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As a common mental disorder, depression
has attracted many researchers from affec-
tive computing field to estimate the sever-
ity of depression. However, existing approaches
based on Deep Learning (DL) are mainly fo-
cused on single facial image without the
consideration of the sequence information
for predicting the depression scale. In this
paper, an integrated framework, termed as
DepNet, for automatic diagnosis of depres-
sion adopting facial images sequence from
videos, is proposed. Specifically, several pre-
trainedmodels are adopted to represent the
Low Level features (LLF), while Feature Ag-
gregationModule (FAM) is proposed to cap-
ture the high level characteristic informa-
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tion for depression analysis. More impor-
tantly, the distinct characteristic of depres-
sion on faces can be mined to assist the
clinicians to diagnose the severity of the
depressed subjects. Multi-scale experiments,
carried out on AVEC2013 and AVEC2014
databases have shown the excellent perfor-
mance of the intelligent approach. The root
mean square error (RMSE) between the pre-
dicted values and the BDI-II scores is re-
spectively 9.17 and 9.01 on the twodatabases,
which are lower that those of the state of
the art video-based depression recognition
methods.
K E YWORD S
Depression, Industrial intelligent system (IIS),
Deep Learning (DL), Pattern recognition,
Feature aggregation module (FAM)

1 | INTRODUCTION
Major depression disorder (MDD) (also simply known as depression) is highly prevalent all over the
world nowadays. As a mental disorder, depression can affect people’s career, life, study and so
on in a bad way. According to the report of World Health Organization (WHO) in 2017, there are
about 350 million depressive patients worldwide and depression will become the second leading
cause of death by 2030 [1]. The symptoms of depression is complicated and diversified, but the
pity is that the diagnostic methodologies are mostly depending on patient’s self-report or the judge-
ment by clinicians, both of which are subjective in nature, therefore, unavoidably bearing limitations
to some extent. In some general cases, the clinicians adopt some common diagnosis approaches,
such as the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) [2], the Beck Depression
Inventory (BDI) [3], and the PHQ–8 [4], etc. To further support and help clinicians and psycholo-
gists to diagnose depression symptoms in a comprehensive way, various methods are proposed by
researchers from the affective computing community and deep learning field.

In recent years, non-verbal behaviours, facial expressions activities [5], head pose and move-
ment [6], eye and gaze activity [7], have also been highly indicated for predicting the depression
scale. Previous works has illustrated that some subtle patterns are implied around the facial region
[8]. In [9], the authors considered that dynamic activation of facial nonverbal behaviour is signifi-
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cant for predicting the severity of depression. Therefore, the paper focuses on only the nonverbal
behaviours around facial regions for depression analysis. From the perspective of machine learn-
ing, depression recognition problem can be taken as classification or regression issue. The goal of
the study is to predict Beck Depression Inventory–II (BDI–II, Table 1) score of each video clip on
AVEC2013 [10] and AVEC2014 [11] databases.

To estimate the scale of depression from facial images by videos and conventional methods
includes the following steps: 1) feature extraction, 2) feature aggregation, and 3) regression (or
classification). Feature extraction plays a significant role for depression recognition in video. Mining
a robust and compacting feature descriptor is crucial andmeaningful. For the time being, the feature
extraction can be classified into two: hand-crafted [12], [13] and deep-learned [14], [15], [16], [17],
[18], [19], [20]. For hand-crafted features, Local Binary Patterns from three orthogonal planes (LBP-
TOP) feature descriptor has been considered effective for predicting the scale of depression [21].
Wen et al. [12] extracted the dynamic appearance using the Local Phase Quantisation from Three
Orthogonal Planes (LPQ-TOP) features estimated from facial region sub-volumes to capture the
temporal dynamics. Meanwhile, Local Gabor Binary Patterns from Three Orthogonal Planes (LGBP-
TOP) is adopted as visual features for predicting the scale of depression [13]. However, there exists
the problem that the above mentioned steps are independent for depression recognition.

To mine the characteristic representation of depression from frame-level dynamic feature de-
scriptors, feature aggregation method is commonly adopted to estimate the depression scale, such
as BoW, VLAD, FV [13]. After the feature aggregation process, some regression (classification) (e.g.,
Support Vector Regression (SVR)) technology are used to estimate the scale of depression severity.
In effect, as a matter of fact, the above three steps are developed respectively, and integrated an
ensemble framework for the overall estimation of depression. Although hand-crafted features have
produced satisfactory results, there still exist some limitations, like labor consuming and subjectiv-
ity. For deep-learned features, Zhu et al. [14] introduce an architecture using 2D convolutional
neural networks (2D-CNN), for automatic depression recognition. Also, AI Jazaery et al. [20] de-
sign a framework named Recurrent Neural Network-3D convolutional neural network (RNN-C3D)
to model the local and global spatiotemporal information from consecutive face expressions for de-
pression recognition. However, the deep learned method requires a great number of facial images
to fine-tune the 2D-CNN or C3D model to predict the depression severity. In comparison with
hand-crafted features, deep-learned features do not need domain knowledge, and obtain better
performance for depression recognition. More importantly, 2D-CNN can learn and mine high-level
characteristic patterns from facial regions, and deep learned features can be more discriminative
and effective for predicting depression degree than hand-crafted features. Furthermore, the stand
three individual procedures of feature extraction, feature aggregation, regression (classification) for
predicting the scale of depression are integrated into a deep framework. Through the proposed
framework, the performance of depression recognition could be improved readily in an integrated
way, and the effort of manually designing can be obviously reduced. As aforementioned, the cur-
rent deep learning methods need a great amount images to train the depression recognition models.
Therefore, it is considered that there is an urgent requirement for designing an integrated frame-
work for automated depression diagnosis system to address the above-mentioned issues, which is
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TABLE 1 BDI–II Score Ranges and Depression Severity.
Ranges Depression Severity
0 – 13 None or minimal
14 – 19 Mild
20 – 28 Moderate
29 – 63 Severe

the motivation of this paper.
The aim of the present paper is to propose a unified architecture for designing automatic pro-

tosystem capable of efficiently assessing depression severity (i.e., BDI–II Score) given an sampled
facial image sequence from video. Based on the novel advances in deep learning field and facial ex-
pression analysis [22, 23, 24], it is proposed to use many deep learning approaches (DCNN, LSTM,
etc) to learn high-level semantics features from the facial image sequences. More importantly, to
overcome the issues with the shortage of small samples, we use a fine-tuning approach that adopts
pre-trained networks SE-ResNet-50 (SENet for short) [25],[26]. Also, a novel Feature Aggregation
Module (FAM) layer is proposed to capture long-term characteristic representation of depression.
More importantly, the discriminative representations of depression on faces can be revealed to help
clinicians to diagnose the severity of the depressed subjects.

1.1 | Contribution
The main contributions of this study can be concluded as follows:
1. An integrated and integrated and intelligent framework termed DepNet that effectively models

facial dynamics information as a non-verbal behaviour measure for assessing the severity of
depression.

