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Abstract—This paper deals with a model-based state-space
flux-linkage control of a dual three-phase-winding bearingless
synchronous reluctance motor. Analytical tuning rules for the
state feedback, integral action, and reference feedforward gains
are derived in the continuous-time domain. The proposed method
is easy to apply: the desired closed-loop bandwidth together with
the estimated magnetic-model of the motor are required. Fur-
thermore, the proposed method automatically takes into account
the mutual coupling between the two windings. A simple digital
implementation is provided and the robustness of the proposed
control method against the system parameter inaccuracies and
eccentric rotor positions is analyzed. The proposed controller
design is evaluated by means of simulations by keeping in mind
the most important aspects related to an experimental evaluation.

I. INTRODUCTION

In recent years, bearingless machines have received increas-

ing attention as an alternative to conventional mechanical

bearings or active-magnetic-bearings (AMBs), especially in

high-speed applications [1]. Bearingless drives incorporate the

functions of active magnetic bearings and electrical machine

in one unit, which reduces the size, complexity and price of

the system [2]. Several motor topologies have been proposed

in the literature to be used as bearingless motors, e.g., [2]–

[5]. Particularly in lower speed and higher power applications,

a bearingless synchronous reluctance motor (BSyRM) is an

attractive alternative. The advantages of BSyRM are, e.g., that

it neither needs the permanent magnets (PMs) placed in the

rotor, like the PM machines do, nor it produces additional

losses because of the rotor currents, like the induction ma-

chines do. However, the synchronous reluctance motors are

often operated with relatively high currents, which means that

the magnetic circuit of the motor is saturated.

The BSyRM considered in this paper includes two separate

sets of three-phase windings. The first winding set is for

production of the shaft torque and is referred to as a main

winding. The second winding set is for production of the radial

force for stable levitation of the rotor and is referred to as a

suspension winding. For independent and rapid production of

the required torque and force, the performance of the inner

flux-linkage (or current) control loop is especially important

since it has a direct influence on the overall stability of the

system. Moreover, the inner control loop sets the dynamic

limitations for the outer control loops, i.e., the speed-control

loop and the radial-position control loop.

Unbalanced vibration frequency in high-speed applications

can be quite large, as it is proportional to rotation speed.

The control loop has to have sufficient bandwidth in order

to compensate for such unbalance in rigid rotors [6]. Also,

the bending modes of the rotor have to be taken into account

in high-speed applications. Typically, the first vibration modes

that need to be controlled occur at frequencies under 1000 Hz

[7]–[9]. Hence, the control system has to be able to reach a

bandwidth close to 1 kHz to be applicable in areas demanding

high-speed operation – up to rotational speeds of 60 kr/min.

Another requirement is to reach the specified performance

without excess increase in switching frequency. That would

allow a simpler implementation by using commercially avail-

able inverters.

Two major factors to be taken into account when design-

ing the flux-linkage (or current) control loop for bearingless

motors are that the electrical parameters of the system change

due to the radial displacement of the rotor and due to the

magnetic-saturation state of the motor [10]. These phenomena

may limit the applicability of conventional current-control

design methods [11]–[13] and require more sophisticated ways

of approaching the problem. In some cases, the effects of

coupling are reasonably small and do not cause instability,

hence they can be omitted as in [14] and [15]. Several

papers present different decoupling methods, e.g., [10], [16].

However, none of the papers present analytical tuning rules

for the current controllers, which makes it difficult to apply

these methods to different machines.

In this paper, a model-based analytical design method for a

state-space flux-linkage control of BSyRMs is proposed. The

main contributions of this paper are:

1) Simple analytical design rules of the state-space flux-

linkage controller (including both the feedback and

feedforward gains) are presented.

2) Robustness against the system parameter inaccuracies

and eccentric rotor positions is analyzed.

According to the authors’ knowledge, analytical design rules

for neither the flux-linkage controller nor the current controller

for BSyRMs have been proposed before.

II. SYSTEM MODEL

As depicted in Fig. 1(a), the studied BSyRM has a 4-pole

multi-flux-barrier rotor. A 4-pole main winding for the torque

production and a 2-pole suspension winding for the radial-

force production are sinusoidally distributed in the stator. In

the following, the system model is analyzed in synchronous

coordinates, rotating at twice the speed of the shaft ωM.
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Fig. 1. The BSyRM studied in this paper: (a) Coordinate systems required for the flux-linkage controller. The stationary coordinates of the main and suspension
windings are marked with (α, β) and (x, y), respectively. Similarly, the rotating coordinates of the main and suspension windings are marked with (d, q) and
(i, j), respectively; (b) Current vectors im and is together with radial-force vector for one operating point; and (c) The corresponding magnetic-field solution
computed with FE software.
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Fig. 2. State-space flux-linkage control structure. The controller consists of a state feedback, an integral action, and a reference feedforward. For simplicity,
the block diagram is shown in synchronous coordinates, i.e., coordinate transformations are not depicted.

