromagnetic EuO layer as 

perturbations. 

 

 

Figure 1. Schematic drawing of a ferromagnetic graphene structure, where a 2D graphene layer (C–

C) is between an insulating substrate (SiC) and a EuO thin film, which is a ferromagnetic insulator 

(FMI). The electrical transport occurs in the graphene layer between two nonmagnetic contacts (M). 

The carrier concentration in the graphene layer can be controlled by adding a gate metal (G) to the 

system. 

The honeycomb lattice of graphene has two carbon atoms per unit cell on sites, denoted below by A 

and B. The energy bands relevant to charge transport are formed from the sp2 orbitals. The mobile 

charge carriers move in the x–y plane by hopping between the pz orbitals of the carbon atoms. The 

low energy band structure consists of Dirac cones located at the two inequivalent Brillouin zone 

corners K and K′. The Hamiltonians for these valleys are given by  
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where is the Fermi velocity and the Pauli matrices σ act on the sublattice degrees of freedom. For 

each wave vector k, Eq. (1) has two eigenstates [55]:  

   /2 /21
, , ,

2

i iA e B e    k k
sks r r k r k  

                              /2 /21

2

i ii i

area

e e e e
S

    k kk r k r
s  (3) 

where is the carrier spin eigenstate, s is the spin operator of a carrier, Sarea is the area of the 

graphene surface, and . The eigenenergies of the Hamiltonian (1) are given by  

0
FkE v  k  (4) 

which shows that there is no band gap between the valence and conduction bands in a single layer 

graphene. The calculation of the Green's function for the graphene below requires the presentation 

of the Hamiltonians in the second quantization formalism. Therefore, using the wave functions (3), 

we define the following field operators for the charge carriers in graphene:  

   
,

c  ks ks
k s

r r  (5) 

    † †

,

* c  ks ks
k s

r r  (6) 

where (cks) is the creation (annihilation) operator of the charge carrier in the state . 

Next we add the effects of the perturbations due to the substrate (SiC) and the ferromagnetic 

insulator (EuO) to the electronic structure described above. Zhou et al. [35] have shown that in an 

epitaxial graphene on a SiC substrate a band gap is induced by the breaking of the A 

and B sublattice symmetry owing to the graphene–substrate interaction. Then the eigenstates can be 

obtained by diagonalization the Hamiltonian including (1) (or (2)) and a perturbation 

H′, which simply is given by  
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The perturbation caused by the exchange interaction is more complicated. Let us consider a 

ferromagnetic insulator in a close contact with a single graphene layer so that there is an overlap 

between the pz-orbitals of graphene and the localized wave functions of the magnetic electrons on 

the magnetic atoms at the FMI/graphene-interface. In the case of EuO there are seven 4f-electrons 

in each Eu-atom, which are responsible for the ferromagnetic properties of EuO and which give rise 

to the total spin S = 7/2 per Eu-atom. Then the Hamiltonian for the exchange interaction between 

the itinerant electrons in graphene and the magnetic electrons in FMI is given by  
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     0
exch exch exchH H V J J          R R R

R R

r R s S r R s S S  (8) 

where the summation runs over the 2D lattice sites R in the FMI/graphene-interface, and J(r − R) is 

the exchange interaction potential, which depends on the overlap of the wave functions. SR is the 

spin operator for the total spin of the magnetic atom at the site R. We have divided the Hamiltonian 

(8) into a mean-field part , which is proportional to the average spin polarization of the 

magnetic atoms, , and a fluctuation part Vexch, which is depends on . The former is 

responsible for the spin polarization of the electronic states and the latter causes the spin disorder 

scattering [43-47]. We assume that the exchange potential is of the contact type and it is given by  

   U exchJ J   r R r R  (9) 

Here , and N is the number of the Eu atoms at the interface, Jexch is the exchange 

interaction parameter, and is Dirac's δ-function. Using the field operators (5) and (6) and 

the exchange potential (9) we can express the exchange interaction (8) in the second quantization 

form:  
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The Hamiltonian (11) describes the giant Zeeman splitting of the electronic states with  

exch

z
exchJ S   (13) 

where is the average spin–polarization of the ferromagnetic lattice in the FMI layer. The effect 

of the exchange interaction (11) on the electronic structure of the EuO/graphene/SiC system shown 

in Fig. 1 is obtained by finding the eigenvalues for the following Hamiltonian:  
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which was obtained by adding the exchange interaction to the combination of the Hamiltonians (1) 

and (7). By diagonalizing the matrix (14) we get the spin polarized eigenenergies, which are given 

by  
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Here the sign +(−) refers to the conduction (valence) band. The low energy region of the energy 

band structure is shown in Fig. 2, as calculated from Eq. (15). At small values of the wave vector, 

, the band structure resembles the one in the ordinary magnetic semiconductors 

having a parabolic wave vector-dependence, . 

 

 

Fig.2. Low energy spectrum of energy bands in a EuO/graphene/SiC structure of Fig. 1. The material 

parameters are Jexch = 0.05 eV, S = 7/2, Eg = 0.26 eV [30], and vF = 106 m s−1. The solid curves show 

the spin degenerate bands (Δexch = 0), and the dashed (dash-dotted) curves show the spin-up (spin-

down) bands, when . 