2. To model the temporal dynamic discriminative representations from facial sequences, a novel
Feature Aggregation Module (FAM) based on DCNN, is employed, which can aggregate low
level features from video data and capture the temporal characteristic of the facial appearance
and dynamics.

3. The proposed DepNet architecture is evaluated on two depression databases. Experimental re-
sults show that the proposed intelligent system significantly advance the recognition accuracy,
when compared with the majority of the visual cue-based methods.

1.2 | Organization
The rest of the present paper is organized as follows. The background of depression is discussed in
Section 2. The relatedworks on visual-based depression assessment are discussed in Section 3. The
proposed approach (DepNet) is described in Section 4. The used databases and the experiments
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are shown in Section 5. In Section 6, discussions and conclusions are presented.

2 | BACKGROUND OF DEPRESSION
Depression is a mental disorder, which has been studied by many researchers in different fields. As
for the definition of depression, it has not reached an agreement from different areas. The common
definition of depression is coming from clinicians in clinical trials. Depression might be a disorder
of the brain, but its harms aren’t confined to the cranium. Prolonged depression has been linked
with a slew of health problems, from impaired immune function to gastrointestinal dysfunction. It’s
also been linked with cardiovascular disease (CVD), even increasing the risk for heart attack and a
disrupted heart rate.

For the diagnosis of depression, clinicians often use medication to assist depressed subjects.
Also, some bio-makers (i.e., speech, gamma-amino butyric acid (GABA), etc) are adopted for as-
sessing the severity of depression. Though the current diagnostic methods have achieved a great
success, other methods are still called for to help the clinicians with assessing the severity of de-
pression. Therefore, various studies have been proposed to assess the severity of depression (see
Section 3).

3 | RELATED WORK
Automated methods for behavior analysis have been proposed for the assessment and understand-
ing of depression. Eye gaze, head and body movements, facial expressions, posture, and gesture
have been commonly used in depression recognition task. In particular, automatic face analysis for
depression recognition has attracted attentions of many researchers from affective computing field.

To describe the dynamic facial appearance, various approaches using visual information are
proposed. AVEC2013 [10] used Local Phase Quantisation (LPQ) [27] feature descriptor as visual
features. For each video, the authors first pre-process the video images using face detection, fitting
and alignment method to extract robust features. Then LPQ features are represented using many
blocks around the facial regions. After the above procedures, the generated LPQ histograms are
concatenated to obtain the facial features from frame sequences, and the Support Vector Regres-
sion (SVR) was used for estimating and prediction.

Local Binary Pattern (LBP) [28] based methods have been also widely used [29], [30]. For a gray
scale image, the most fundamental LBP operator performed in a 3× 3 pixel block, if the non-center
pixels greater than center pixel, the threshold value is set to 1, otherwise the value is set to 0. After
that, eight binary numbers are generated and computed to get a LBP value. The LBP descriptor
which include different possible binary patterns correspond to each bin to generate a histogram to
obtain a 256-dimensional texture descriptor.

In [30], the authors adopted LBP and Edge Orientation Histogram (EOH) as frame-based fea-
tures and Motion History Histogram (MHH) to represent dynamic and discriminative pattern from
videos. Among the LBP extensions, Local Binary Pattern on ThreeOrthogonal Planes (LBP-TOP) [31],
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and its variants, have been also adopted. LBP-TOP illustrates a video by calculating local binary
pattern from three orthogonal planes (XY ,XT and YT ) . The dynamic appearance descriptors
provided an important performance improvement for facial expression analysis, as well as depres-
sion analysis in [32] and [21]. Similarly, LPQ has been extended to LPQ-TOP in [33, 34] and
successfully adopted for depression recognition and analysis in [12], where the researchers ex-
tracted frame-based LPQ-TOP features, and used sparse coding to represent the video, along with
a decision fusion scheme for predicting the depression scale. The Local Gabor Binary Patterns
from Three Orthogonal Planes (LGBP-TOP) [35], another variant of LBP-TOP, has been employed
in [36, 32, 37, 38], and [39], to estimate the severity of depression from facial images. Local Gabor
Binary Patterns (LGBP) are extracted by generating a list of Gabor magnitude response images, and
then the LBP is adopted to each of them. To a certain degree, all above-mentioned approaches
based on hand-crafted feature descriptors bear some limitations for diagnosis of depression. To de-
sign the hand-crafted features, a wide range knowledge related to the domain needs to be deeply
interpreted. Meanwhile, the hand-crafted feature descriptors are difficult to learn and capture the
discriminative representations of depression. In this scenario, Zhu et al. [14] proposedDCNN to rep-
resent both the facial appearance patterns and the dynamics to analysis the severity of depression.
They carried out experiments on both AVEC2013 and AVEC2014 datasets, reported comparable
results than other visual-based methods.

In [15], the authors proposed an artificial intelligent system based on audio and video cues. The
feature dynamic history histogram (FDHH), low-level descriptors (LLD), are extracted, and fused to
estimate BDI–II scores.

Based on the recent solutions [14], [15], [40], [41], it has been noticed that 2D-CNN played a
vital part for depression analysis. However, these methods is explicitly take the many number of
facial images for depression analysis.

In [42], the authors propose a new feature descriptor from each frame and introduce spectral
heatmaps and spectral vectors to learn the discriminative representations based on action units
(AU). The spectral representations are input into the convolution neural networks (CNN) and artifi-
cial neural networks (ANN) for predicting the depression scale. Extensive experiments are carried
out on the two depression databases (i.e., AVEC2013 and AVEC2014), and obtained comparable
performance in the depression recognition task.

In [43], the authors design a two-stream framework to model the spatiotemporal representa-
tions for depression recognition. The temporal median pooling (TMP) method is adopted to model
some temporal patterns of the generated features via CNN. Lastly, experimental results of the two
depression databases (i.e., AVEC2013 and AVEC2014) shown the proposed method’s efficiency.

Meanwhile, theseDCNN-based depression estimationmethods are found difficult for clinicians
to know the underlying information of feature learning, and the clinicians find it hard to define
which patch of the facial region is discriminative for estimating the depression scale. As is men-
tioned above, the paper focuses on developing an automated framework, which can effectively
and efficiently reveal the severity of depression.
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F IGURE 1 The pipeline of the proposed scheme for estimating the severity of depression. The
dimensions of each layer are shown in square brackets on the left bracket.

4 | OUR APPROACH

The proposed depression recognition framework (i.e., DepNet based 2D-CNN) is illustrated in Fig-
ure. 1. We first adopt the OpenFace toolkit [44] to pre-process the facial images for feature extrac-
tion step. In order to generate a robust and discriminative representations, we first extract the Low
Level features (LLF) from sampled facial images. Then we use FAM to learn and capture a robust
and discriminative representation of High Level features (HLF) for each video clip. Lastly, the BDI–II
score is predicted for every video clip.
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maps U to generate the output of the SE block which can
be fed directly into subsequent layers of the network.