TABLE I
EXPLICIT-FUNCTION COEFFICIENTS

Parameter Lq,0 [mH] a [mH] b [1/A2] Ls,0 [mH] c [mH/A2] d [1/A2] Md,0 [H/m] e
[

H
m·A2

]

f [1/A2]

Value 2.7 6 0.006 37.3 1.3 0.07 31.28 0.18 0.026

A. Voltage Equations and Flux-Linkage Equations

The voltage equations of the main winding (marked with

subscript m) and the suspension winding (marked with sub-

script s) can be given as a combined state-space representation

[2]

d

dt

[
ψm

ψs

]

=

[
um

us

]

−

[
RmI 0

0 RsI

]

i−

[
2ωMJ 0

0 ωMJ

] [
ψm

ψs

]

(1)

where J =
[
0 −1
1 0

]
, I is a 2 × 2 identity matrix and 0 is a

2 × 2 null matrix. The voltage vectors are defined as um =
[
umd umq

]T
and us =

[
usd usq

]T
. The current vectors and

the flux-linkage vectors are defined similarly. The resistances

of the windings are Rm and Rs, respectively. The angular speed

of the shaft is defined as ωM = dϑM/dt, where ϑM is the

angular position of the shaft.

With linear magnetics, the flux linkages of the main winding

ψm and the suspension winding ψs can be presented in matrix

format [2]:
[
ψm

ψs

]

=

[
Lm M

MT Ls

]

︸ ︷︷ ︸

LΣ

[
im
is

]

Lm =

[
Ld 0
0 Lq

]

, (2)

Ls =

[
Ls 0
0 Ls

]

, M =

[
M ′

di −M ′

dj
M ′

qj M ′

qi

]

where Ld, Lq, Ls are inductances and M ′

d, M ′

q are radial-force

constants. The rotor displacements are denoted as i and j, cf.

Fig. 1(a). It can be noted that the cross coupling between the

main winding and the suspension winding exists only when i
and j are nonzero, i.e., when the rotor is not centric.

B. Explicit-Function Based Magnetic Model

It has been demonstrated in several studies, that it is

unrealistic to assume a linear magnetic circuit in SyRMs
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and BSyRMs [10], [17]. Thus, instead of using (2), the flux

linkages are modeled as functions of currents in [18]. The

calculation is based on static finite-element analysis (FEA) in

9000 pre-selected operating points. As an example, Fig. 1(b)

shows the pre-defined current vectors im and is for one operat-

ing point and Fig. 1(c) shows the corresponding magnetic-field

solution. Based on the FEA results, the following explicit-

function based magnetic model was used in [18] to obtain the

system-parameter estimates

ψ̂md(imd) = L̂dimd, ψ̂mq(imq) = L̂q(imq)imq (3)

ψ̂sd(imq, isd) = L̂s(imq)isd, ψ̂sq(imq, isq) = L̂s(imq)isq

L̂q(imq) = Lq,0 +
a

1 + bi2mq

, L̂s(imq) = Ls,0 −
ci2mq

1 + di2mq

M̂ ′

d(imq) =Md,0 −
ei2mq

1 + fi2mq

(4)

where Lq,0, Ls,0, a, b, c, d, e, and f are the coefficients of the

inductance functions. The numerical values of the magnetic

model are given in Table I. The constant parameters are esti-

mated as L̂d = 15 mH and M̂ ′

q = 0.66 H/m. By substituting

these inductance estimates into (2), then the inductance-matrix

estimate L̂Σ is obtained and it is applied in the flux-linkage

controller.

III. FLUX-LINKAGE CONTROLLER DESIGN BASED ON

INTERNAL-MODEL CONTROL (IMC) PRINCIPLE

Fig. 2 shows the proposed flux-linkage controller structure.

It is worth keeping in mind that us, is, and ψs in (1) are

varying sinusoidally, with the angular frequency ωM, when

the motor shaft is rotating and the radial force is produced.