The Green's function for the electrons in the graphene layer is calculated 

using the operator (12) as a perturbation. Then the unperturbed Hamiltonian includes the spin 

polarized bands (15), and it is given by  
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Now the corresponding unperturbed Hamiltonian is given by . Following our 

previous treatments [50, 51] of the spin-dependent transport in magnetic semiconductors in the case 

of the weak exchange interaction, it is a straightforward task to solve the proper equation of motion 

for the Green's function , and the solution is given by  
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where the second order self-energy related to the exchange interaction (12) reads  
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Here with αα = xx, yy, or zz, are the three components of the Fourier transform of the spin 

correlation function [47] , and they are given by  
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Here a0 is the lattice constant of EuO, and is the Brillouin function with the argument y, which 

is related to the average molecular field acting on the spin SR. The Brillouin function describes well 

the magnetic properties of EuO, which are close to those of an ideal ferromagnet. 

The electron mobility limited by the spin disorder scattering is calculated using the standard 

relation , where the inverse of the effective mass is calculated from the 

second derivative of the energy Eks in Eq. (15), and the average relaxation time at the Fermi 

level EF is calculated from the imaginary part of the self-energy (18). At low temperatures in the 

case of the 2D electron gas in graphene we get  

http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-bib-0050
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-disp-0012
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-bib-0047
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-disp-0015
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-disp-0018


 
 

2

2 2(2) 22

2
20 0

cos2 Im ( )1

8

F

F
F

xx
Fs Fs ssexch Uexch

s
s

C k q k qE J
d dqq

E E

  


  












  
 

 
 

k

k
k q

 

                                                +
 

 

2 2

2 2
2

2 2

2

coscos

F
F

zz
Fs Fs

ss

yy
Fs Fs s

s

C k q k q

E E

C k q k q

E E

 



 







 
 

 

 

 
 

 


 

 

  qkk q

 (23) 

Here γ is a small parameter describing the collisional broadening effects [51], and at small values of 

γ the function in Eq. (23) approaches the delta-function . The value of the 

relaxation time (23) depends on the spin index . The contributions from the spin-up and 

spin down bands (see Fig. 2) to the mobility are added together as follows  
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where is the electron concentration in the spin-up (spin-down) subband, when the total carrier 

concentration is . 

In our transport model the other scattering mechanisms are taken into account using a 

phenomenological expression for the background mobility without spin disorder scattering, and 

it is given by  
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Here is the room temperature mobility in graphene, when the spin disorder scattering is 

neglected. Typically in graphene resistivity decreases and mobility increases with 

decreasing temperature [9, 57-60], which can be modeled using Eq. (25) with the 

parameter . Finally, the total mobility  can be calculated using Eqs. (24) 

and (25) and Mathiessen's rule,. 

3 Numerical results and discussion 

We have calculated the electrical transport properties of the EuO/graphene/SiC structure shown in 

Fig. 1 using the model presented above. The most important material parameters in our model are 

the exchange interaction constant Jexch in Eqs. (15) and (23) and the room temperature mobility 

in Eq. (25). Unfortunately experimental data for Jexch in the case of the EuO/graphene interface is 

not yet available, but based on the experimental results for a EuO/Al system a value Jexch = 0.015 eV 

has been estimated previously [23]. In the case of other FMI's even higher values, such as 

Jexch = 0.065 eV, have been suggested [28]. Recently a theoretical estimation for the exchange 

interaction induced spin splitting was presented for the EuO/graphene system [32]. 

However, all the estimated values are much smaller than the experimental value Jexch = 0.17 eV for 

bulk EuO samples [61]. Due to the lack of information about the exact value of Jexch we calculate 

the spin disorder scattering limited mobility in the cases of weak (Jexch = 0.005 eV) and intermediate 

(Jexch = 0.05 eV) couplings. The values of electron mobility in nonmagnetic graphene also vary a lot 

from sample to sample [9, 58, 59], typically in the range from 103 to 105 cm2 V−1 s−1, depending on 
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the quality of the graphene layer and on its interaction with other materials in contact with 

graphene. In our calculations we let the room temperature mobility vary from 102 to 104 cm2 V−1 s−1 

in order to see how much the background mobility masks the effect of the spin disorder scattering. 

The other material parameters used in the calculations are the following: Curie temperature 

TC = 70 K in EuO thin films [62], a0 = 5.14 Å (EuO), S = 7/2, , Eg = 0.26 eV 

(graphene), γ = 10 meV, and β = 1.  

 

Figure 3. Spin disorder scattering limited mobility versus temperature for various electron 

concentrations in graphene. Here the value of the exchange interaction parameter is Jexch = 0.05 eV. 