It is possible to construct an SE network (SENet) by simply
stacking a collection of SE blocks. Moreover, these SE blocks
can also be used as a drop-in replacement for the original block
at a range of depths in the network architecture (Section 6.4).
While the template for the building block is generic, the role
it performs at different depths differs throughout the net-
work. In earlier layers, it excites informative features in a
class-agnostic manner, strengthening the shared low-level
representations. In later layers, the SE blocks become increas-
ingly specialised, and respond to different inputs in a highly
class-specific manner (Section 7.2). As a consequence, the
benefits of the feature recalibration performed by SE blocks
can be accumulated through the network.

The design and development of new CNN architectures is
a difficult engineering task, typically requiring the selection
of many new hyperparameters and layer configurations. By
contrast, the structure of the SE block is simple and can be
used directly in existing state-of-the-art architectures by
replacing components with their SE counterparts, where the
performance can be effectively enhanced. SE blocks are also
computationally lightweight and impose only a slight
increase inmodel complexity and computational burden.

To provide evidence for these claims, we develop several
SENets and conduct an extensive evaluation on the ImageNet
dataset [10]. We also present results beyond ImageNet that
indicate that the benefits of our approach are not restricted to
a specific dataset or task. Bymaking use of SENets, we ranked
first in the ILSVRC 2017 classification competition. Our best
model ensemble achieves a 2.251 percent top-5 error on the
test set.1 This represents roughly a 25 percent relative imp-
rovementwhen compared to thewinner entry of the previous
year (top-5 error of 2.991 percent).

2 RELATED WORK

Deeper Architectures. VGGNets [11] and Inception models [5]
showed that increasing the depth of a network could signifi-
cantly increase the quality of representations that it was capa-
ble of learning. By regulating the distribution of the inputs to
each layer, Batch Normalization (BN) [6] added stability to
the learning process in deep networks and produced
smoother optimisation surfaces [12]. Building on theseworks,
ResNets demonstrated that it was possible to learn consider-
ably deeper and stronger networks through the use of iden-
tity-based skip connections [13], [14]. Highway networks [15]
introduced a gating mechanism to regulate the flow of

information along shortcut connections. Following these
works, there have been further reformulations of the connec-
tions between network layers [16], [17], which show promis-
ing improvements to the learning and representational
properties of deep networks.

An alternative, but closely related line of research has
focused on methods to improve the functional form of the
computational elements contained within a network.
Grouped convolutions have proven to be a popular approach
for increasing the cardinality of learned transformations [18],
[19]. More flexible compositions of operators can be achieved
with multi-branch convolutions [5], [6], [20], [21], which can
be viewed as a natural extension of the grouping operator. In
prior work, cross-channel correlations are typically mapped
as new combinations of features, either independently of spa-
tial structure [22], [23] or jointly by using standard convolu-
tional filters [24] with 1� 1 convolutions. Much of this
research has concentrated on the objective of reducing model
and computational complexity, reflecting an assumption that
channel relationships can be formulated as a composition of
instance-agnostic functionswith local receptive fields. In con-
trast, we claim that providing the unit with a mechanism to
explicitly model dynamic, non-linear dependencies between
channels using global information can ease the learning pro-
cess, and significantly enhance the representational power of
the network.

Algorithmic Architecture Search. Alongside the works
described above, there is also a rich history of research that
aims to forgo manual architecture design and instead seeks
to learn the structure of the network automatically. Much of
the early work in this domain was conducted in the neuro-
evolution community, which establishedmethods for search-
ing across network topologies with evolutionary methods
[25], [26]. While often computationally demanding, evolu-
tionary search has had notable successes which include find-
ing good memory cells for sequence models [27], [28] and
learning sophisticated architectures for large-scale image
classification [29], [30], [31]. With the goal of reducing the
computational burden of these methods, efficient alterna-
tives to this approach have been proposed based on
Lamarckian inheritance [32] and differentiable architecture
search [33].

By formulating architecture search as hyperparameter
optimisation, random search [34] and other more sophisti-
cated model-based optimisation techniques [35], [36] can also
be used to tackle the problem. Topology selection as a path
through a fabric of possible designs [37] and direct architec-
ture prediction [38], [39] have been proposed as additional
viable architecture search tools. Particularly strong results
have been achieved with techniques from reinforcement

Fig. 1. A squeeze-and-excitation block.

1. http://image-net.org/challenges/LSVRC/2017/results

2012 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 8, AUGUST 2020

Authorized licensed use limited to: Xi'an Univ of Posts & Telecom. Downloaded on April 06,2021 at 14:26:30 UTC from IEEE Xplore.  Restrictions apply. 

F IGURE 2 A Squeeze-and-Excitation block [25].

4.1 | Deep Depression Feature Representation by Transfer Learning
4.1.1 | SENet
The key component of SENet architecture is the SENet block. To make a clear description, in the
following part, we first introduce the SENet block, and describe the proposed method. The archi-
tecture of the SENet block is showed in Fig. 2. Let Ft r be the transformation, which can map the
image X ∈ ÒH

′×W ′×C ′ to feature map U ∈ ÒH×W×C . A squeeze operation is first performed on
the features U, and a channel feature descriptor is generated via aggregating feature maps at their
spatial dimensions. The action of the feature descriptor is to generate an embedding of the global
distribution of channel-wise feature responses, allowing information from the global receptive field
of the network to be adopted by all its layers. Then an excitation operation is performed, which
can use a self-gating mechanism to implement embedding as input and generate a collection of
per-channel modulation weights. These weights are adopted on the feature map U to produce the
output of the Squeeze-and-Excitation (SE) block which can be input into another subsequent layers
of the network. Let V = [v1, v2, ..., vC ] be the filter kernels, where vC is the parameters of the c-th
filter. Hence, the output can be written as U = [u1, u2, ..., uC ], where

uc = vc ∗ X =
C ′∑
s=1

vsc ∗ xs (1)

Here ∗ represents convolution, vc = [v1c , v2c , ..., vC ′c ], X = [x1, x2, ..., xc ] and uc ∈ ÒH×W . vsc repre-
sents a 2D spatial kernel that performs on a single channel of vc of the corresponding channel of
image X. In this case, to better understand the notation, bias terms are ignored. After that, a sum-
mation operation is performed on all channels to generate the output. The relationships among
channels are represented by convolution operations. Two steps, i.e., squeeze and excitation, are
explained in the following.

(1) Squeeze: Global Information Embedding
To address the problem of investigating channel dependencies, the signal to every channel

from the output features are considered. Each of the learned filters performs with a local receptive
field, and consequently each unit of the transformation outputU is unable to investigate contextual
information outside of this region.

To further overcome this problem, squeeze operation is performed to aggregate global spatial
information into a channel descriptor. Therefore, global average pooling is used to produce channel-
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following each convolution. Moreover, the flexibility of the
SE block means that it can be directly applied to transforma-
tions beyond standard convolutions. To illustrate this point,
we develop SENets by incorporating SE blocks into several
examples ofmore complex architectures, described next.