Thus, the electrical-angular frequencies of both windings are

the same. In order to control the torque and the radial force

without steady-state errors, the flux linkages of both windings

are controlled in synchronous-coordinate system (rotating at

the electrical-angular frequency of 2ωM). The voltage equa-

tions are defined in this coordinate system as

dψ

dt
= u−Ri−Ω(ωM)ψ (5)

where

R =

[
RmI 0

0 RsI

]

Ω(ωM) =

[
2ωMJ 0

0 2ωMJ

]

Furthermore, the mutual-coupling matrix M is defined as

M ′ =

[
M ′

dx −M ′

dy
M ′

qy M ′

qx

]

(6)

An ideal voltage source is assumed when designing the

controller, i.e., u = uref. Moreover, because the current

vector is a measured output of the system and the relation

between the flux linkages and the currents is known (cf.

Section II-B), both i and ψ are available for the control. In the

IMC principle [11], the open-loop dynamics of the system is

first cancelled by using appropriate feedback compensations.

Then, the feedback controller together with the feedforward

compensator are designed to obtain the desired dynamics for

the closed-loop system.

A. State-Feedback Control with Integral Action and Reference

Feedforward

The control law is given as

uref = −[K −Ω(ωM)]ψ̂ + R̂i+K IxI +KTψref (7)

whereK,K I, andKT are the controller matrices. The integral

state is defined as

dxI

dt
= ψref − ψ̂ (8)

When (7) is substituted into (5), the closed-loop system is

dψ

dt
= −Kψ̂+KIxI+KTψref+Ω(t)(ψ̂−ψ)+(R̂−R)i (9)

With accurate parameter estimates and mechanical-state mea-

surements ψ = ψ̂ and R = R̂, and thus, the closed-loop

system reduces to dψ/dt = −Kψ +KIxI +KTψref. The

closed-loop system equation can be presented in the Laplace

domain as:

sI4ψ = −Kψ +K I

(
ψref

s
−

ψ

s

)

+KTψref (10)

where I4 is a 4 × 4 identity matrix and s is the Laplace

operator. The closed-loop transfer-function matrix from ψref

to ψ is

Gc(s) = (s2I4 +Ks+KI)
−1(KTs+K I) (11)

If diagonal control matrices are selected, the closed-loop

dynamics of each state variable are decoupled. If a first-order

closed-loop system is selected for each of the system states,

then the desired closed-loop transfer-function matrix is

Gc*(s) =
αc

s+ αc

I4 (12)

where αc is the closed-loop system bandwidth. By selecting

the controller matrices in (11) as

K = 2αcI4, K I = α2
cI4, KT = αcI4 (13)

then (11) equals (12).

It is worth mentioning that the IMC principle is not the only

possible approach for the controller design. Other approaches,

such as the complex vector design for PM machines [12],

[13], could be applied as well. Furthermore, by changing (12),

different closed-loop dynamics could be easily selected. As an

example, different closed-loop system bandwidths could be

selected for the main and suspension windings.

B. Reference Calculation

The torque of the motor can be defined as [10]

Te = 3(Ld − Lq)imdimq (14)

When the motor-torque reference Te,ref is known, then the

current references imd,ref and imq,ref can be solved from (14),

e.g., by applying the maximum-torque-per-ampere (MTPA)

principle. Alternatively, the motor may be operated with con-

stant magnetization state, i.e., constant imd,ref is first selected

and imq,ref is then calculated from (14). Moreover, when the

reference-force vector in xy coordinates F s
ref is known, then
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Fig. 3. Discrete-time implementation of the proposed flux-linkage controller. The gray blocks represent the physical system (including the bearingless motor,
PWMs, samplers, and inherent computational delays z−1). The bearingless motor block consists of (16) and the coordinate transformations. The angular error
due to the time delay is compensated for in the coordinate transformation of the stator voltage.

the suspension winding current-reference vector i′s,ref can be

solved from [10]

F s
ref =

[
Fx

Fy

]

=

[
M ′

dimd M ′

qimq

M ′

qimq −M ′

dimd

]

i′s,ref (15)

In the following simulations, the motor is operated in the

torque-control mode (i.e., the torque reference is manually

defined). The suspension winding is operated in the force-

control mode, meaning that the reference-force vector is

manually defined.