Figure 3 shows the calculated mobility versus temperature for various electron concentrations 

in the EuO/graphene/SiC structure of Fig. 1. There is a sharp minimum in mobility at T = TC, which 

is  similar to the one in ordinary ferromagnetic semiconductors [50]. This is caused by the spin 

fluctuations in the magnetic lattice of EuO, which are largest at the Curie temperature: According to 

Eq. (23), the inverse of the relaxation time (and mobility) is proportional to the Fourier transform of 

the spin correlation functions (19), which at small values of the wave vector diverge at T = TC as 

. The mobility in Fig. 3 decreases with increasing electron concentration, because at 

larger Fermi wave vectors the integrand in Eq. (23) increases. Also the effective mass, as calculated 

from the second derivative of the dispersion relation (15), , increases with 

increasing carrier concentration. 

Figure 4 shows the mobility versus temperature at various magnetic fields, when the electron 

concentration in graphene is . Two different values for the exchange interaction 

parameter Jexch were used. The large negative magnetoresistance is shown at temperatures close to 

TC. At temperatures below TC the temperature dependence of mobility is much weaker in the case of 

http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-bib-0062
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-fig-0003
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-fig-0001
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-bib-0050
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-disp-0023
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-disp-0019
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-fig-0003
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-disp-0023
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-disp-0015
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/pssb.201350024/#pssb201350024-fig-0004


the small coupling constant Jexch = 0.005 eV (the four uppermost curves in Fig. 4) than in the case of 

the larger constant Jexch = 0.05 eV (the four lowest curves). This is due to the smaller spin splitting Δ 

in the case of small Jexch, which means that then the both subbands are occupied and the both spin 

correlation functions Czz and Cxx (or Cyy) in Eq. (23) contribute to the mobility.

 

Figure 4. Spin disorder scattering limited mobility versus temperature at various magnetic 

fields. In the upper (lower) curves the exchange interaction parameter is Jexch = 0.005 eV (0.05 eV). 

The charge carrier concentration in graphene is . The other material parameters are 

the same as in Fig. 3. The external magnetic field values are 0, 0.5, 1, and 2 T from bottom to top in 

the both cases of the two Jexch values. 

In the case of the larger spin splitting only the spin down subband is occupied, , and 

scattering events between the subbands are rare. Then the mobility depends only on Czz, which 

depends more strongly on temperature at T < TC than Cxx and Cyy. 

Figure 5 shows the calculated resistivity versus temperature, when the external 

magnetic field is either B = 0 T or B = 1 T and the carrier concentration in graphene is 1013 cm−2. 

The room temperature mobility varies from 102 to 104 cm2 V−1 s−1. Figure 5 shows that even in the 

case of low background mobility , and an intermediate 

exchange coupling between EuO and graphene, Jexch = 0.05 eV, a sharp peak in resistivity appears at 

the Curie temperature, when the external magnetic field is zero. 
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Figure 5. Calculated resistivity versus temperature at two values of the external magnetic field, 

B = 0 T (solid curves) and B = 1 T (dashed curves), when the carrier concentration is 1013 cm−2, and 

the exchange interaction parameter Jexch = 0.05 eV. The background mobility at room temperature is 

(a) 100 cm2 V−1 s−1, (b) 300 cm2 V−1 s−1, (c) 103 cm2 V−1 s−1, and (d) 104 cm2 V−1 s−1. 

An interesting question is, whether the resistivity peak can be observed also in the case of the weak 

exchange coupling. Figure 6a shows that the contribution from the spin disorder scattering is barely 

observable in the ρ versus T-curve, when the coupling constant is reduced to the value 0.005 eV. 

However, when the derivative of ρ with respect to temperature is calculated as a function of 

temperature there is a prominent peak at T = TC, which then disappears when the external magnetic 

field is increased from 0 to 1 T. Therefore we believe that in simple resistivity and 

magnetoresistance measurements the contribution from the spin disorder scattering could be 

observed experimentally in the EuO/graphene/SiC structure even in the case of the low electron 

mobility and the weak proximity effect. Thereby also an experimental estimate for the exchange 

interaction parameter Jexch could be obtained. 
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Figure 6. (a) Resistivity versus temperature at B = 0 T in the case of the weak coupling constant 

Jexch = 0.005 eV and the low background mobility μRT = 100 cm2 V−1 s−1. The electron concentration 

is n = 1013 cm−2. (b) Derivative of the resistivity with respect to temperature as a function of 

temperature at B = 0 T. The dashed curve has been calculated at B = 1 T. 

4 Conclusions 

We have calculated the contribution from the spin disorder scattering to the temperature and 

magnetic field dependent electron mobility and resistivity in a ferromagnetic insulator-on-graphene 

system. We have shown that even in the case of a weak exchange interaction between the itinerant 

electrons in graphene and the localized magnetic electrons in EuO, a resistivity peak and negative 

magnetoresistance at the Curie temperature of EuO could be observable experimentally in simple 

resistivity measurements. Our calculations indicate that due to its specific temperature and magnetic 

field dependences the contribution from the spin disorder scattering should be detectable also in the 

case of graphene having poor quality and, consequently, a low electron mobility. Fitting our model 

to the measured resistivity and magnetoresistance as a function of temperature, an estimate for the 

strength of the proximity effect between graphene and EuO could be obtained. The model can be 

extended to the cases of other ferromagnetic insulators having Curie temperatures higher than EuO, 

which could pave the way to the room temperature spintronics in graphene-based device structures. 
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