Wefirst consider the construction of SE blocks for Inception
networks [5]. Here, we simply take the transformation Ftr to
be an entire Inception module (see Fig. 2) and by making this
change for each such module in the architecture, we obtain an
SE-Inception network. SE blocks can also be used directly with
residual networks (Fig. 3 depicts the schema of an SE-ResNet
module). Here, the SE block transformation Ftr is taken to be
the non-identity branch of a residual module. Squeeze and
Excitation both act before summationwith the identity branch.
Further variants that integrate SE blocks with ResNeXt [19],
Inception-ResNet [21], MobileNet [64] and ShuffleNet [65] can
be constructed by following similar schemes. For concrete
examples of SENet architectures, a detailed description of SE-
ResNet-50 and SE-ResNeXt-50 is given in Table 1.

One consequence of the flexible nature of the SE block is
that there are several viable ways in which it could be inte-
grated into these architectures. Therefore, to assess sensitivity
to the integration strategy used to incorporate SE blocks into
a network architecture, we also provide ablation experiments
exploring different designs for block inclusion in Section 6.5.

4 MODEL AND COMPUTATIONAL COMPLEXITY

For the proposed SE block design to be of practical use, it
must offer a good trade-off between improved performance
and increased model complexity. To illustrate the computa-
tional burden associatedwith themodule, we consider a com-
parison between ResNet-50 and SE-ResNet-50 as an example.
ResNet-50 requires �3:86 GFLOPs in a single forward pass
for a 224� 224 pixel input image. Each SE block makes use of
a global average pooling operation in the squeeze phase and
two small FC layers in the excitation phase, followed by an
inexpensive channel-wise scaling operation. In the aggregate,

Fig. 2. The schema of the original Inception module (left) and the SE-
Inception module (right).

Fig. 3. The schema of the original Residual module (left) and the SE-
ResNet module (right).

TABLE 1
(Left) ResNet-50 [13]. (Middle) SE-ResNet-50. (Right) SE-ResNeXt-50 with a 32 � 4d template

The shapes and operations with specific parameter settings of a residual building block are listed inside the brackets and the number of stacked blocks in a stage is
presented outside. The inner brackets following by fc indicates the output dimension of the two fully connected layers in an SE module.
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F IGURE 3 The comparison with the Inception module and the SE-Inception module [25].

wise features. In maths, a statistic z ∈ ÒC is produced via shrinking U at the spatial direction H ×W .
Hence, the c-th operater of z can be written as:

zc = Fsq (uc ) = 1

H ×W

H∑
i=1

W∑
j=1

uc (i , j ) (2)

(2) Excitation: Adaptive Recalibration
To further use the patterns aggregated based on the squeeze operation, channel-wise depen-

dencies are captured via a second operation exci t at i on . To achieve this goal, the operation should
meet the following standard: 1) it should be flexible; 2) it must study a non-mutually-exclusive re-
lationship. After that, a gating mechanism with a sigmoid activation is adopted to met the criteria,
which can be written as:

s = Fex (z,W) = σ (g (z,W)) = σ (W2δ (W1z )) (3)
where σ is the ReLU function, W1 ∈ Ò

C
r ×C ,W2 ∈ ÒC×

C
r . The final output of the block can be

written as:
x̃c = Fscal e (uc , sc ) = scuc (4)

where X̃ = [x̃1, x̃2, ..., x̃C ], and Fscal e (uc , sc ) represents the channel-wise multiplication between
the scalar sc and the feature map uc ∈ ÒH×W .

(3) Instantiations
9



following each convolution. Moreover, the flexibility of the
SE block means that it can be directly applied to transforma-
tions beyond standard convolutions. To illustrate this point,
we develop SENets by incorporating SE blocks into several
examples ofmore complex architectures, described next.

Wefirst consider the construction of SE blocks for Inception
networks [5]. Here, we simply take the transformation Ftr to
be an entire Inception module (see Fig. 2) and by making this
change for each such module in the architecture, we obtain an
SE-Inception network. SE blocks can also be used directly with
residual networks (Fig. 3 depicts the schema of an SE-ResNet
module). Here, the SE block transformation Ftr is taken to be
the non-identity branch of a residual module. Squeeze and
Excitation both act before summationwith the identity branch.
Further variants that integrate SE blocks with ResNeXt [19],
Inception-ResNet [21], MobileNet [64] and ShuffleNet [65] can
be constructed by following similar schemes. For concrete
examples of SENet architectures, a detailed description of SE-
ResNet-50 and SE-ResNeXt-50 is given in Table 1.

One consequence of the flexible nature of the SE block is
that there are several viable ways in which it could be inte-
grated into these architectures. Therefore, to assess sensitivity
to the integration strategy used to incorporate SE blocks into
a network architecture, we also provide ablation experiments
exploring different designs for block inclusion in Section 6.5.

4 MODEL AND COMPUTATIONAL COMPLEXITY

For the proposed SE block design to be of practical use, it
must offer a good trade-off between improved performance
and increased model complexity. To illustrate the computa-
tional burden associatedwith themodule, we consider a com-
parison between ResNet-50 and SE-ResNet-50 as an example.
ResNet-50 requires �3:86 GFLOPs in a single forward pass
for a 224� 224 pixel input image. Each SE block makes use of
a global average pooling operation in the squeeze phase and
two small FC layers in the excitation phase, followed by an
inexpensive channel-wise scaling operation. In the aggregate,

Fig. 2. The schema of the original Inception module (left) and the SE-
Inception module (right).

Fig. 3. The schema of the original Residual module (left) and the SE-
ResNet module (right).

TABLE 1
(Left) ResNet-50 [13]. (Middle) SE-ResNet-50. (Right) SE-ResNeXt-50 with a 32 � 4d template

The shapes and operations with specific parameter settings of a residual building block are listed inside the brackets and the number of stacked blocks in a stage is
presented outside. The inner brackets following by fc indicates the output dimension of the two fully connected layers in an SE module.
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F IGURE 4 The comparison with the Residual module and the SE-ResNet module [25].

following each convolution. Moreover, the flexibility of the
SE block means that it can be directly applied to transforma-
tions beyond standard convolutions. To illustrate this point,
we develop SENets by incorporating SE blocks into several
examples ofmore complex architectures, described next.

Wefirst consider the construction of SE blocks for Inception
networks [5]. Here, we simply take the transformation Ftr to
be an entire Inception module (see Fig. 2) and by making this
change for each such module in the architecture, we obtain an
SE-Inception network. SE blocks can also be used directly with
residual networks (Fig. 3 depicts the schema of an SE-ResNet
module). Here, the SE block transformation Ftr is taken to be
the non-identity branch of a residual module. Squeeze and
Excitation both act before summationwith the identity branch.
Further variants that integrate SE blocks with ResNeXt [19],
Inception-ResNet [21], MobileNet [64] and ShuffleNet [65] can
be constructed by following similar schemes. For concrete
examples of SENet architectures, a detailed description of SE-
ResNet-50 and SE-ResNeXt-50 is given in Table 1.

One consequence of the flexible nature of the SE block is
that there are several viable ways in which it could be inte-
grated into these architectures. Therefore, to assess sensitivity
to the integration strategy used to incorporate SE blocks into
a network architecture, we also provide ablation experiments
exploring different designs for block inclusion in Section 6.5.