IV. DISCRETE-TIME IMPLEMENTATION

Fig. 3 presents a discrete-time implementation of the pro-

posed flux-linkage controlled BSyRM. It consists of the

continuous-time BSyRM plant model, the flux-linkage con-

troller (with the integral state discretized by the forward Euler

approximation), pulsewidth modulators (PWMs), and sam-

plers. Sampling is assumed to be synchronized with the PWM

and two samples per switching period are taken, meaning

that the sampling time Ts = 1/(2fsw), where fsw is the

switching frequency. The switching cycle averaged quantities

are considered. Hence, the actual stator voltages us
m and

us
s in stator coordinates are piecewise constant between two

consecutive sampling instants, which corresponds to the ZOH

in stator coordinates.

When the system parameters are known, the closed-loop

system bandwidth αc and the switching frequency are the

remaining parameters to be selected by the control designer.

These parameters are selected based on the stability analysis

of the closed-loop system. Moreover, the robustness of the

proposed control method against the system parameter inac-

curacies and eccentric rotor positions is analyzed.

A. Closed-Loop System Stability

By combining (2), (5) and (6), the continuous-time state-

space representation can be obtained

dψ(t)

dt
= A(t)ψ(t) +Bu(t) (16)

i(t) = L−1
Σ ψ(t)

where

A(t) = −RL−1
Σ −Ω(ωM), B = I4

When the ZOH is modelled in stator coordinates, the

discrete-time plant model, corresponding to (16), is

ψ(k + 1) = Φψ(k) + Γu(k) (17)

i(k) = L−1
Σ ψ(k)

where the system matrices are

Φ = eATs , Γ =

∫ Ts

0

eAτ

[
e−2ωM(Ts−τ)J

0

0 e−2ωM(Ts−τ)J

]

dτ

These matrices can be solved either numerically or by finding

closed-form expressions for the matrix elements. In this work,

the matrices are used only for the stability analysis, and thus,

solved numerically.

When the discrete-time plant model (17) is applied together

with the discretized flux-linkage controller (cf. Fig. 3), then

the closed-loop system matrix becomes




ψ(k + 1)
u(k + 1)
xI(k + 1)



 = (18)





Φ Γ 04

R̂L−1
Σ − [K −Ω(ωM)]L̂ΣL

−1
Σ 04 KI

−TsL̂ΣL
−1
Σ 04 I4





︸ ︷︷ ︸

Φcl





ψ(k)
u(k)
xI(k)





where 04 is 4 × 4 null matrix. The stability of the closed-

loop system is defined by the eigenvalues of Φcl in (18). If all

the eigenvalues are inside the unit circle, the system is stable.

Otherwise the closed-loop system is unstable.

At first, the selection of the switching frequency [fsw =
1/(2Ts)] and the flux-linkage control-loop bandwidth is an-

alyzed by examining the stability of the closed-loop system.

Accurate system-parameter estimates are assumed, i.e., L̂Σ =
LΣ and R̂ = R. The rotor is assumed to be centric (i.e.,

x = y = 0) and it rotates 1500 r/min. The switching frequency

is varied between 4 . . . 16 kHz, which are typical values for

commercial frequency converters. The flux-linkage control-

loop bandwidth is varied between 200 . . . 1000 Hz. The white

region in Fig. 4 represents stable parameter combinations and

the cyan-shaded region represents unstable parameter combi-

nations. As an example, the parameter selection of fsw = 8
kHz and αc = 2π ·600 rad/s (marked with red cross in Fig. 4)
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Fig. 4. Stability regions, when αc and fsw = 1/(2Ts) are varied. The white
area represents a stable system, whilst the cyan-shaded area represents an
unstable system. The red cross indicates one feasible parameter combination,
which will be used in this paper.

Fig. 5. Stability regions, when the inductances Lq and Ls of the plant model
(16) are varied. The white area represents a stable system, whilst the cyan-

shaded area represents an unstable system. Inductance estimates of L̂s = 40
mH and L̂q = 8 mH are used in the flux-linkage controller (cf. the red cross).

leads to a stable closed-loop system and it will be used later

on in this paper.