4 MODEL AND COMPUTATIONAL COMPLEXITY

For the proposed SE block design to be of practical use, it
must offer a good trade-off between improved performance
and increased model complexity. To illustrate the computa-
tional burden associatedwith themodule, we consider a com-
parison between ResNet-50 and SE-ResNet-50 as an example.
ResNet-50 requires �3:86 GFLOPs in a single forward pass
for a 224� 224 pixel input image. Each SE block makes use of
a global average pooling operation in the squeeze phase and
two small FC layers in the excitation phase, followed by an
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F IGURE 5 (Left) ResNet-50. (Middle) SE-ResNet-50. (Right) SE-ResNeXt-50 with a 32 × 4d
template [25].

As is mentioned above, the SE block can be inserted into the common used architecture, e.g.,
VGGNet [45]. To illustrate the meaning, two examples are shown in Fig. 3 and Fig. 4. The trans-
formation Ft r are adopted to be an entire Inception module in the architecture, as illustrated in
Fig. 3. Also, SE blocks can also be adopted with residual networks, as shown in Fig. 4. Moreover,
various variants are also integrated with SE-blocks, such as ResNeXt [46], Inception-ResNet [47],
MobileNet [48] and ShuffleNet [49]. To further understand the SENet architectures, SEResNet-50
and SE-ResNeXt-50 are illustrated in Fig. 5.

To make an integrated, automated, and intelligent depression diagnosis framework from video,
we adopt 2D-CNN, which has been used comprehensively in a great number of computer vision
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scenes (e.g., face recognition [14], image classification [50], etc). Most importantly, as a popular
used technology, 2D-CNN can perform a robust feature extraction, learn a comprehensive feature
representation, and achieve a promising prediction performance. As a commonly adopted neural
network technique, 2D-CNN requires numerous and various type of samples for training. However,
the database the paper used is very small and not diverse (see Section 5.1). This is because the
privacy issues and database collection need huge investment in time, human resource, and cost as
well. Very few training samples make the depression model learning by 2D-CNN to be overfitting.
Moreover, existing works of 2D-CNN only used various facial images to single model (i.e., VGG [15],
[14], etc.) to predict the depression scale.

To tackle the problems, a novel pre-trained 2D-CNN model, SENet [25], is pre-trained on a
large-scale face dataset named VGGFace2 [26], as a base model for feature learning of depression.
The VGGFace2 dataset contains total 3.31 million images of 9131 subjects, with a large extent
from VGGFace. Specifically, the last convolutional layers of the SENet is adopted to modify the full
connected layers in our work. Different from the traditional SENet technology that uses one facial
image as input for facial recognition, the input of the SENet is proposed to receive video frame
sequences as input data. In our work, T images are sampled randomly from a video clip. And then
the images are cropped and aligned. Finally, each of facial image is fed to the SENet and perform
feature extraction at the last convolutional layer. To capture and aggregate facial dynamic temporal
features based on LLFs, a novel dynamics feature extraction layer FAM is proposed, which consists
of convolutional and pooling layers. A detailed description of these databases is referred to Section
4.2. After above process, a new discriminative feature representation, namely, HLF is generated,
followed by two fully connected layers, a dropout layer, a rectified linear units (ReLU) layer. As a
deep network, the loss function plays a significant role for the final classification or regression. In
our task, depression analysis can be regarded as a regression issue. Therefore, Euclidean loss is
used as the loss function, which is considered as suitable for our work. Formally, the Euclidean loss
function L calculates the sum of squared differences between predicted and ground truth values,
which can be expressed as:

L =
1

2M

M∑
i=1

‖p̂i − pi ‖2 (5)

whereM represents the number of samples, p̂i is the predicted value of the network, and pi denotes
as the label (BDI–II score).

Finally, we fine-tune the proposed DepNet for automated depression diagnosis. The fine-
tuning technology is commonly known as Transfer Learning [51], and is an effective solution for
depression analysis [14]. The overall framework is illustrated in Figure. 1.
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4.2 | Feature Aggregation Module (FAM)
In order to avoid overfitting of the network, and to capture the long term patterns "encoded" in
the facial images, FAM module is proposed to be used for aggregating the discriminative feature
representation from LLF to HLF. To prevent overfitting, the number of parameters is first decreased
via reducing the dimensionality of the input channels of the convolutional layers. Here, some of
the dimension reduction layers are compared, and the max-pooling layer of the channel direction
(C. Max Pool) obtains the best performance for the final prediction of depression. Second, filters
of various temporal scales are used to learn various temporal dynamics features. To extract the
discriminative temporal features, different sized of convolutional filters (i.e., 3×1, 5×1, and 9×1)
and pooling operation layers (max, average) are used. Based on [52], three temporal convolutional
layers are designed for capturing global motion patterns in video sample. Meanwhile, inspired from
[53], two temporal convolutional layers are adopted to extract statistical characteristic related to
depression.

In Figure. 6, a visually illustration for FAM is provided. The module includes three parts: (i)
dimension reduction (C. Max Pool: max pooling in the channel direction), (ii) dynamics temporal fea-
ture extraction (three convolutional layers followed by one max-pooling layers, two pooling layers),
and (iii) dimension reduction operation (one 1×1 convolutional layer).

In the following, a detailed introduction is made for FAM. First, every LLF [2048×7×7] is per-
formed by C. Max Pool, the parameters is kernel_size with 4, stride with 4, and pad with 0. After
the dimension reduction process, the dimension of each LLF is [256×7×7]. In the reshape and con-
catenation layer, the LLF is reshaped from 4D [1×256×7×7] feature to a 1D feature [1×12544],
then the five (T =5) reshaped features are concatenated at the temporal direction to a 2D feature
[5×12544]. For feature extraction in the dynamic temporal layer, the 2D feature is performed by
three convolutional layers, and followed by two pooling layers. Note that all of the convolutional
layers and pooling layers use a kernel at the the temporal direction, and with kernel size one at the
spatial direction. The kernel size of the convolutional layer is 3×1, 5×1, and 9×1, respectively. For
our task, the size of every kernel is effected via the time window size (T =5). The size of kernel for
pooling layers is 5×1 to extract valuable feature representation implied in the overall time window.
The three convolutional layers followed by the max pooling layers are devised to alter the output to
1D feature at the temporal direction. The size of stride is 1, and the size of pad is 0 in all of the layers.
After above transformation process, all outputs are concatenated into a 3D feature. To create the
feature maps with a small channel, a 1×1 convolutional layer is used. At last, a HLF [64×1×12544]
is generated via the FAM.

5 | EXPERIMENTS
This section introduces the experimental performance of the proposed approach for depression
recognition. The datasets used in the experiments is described in Section 5.1. In Section 5.2, we
schematically detail the experimental setup and evaluation measures. Lastly, the evaluations of the
introduced scheme are discussed in Section 5.3.
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F IGURE 6 Schematic illustration of the FAM. Boxes and green cubes is the input/output
features. Colored boxes is the intermediate layers. The numbers of the square brackets on the left
denote the dimensions of the features of each layer.

5.1 | Databases
In our task, the evaluations of all of the experiments are carried out on the two publicly depression
databases, i.e., AVEC2013 and AVEC2014. The average age of participant is 31.5 years with the
range between 18 and 63 years. A webcam and a microphone are used for recording the audio and
appearance signals. BDI-II is used as labeling for each sample.

In AVEC2013 depression corpus, there exists 150 video clips from 82 patients totally. The
audiovisual recordings have been divided into three partitions by the publisher, i.e., training, devel-
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opment, and test sets. For every partition, it has 50 recordings.
For the AVEC2014 depression corpus, there are two tasks included, i.e., Freeform and North-

wind. For the two tasks, there are 150 video clips from 84 subjects. Similarly, AVEC2013 also has
three partitions, i.e., training, development, and test sets. Therefore, a total of 100 samples are
included in the partitions.

5.2 | Experimental Setup and Evaluation Measures
5.2.1 | Experimental Setup
On the AVEC2013 and AVEC2014 datasets, face detection and landmarks localization are first per-
formed by OpenFace toolkit [44]. Then we crop the aligned facial images to the size of 224×224
with RGB color channels.

After the above process, the features of facial image sequences are represented for every video
clip of the database. After that, we random sampleT (T =5) images from each video clip, feed each
facial image into the SENet, and extract the LLF at the convolutional layer. Totally, the AVEC2013
and AVEC2014 included 750 and 1,500 images, respectively.

The architecture of the DepNet is illustrated in Figure 1, which differs from the original SENet in
that our DepNet adopt the facial image sequence as input for depression analysis. Only one neuron
is set for giving the BDI–II score because depression recognition is a regression problem from the
machine learning perspective. Specially, DepNet is fine-tuned on the VGGFace2 dataset [26] that
contains a total of 3.31 million images of 9131 subjects, and fine-tuned on the AVEC2013 and
AVEC2014 database. The Networks are trained by caffe deep learning toolbox [54] with Stochastic
Gradient Descent (SGD). The learning rate is used to 0.00001, and reduced by the inverse decay
rule with gamma of 0.0001, and power of 0.75. The momentum is set to 0.9, and weight decay is
set to 0.0005. We conduct the experiments with two Titan-X GPU (each with 12G memory). In
the fine-tuning procedure, we freeze the SENet, and train the rest of the DepNet (from the FAM to
Euclidean loss in Figure. 1). In the training stage, an early-stop strategy is addopted to overcome
the issue of overfitting. If the loss no longer decreased in two hundred consecutive iterations, the
training process was stopped.

5.2.2 | Evaluation Measures
To make a fair comparison, the root mean square error (RMSE) and mean absolute error (MAE) are
adopted to evaluate the capability of depression recognition methods, as shown in Equ.6 and Equ.
7, respectively, whereM denotes the number of subjects, pi is the label, and p̃i is the assessed value
of the j -th subjects.

MAE =
1

M

M∑
j=1

��p j − p̃ j �� (6)
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TABLE 2 Performance of deep architectures for visual-based depression diagnosis on the test
set of AVEC2013.

Deep Architecture RMSE MAE
SENet 9.43 7.58

DepNet (SENet-based) 9.17 7.36

ResNet-50 (single image) 9.83 7.90
ResNet-50 (image sequence) 9.54 7.66

TABLE 3 Performance of deep architectures for visual-based depression diagnosis on the test
set of AVEC2014.

Deep Architecture RMSE MAE
SENet 9.30 7.47

DepNet (SENet-based) 9.03 7.26

ResNet-50 (single image) 9.57 7.68
ResNet-50 (image sequence) 9.34 7.48

RMSE =

√√√√
1

M

M∑
j=1

(p j − p̃ j )2 (7)

5.3 | Experimental Results
To show the capability of DepNet, experiments are carried out on the AVEC2013 and AVEC2014
databases. Moreover, we conduct the experiments using SENet and DepNet to compare the per-
formance of single facial images and facial image sequence, respectively.

5.3.1 | Overall Performance for Depression Recognition
The performances of depression analysis on the two databases (i.e., AVEC2013 and AVEC2014) are
demonstrated in Table 2 and 3, respectively. Firstly, we fine-tune the SENet only using the facial
images on the both databases. We retrain the proposed DepNet to use the facial image sequence
in videos. Secondly, we compare the performance among the four deep architectures.

For AVEC2013, as shown in Table 2, one can see that, the performance of DepNet is the best
among the four deep architectures (MAE 7.36 and RMSE 9.17) on the test set. The reason of com-
parison is that SENet is extended by ResNet. As for AVEC2014, as demonstrated in Table 3, similar
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TABLE 4 Depression recognition results comparision with all the previous works on the test
set of AVEC2013. Note that the listed methods use video data only.

Methods/Features RMSE MAE
Baseline [10]/LPQ-TOP 13.61 10.88

Cummins et al. [55]/STIP and PHOG 10.45 N/A
Meng et al. [30]/EOH and LBP 11.19 9.14

Wen et al. [12]/LPQ-TOP 10.27 8.22
Zhu et al. [14]/Optical flow 9.82 7.58

Mohamad et al. [20]/C3D, RNN 9.28 7.37
Zhou et al. [18]/2D-CNN 8.19 6.30
Song et al. [42]/CNN 8.10 6.16
Md et al. [43]/LSTM 8.93 7.04

Ours 9.17 7.36

to AVEC2013, DepNet outperforms the others (i.e., ResNet-50 (single image), ResNet-50 (image
sequence), SENet, DepNet (SENet-based)), obtains in the MAE of 7.26, and RMSE of 9.03, for esti-
mating the depression scale. In comparison with the results of AVEC2013, AVEC2014 gets compa-
rable performances. This is because that AVEC2014 includes more data samples than AVEC2013
database for training the deep models. This important observation indicates that the temporal pat-
terns is significant for predicting the scale of depression, andDepNet can encode the facial dynamics
well. All in all, the performances on both datasets (AVEC2013 and AVEC2014) demonstrate that
the availability of the proposed DepNet for depression recognition from facial image sequence.

5.3.2 | Comparison with Previous Works
In this part, we compare our capability of the proposed framework, using the proposed DepNet,
with the previous algorithms using other visual features. Table 4 and Table 5 present the predicted
value for the AVEC2013 and AVEC2014 databases.

Based on the two databases (i.e., AVEC2013 and AVEC2014), as shown in Table 4 and 5, our
proposed framework obtains the comparable performances when compared with the-state-of-the-
art approaches. The efficiency of our framework is that it can capture discriminative visual depres-
sion patterns from facial appearances. Some explanations are provided below. First, as an inte-
grated framework, DepNet can better learn the behavior pattern than conventional approaches. It
is proved that having a reasoning capability is important for automatically learning the character-
istic "encoded” in facial expressions. Second, FAM can capture the dynamic temporal movements
around facial regions.

In Figure. 7 and Figure. 8, we introduce our results on the two depression databases (i.e.,
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TABLE 5 Depression recognition results comparision with all the previous works on the test
set of AVEC2014. Note that these methods use video cues only.