As can be seen from (3) and is shown in [18], Lq, Ls, and

M ′

d vary during the system operation. However, as can be seen

from (2), the variation in M ′

d has effect only with eccentric

rotors. The effect of variations in the plant-model inductances

Lq and Ls is studied here with a centric rotor at the rotor

speed of 1500 r/min. The inductance Ls is varied between

15 . . . 45 mH and the inductance Lq is varied between 2 . . . 9
mH. Fig. 5 shows the stability regions, when the inductance

Fig. 6. Stability regions, when the rotor displacements are varied in the plant
model (6). The mutual coupling between the windings is neglected in the

controller, i.e., M̂ ′ = 0. The white area presents a stable system, whilst the
cyan-shaded area presents an unstable system.

estimates of L̂s = 40 mH and L̂q = 8 mH are used in the

flux-linkage controller (cf. the red cross in Fig. 5). The white

region represents stable parameter combinations and the cyan-

shaded region represents unstable parameter combinations. It

can be seen that the closed-loop system remains mostly stable

in this parameter region. However, an unstable region appears

at the lowest inductance values. If the inductance estimates

of L̂s = 20 mH and L̂q = 3 mH would be used in the

flux-linkage controller, then the whole parameter space would

remain stable. Thus, it is advisable to underestimate rather

than overestimate the inductances in the controller.

Next, the effect of the rotor eccentricity is analyzed. Ac-

curate inductance and resistance estimates are assumed and

the rotor speed is 1500 r/min. The displacements are varied

between −500 . . . 500 µm both in x and y directions. Fig.

6 shows the stability regions, when the mutual coupling is

modeled according to (6) in the plant model (16), but neglected

in the flux-linkage controller (i.e., M̂ ′ = 0). The white region

represents stable parameter combinations and the cyan-shaded

region represents unstable parameter combinations. It can be

seen that the closed-loop system remains stable, when the

eccentricity is less than around 350 µm. If the mutual coupling

would be taken into account in the controller, i.e., M̂ ′ =M ′,

then the whole parameter space would remain stable.

V. TIME-DOMAIN SIMULATIONS

In this section, the proposed flux-linkage control algorithm

is evaluated by means of time-domain simulations. The band-

width of the flux-linkage control loop is αc = 2π · 600 rad/s

and the switching frequency is fsw = 8 kHz.

A. Experimental System Under Construction

An experimental setup, including the prototype BSyRM an-

alyzed in this paper, is currently being assembled. Both ends of
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the BSyRM are supported with commercial active-magnetic-

bearings (AMBs) and the shaft of motor can be rotated with

an external loading machine. Thus, the torque and the radial-

force production capabilities of the prototype BSyRM can be

evaluated individually, without a need to operate the BSyRM

neither in the speed-control mode nor in the levitation-control

mode. The two windings of the BSyRM will be supplied by

two separate PWM-operated frequency converters. The gate

signals for the converters will be generated from (7) by using

OPAL-RT OP5600 fast prototyping platform, where also the

proposed flux-linkage control algorithm will be run in real-

time. Furthermore, all six phase currents together with the

DC-link voltages will be measured and fed back to OP5600

in order to obtain the necessary feedback information for the

flux-linkage controller.

The plant model in the simulations is based on the designed

prototype BSyRM. The motor is designed using the FEA and

the design considerations and the modeling of the motor are

reported, e.g., in [18], [19]. The plant model consists of the

voltage equations (1), which are integrated in the continuous-

time domain to obtain the flux linkages of both windings.

Then, static mappings between the flux linkages and each

current component are formed based on the FEA results as a

form of four-dimensional look-up-tables (4D-LUTs). Four 4D-

LUTs are required to obtain all the current components from

the flux linkages. Furthermore, two additional 4D-LUTs are

formed, based on the FEA results, to map the resulting current

components with the radial-force components. The maximum

main-winding current amplitude is 45.9 A (peak-to-peak) and

the maximum suspension-winding current amplitude is 3.18

A (peak-to-peak). Based on the FEA results, the maximum

torque of the motor is 29 Nm and the maximum amplitude of

the radial force is 2000 N. The nominal speed of the motor is

1500 r/min. The airgap length of the designed prototype motor

is 1 mm.

B. Results

Two simulation sequences were selected keeping in mind

the experimental system, which will be available in the future

for experimental verification. The first simulation sequence

evaluates the proposed control system, when the LUT-based

plant model is used. In the first simulation sequence, the rotor

is kept centric with the additional AMBs and rotated 1500

r/min with the external loading machine:

1) The main-winding d-axis current reference imd,ref is

stepped from 0 to 20 A @ 0.01 second

2) The y-axis radial-force reference Fy,ref is stepped from

0 to 300 N @ 0.02 second

3) The torque reference TM,ref is stepped from 0 to 20 Nm

@ 0.03 second and back to 0 Nm @ 0.05 second

4) The x-axis radial-force reference Fx,ref is stepped from

0 to -200 N @ 0.04 second

Fig. 7 shows the results, when the control system is based on

the constant magnetic-model parameters. Fig. 7(a) shows the

motor torque together with the corresponding main-winding

flux-linkage components in rotating coordinates and the main-

winding current components in stationary coordinates. Fig.