Methods/Features RMSE MAE
Baseline [11]/LGBP-TOP 10.86 8.86

Sidorov et al. [56]/LGBP-TOP 10.83 8.32
Jan et al. [57]/EOH, LBP and LPQ 10.50 8.44
kaya et al. [58]/LGBP-TOP and LPQ 10.27 8.20

Zhu et al. [14]/Optical flow 9.55 7.47
Mohamad et al. [20]/C3D, RNN 9.20 7.22

Zhou et al. [18]/2D-CNN 8.39 6.21
Song et al. [42]/CNN 7.15 5.95
Md et al. [43]/LSTM 8.78 6.86

Ours 9.03 7.26

Methods Overall RMSE Overall MAE
Baseline (50 V) 13.61 10.88
Brunel-Beihang (50 A&V) 10.96 8.72

Team-australia ( 50 V) 10.17
MIT (50 A) 7.42 5.75
Ours (50 V) 9.17 7.36

F IGURE 7 Comparison with techniques of depression recognition results in AVEC2013
challenge. Note that several of the listed methods use the audio data while our method only uses
the visual data. (V) and (A) denote the video and audio data, respectively. (50 V) represents the 50
data samples used in the studies.
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Methods Overall RMSE Overall MAE
Baseline (100 V) 10.85 8.85
SRI (100 A) 11.1 8.83
ULM (100 A&V) 10.83 8.33
BUAP (100 A&V) 10.82 8.99
SAIL (100 A&V&Meta) 10.33
Brunel (100 A&V) 10.26 8.3
INRIA (100 A&V) 10.24 8.39
ULM  (100 A&V&Meta) 9.7 7.28
MIT (100 A&V) 8.12 6.31
Ours (100 V) 9.03 7.26

F IGURE 8 Comparison with techniques of depression recognition results in AVEC2014
challenge. (100 V) and (100 A) represent the 100 data samples used in the studies.

TABLE 6 The results of statistical significance test from the BDI-II prediction on the
AVEC2013 database.

Statistical Significance Test Method P-value
Shapiro-Wilk Normality Test 0.005
Dickey-Fuller Unit Root test 0.003

Analysis of Variance Test (ANOVA) 1.000
Chi-Squared Test 1.000

Mann-Whitney U Test 0.499

AVEC2013 and AVEC2014) and compare with the previous works using audiovisual modalities. It is
noted that from the two figures that adopting only video cues, our framework obtains comparable
performances to multi-modal methods for predicting the severity of depression. The observation
further demonstrates the superiority of the proposed approach for predicting the scale of depres-
sion.

5.3.3 | Statistical Significance Test
Statistical tests have been performed to further illustrate the performance of the proposed method
on the AVEC2013 and AVEC2014 databases. We conducted different tests which includes nor-
mality (Shapiro-Wilk Normality test), correlation (Chi-Squared test), stationary (Dickey-Fuller Unit
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TABLE 7 The results of statistical significance test from the BDI-II prediction on the
AVEC2014 database.

Statistical Significance Test Method P-value
Shapiro-Wilk Normality Test 0.002
Dickey-Fuller Unit Root test 0.001

Analysis of Variance Test (ANOVA) 1.000
Chi-Squared Test 1.000

Mann-Whitney U Test 0.498

Root test), parametric (Analysis of Variance Test (ANOVA)) and non-parametric (Mann-Whitney U
Test) tests. Table 6 and 7 respectively present the result statistics for AVEC2013 and AVEC2014
databases in the terms of p-value. This result statistics were achieved on 30 samples were col-
lected from each of the algorithm. On the AVEC2014 database, from the P-value of 0.002 of the
Shapiro-Wilk Normality test, we can conclude that the prediction of BDI-II is not Gaussian. From
the Chi-Squared test, the P-value of 1.000, we can see that the prediction of BDI-II is dependent.
For P-value of 0.001 of Dickey-Fuller Unit Root test, we can conclude that the prediction of BDI-II
is stationary. Also, from the performance of ANOVA, the P-value of 1.000, then we can obtain the
conclusion is that the prediction of BDI-II are from different distributions. Also, on the AVEC2013
database, we can obtain the same observations.The statistical tests result indicates that the pro-
posed method has demonstrated superior results.

6 | CONCLUSIONS AND FUTURE WORKS
In this paper, an architecture named DepNet to capture temporal facial expressions dynamics, for
depression analysis is proposed. We argue that such a reasoning ability is significant for capturing
the characteristic patterns of depression "encoded" in facial expressions. It has been demonstrated
that the proposed architecture outperforms the most of the approaches on the two databases,
i.e., AVEC2013 and AVEC2014. Experimental results have supported such observation. From the
experimental performances, the following major observations have been made :

1. TheDepNet canmodel a discriminative depression patternwith visual explanation that benefits
clinical diagnosis of depression severity in video sequence with fewer facial images.

2. To mine the important characteristic information of depression, FAM is proposed to aggregate
LLF into HLF. Unlike the conventional convolutional and filter methods, FAM can capture high-
level semantic information from facial image sequence.

However, the architecture has the limitation that the deep models contains amount of param-
eters to apply the industrial usage. In our future studies, various features using deep learning and
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feature aggregation approaches based on deep learning are explored. Additionally, we will explore
more explicable representation patterns, and more robust regression models to further promote
the performance of depression analysis. More importantly, the proposed technology is proved to
function well in assisting clinicians to assess the depressed subjects in a more effective way. We
will collaborate with hospitals to use the proposed system to collect the depressed case and train
the deep models for clinic usage. Our aim is that the clinicians can adopt the proposed system
to help their diagnosis procedure. Furthermore, an attempt is made to adopt the introduced IIS
in industrial domains. In addition, we will focus on adopting audio and video cues for multimodal
depression recognition.

Acknowledgements
This work is supported by the Shaanxi Provincial Social Science Foundation (grant 2021K015), the
Special Construction Fund for Key Disciplines of Shaanxi Provincial Higher Education, and the
Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No.
20JG030). This work was supported by the Academy of Finland (grants 336033, 315896), Busi-
ness Finland (grant 884/31/2018), and EU H2020 (grant 101016775).

Conflict of Interest
The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS
All authors contributed to the preparation of this manuscript. Lang He, Chenguang Guo, Prayag Ti-
wari, and Rui Su share equal contributions as first co-authors. Lang He, Chenguang Guo, and Prayag
Tiwari contributed to the methodology, experiments, and writing the manuscript. Rui Su, Hari Mo-
han Pandey assisted in methodology, writing manuscript, statistical analysis and proof reading, and
Wei Dang assisted in methodology, writing the manuscript, and proofreading.