7(b) shows the radial-force components together with the

corresponding suspension-winding flux-linkage components

in rotating coordinates and the suspension-winding current

components in stationary coordinates.

Fig. 8 shows the results, when the control system is

based on the magnetic-model (3). Fig. 8(a) shows the motor

torque together with the corresponding main-winding flux-

linkage components in rotating coordinates and the main-

winding components in stationary coordinates. Fig. 8(b) shows

the radial-force components together with the corresponding

suspension-winding flux-linkage components in rotating co-

ordinates and the suspension-winding current components in

stationary coordinates.

By comparing Figs. 7 and 8, it can be seen that the

accuracies of both the torque-control loop and the radial-force

control loop are clearly improved, when the control system

is based on the explicit-function magnetic model instead of

constant parameters. However, the dynamic performances of

both the control loops are satisfactory even, if the control

system is only based on the constant parameters. Furthermore,

it can be seen that the control loop remains clearly stable, even

though the plant parameters are varying during the operation.

This agrees well with the stability analysis in Fig. 5.

The second simulation sequence evaluates the effect of the

rotor eccentricity at the rotor speed of 1500 r/min. Thus, a

constant-parameter plant model is used in this simulation and

accurate parameter estimates are assumed in the flux-linkage

controller. The BSyRM is operated in no-load condition (i.e.,

TM = 0 Nm) with constant main-winding d-axis current imd =
20 A. Furthermore, a constant radial force of Fy = 300 N is

produced in y direction. Between the time instants 0.005 s and

0.105 s, the rotor is displaced from y = 0 to y = −400 µm

in y direction by using the external AMBs.

Fig. 9(b) shows the result, when the mutual coupling is

modeled according to (6) both in the plant model (16) and

in the flux-linkage controller, i.e., when M̂ ′ = M ′. Fig.

9(a) shows the result, when the eccentricity is neglected in

the controller, i.e., when M̂ ′ = 0. It can be seen that the

stability of the flux-linkage control loop is lost suddenly

and aggressively at 0.1 seconds, when the eccentricity is not

compensated for in the controller. The closed-loop system

remains stable, when the eccentricity is compensated for in the

controller. This result agrees well with the stability analysis in

Fig. 6.

VI. CONCLUSIONS

A systematic design method for a state-space flux-linkage

control of a dual three-phase-winding BSyRM is proposed

in this paper. The design rules for the state-space controller

(including state feedback, integral action, and feedforward

gains) are obtained using model-based pole-placement meth-

ods in the continuous-time domain. The proposed method

is easy to apply: the desired closed-loop bandwidth together

with an estimated magnetic-model of the motor are required.

Furthermore, the proposed method automatically takes into

account the mutual coupling between the two windings. Based

on the simulation results and eigenvalue analysis, the proposed
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(a) (b)

Fig. 7. Simulation result, when the proposed flux-linkage controller is based on the constant magnetic-model parameters: (a) torque TM of the motor (the
first subplot), together with the main-winding flux linkages ψm (the second subplot) and the corresponding main-winding phase currents (the third subplot);
(b) radial force F s of the motor (the first subplot), together with the suspension-winding flux linkages ψs (the second subplot) and the corresponding
suspension-winding phase currents (the third subplot).

method guarantees robust feedback-loop operation as well as

rapid and accurate torque and radial-force production.
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(a) (b)

Fig. 8. Simulation result, when the proposed flux-linkage controller is based on the magnetic-model (3): (a) torque TM of the motor (the first subplot),
together with the main-winding flux linkages ψm (the second subplot) and the corresponding main-winding phase currents (the third subplot); (b) radial force
F s of the motor (the first subplot), together with the suspension-winding flux linkages ψs (the second subplot) and the corresponding suspension-winding
phase currents (the third subplot).

(a) (b)

Fig. 9. Simulation result, when the rotor of the BSyRM is displaced from y = 0 to y = −400 µm between the time instants 0.005 s and 0.105 s. Radial
forces F s of the motor (the first subplots), together with the main-winding phase currents (the second subplots) and the suspension-winding phase currents
(the third subplots), when the mutual coupling (6) is: (a) neglected in the controller; and (b) taken into account in the controller.