ORCID
Lang He (https://orcid.org/0000-0003-2515-8579)
Chenguang Guo (https://orcid.org/0000-0002-5711-7977)
Prayag Tiwari (https://orcid.org/0000-0002-2851-4260)
Rui Su (https://orcid.org/0000-0002-4557-8215)
Hari Mohan Pandey (https://orcid.org/0000-0002-9128-068X)
Wei Dang (https://orcid.org/0000-0003-2477-8485)

20



references
[1] Mathers C, Fat DM, Boerma JT. The global burden of disease: 2004 update. World Health Organiza-

tion; 2008.
[2] Bogduk N. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association,;

2013.
[3] Beck AT, Steer RA, Ball R, Ranieri WF. Comparison of Beck Depression Inventories-IA and-II in

Psychiatric Outpatients. Journal of Personality Assessment 1996;67(3):588–97.
[4] Kroenke K, Strine TW, Spitzer RL, Williams JB, Berry JT, Mokdad AH. The PHQ-8 as a measure of

current depression in the general population. Journal of Affective Disorders 2009;114(1):163–173.
[5] Stratou G, Scherer S, Gratch J, Morency LP. Automatic Nonverbal Behavior Indicators of Depression

and PTSD: Exploring Gender Differences. In: Humaine Association Conference on Affective Computing
& Intelligent Interaction; 2013. p. 147–152.

[6] Alghowinem S, Goecke R, Wagner M, Parkerx G, Breakspear M. Head pose and movement analysis
as an indicator of depression. In: Affective Computing and Intelligent Interaction (ACII), 2013 Humaine
Association Conference on IEEE; 2013. p. 283–288.

[7] Alghowinem S, Goecke R,WagnerM, Parker G, BreakspearM. Eyemovement analysis for depression
detection. In: Image Processing (ICIP), 2013 20th IEEE International Conference on IEEE; 2013. p. 4220–
4224.

[8] Girard JM, Cohn JF, Mahoor MH. Nonverbal social withdrawal in depression: evidence from manual
and automatic analyses. Image and Vision Computing 2014;32(10):641–647.

[9] Ellgring H. Non-verbal communication in depression. Cambridge University Press; 2007.
[10] Valstar M, Schuller B, Smith K, Eyben F, Jiang B, Bilakhia S, et al. AVEC 2013: the continuous au-

dio/visual emotion and depression recognition challenge. In: Proceedings of the 3rd ACM International
Workshop on Audio/visual Emotion Challenge ACM; 2013. p. 3–10.

[11] Valstar M, Schuller B, Smith K, Almaev T, Eyben F, Krajewski J, et al. AVEC 2014: 3D dimensional
affect and depression recognition challenge. In: Proceedings of the 4th International Workshop on
Audio/Visual Emotion Challenge ACM; 2014. p. 3–10.

[12] Wen L, Li X, Guo G, Zhu Y. Automated depression diagnosis based on facial dynamic analysis and
sparse coding. IEEE Transactions on Information Forensics and Security 2015;10(7):1432–1441.

[13] He L, Jiang D, Sahli H. Multimodal depression recognition with dynamic visual and audio cues. In:
International Conference on Affective Computing and Intelligent Interaction; 2015. p. 260–266.

[14] Zhu Y, Shang Y, Shao Z, Guo G. Automated Depression Diagnosis based on Deep Networks to
Encode Facial Appearance and Dynamics. IEEE Transactions on Affective Computing 2017;.

[15] Jan A, Meng H, Gaus YFA, Zhang F. Artificial Intelligent System for Automatic Depression Level
Analysis through Visual and Vocal Expressions. IEEE Transactions on Cognitive and Developmental
Systems 2017;PP(99):1–1.

[16] Yang Y, Tan Z, Tiwari P, Pandey HM, Wan J, Lei Z, et al. Cascaded Split-and-Aggregate Learning with
Feature Recombination for Pedestrian Attribute Recognition. International Journal of Computer Vision
2021;p. 1–14.

21



[17] Wang G, Yang Y, Zhang T, Cheng J, Hou Z, Tiwari P, et al. Cross-modality paired-images generation
and augmentation for RGB-infrared person re-identification. Neural Networks: the Official Journal of
the International Neural Network Society 2020;128:294–304.

[18] Zhou X, Jin K, Shang Y, Guo G. Visually Interpretable Representation Learning for Depression Recog-
nition from Facial Images. IEEE Transactions on Affective Computing 2020;11(3):542–552.

[19] Wu J, Yang Y, Lei Z, Wang J, Li SZ, Tiwari P, et al. An end-to-end exemplar association for unsuper-
vised person Re-identification. Neural Networks 2020;129:43–54.

[20] Al Jazaery M, Guo G. Video-Based Depression Level Analysis by Encoding Deep Spatiotemporal
Features. IEEE Transactions on Affective Computing 2018;p. 1–1.

[21] Dhall A, Goecke R. A temporally piece-wise fisher vector approach for depression analysis. In:
Affective Computing & Intelligent Interfaces; 2015. p. 255–259.

[22] He L, Niu M, Tiwari P, Marttinen P, Su R, Jiang J, et al. Deep Learning for Depression Recognition
with Audiovisual Cues: A Review. arXiv preprint arXiv:210600610 2021;.

[23] Su H, QiW, Hu Y, Karimi HR, Ferrigno G, DeMomi E. An incremental learning framework for human-
like redundancy optimization of anthropomorphic manipulators. IEEE Transactions on Industrial Infor-
matics 2020;.

[24] He L, Guo C, Tiwari P, Pandey HM, Dang W. Intelligent system for depression scale estimation with
facial expressions and case study in industrial intelligence. International Journal of Intelligent Systems
2021;.

[25] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. arXiv preprint arXiv:170901507 2017;7.
[26] Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A. VGGFace2: A Dataset for Recognising Faces across

Pose and Age. In: IEEE International Conference on Automatic Face & Gesture Recognition; 2018. p.
67–74.

[27] Ojansivu V, Rahtu E, Heikkila J. Rotation invariant local phase quantization for blur insensitive texture
analysis. In: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on IEEE; 2008. p.
1–4.

[28] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture clas-
sification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence
2002;24(7):971–987.

[29] Joshi J. An automated framework for depression analysis. In: Affective Computing and Intelligent
Interaction (ACII), 2013 Humaine Association Conference on IEEE; 2013. p. 630–635.

[30] MengH,HuangD,WangH, YangH, AI-ShuraifiM,WangY. Depression recognition based on dynamic
facial and vocal expression features using partial least square regression. In: Proceedings of the 3rd
ACM International Workshop on Audio/visual Emotion Challenge ACM; 2013. p. 21–30.

[31] Zhao G, Pietikainen M. Dynamic texture recognition using local binary patterns with an application
to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007;29(6):915–
928.

22



[32] Jain V, Crowley JL, Dey AK, Lux A. Depression estimation using audiovisual features and fisher vector
encoding. In: Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge ACM;
2014. p. 87–91.

[33] Jiang B, Valstar MF, Pantic M. Action unit detection using sparse appearance descriptors in space-
time video volumes. In: Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE
International Conference on IEEE; 2011. p. 314–321.

[34] Jiang B, ValstarM,Martinez B, PanticM. A dynamic appearance descriptor approach to facial actions
temporal modeling. IEEE Transactions on Cybernetics 2014;44(2):161–174.

[35] Almaev TR, Valstar MF. Local gabor binary patterns from three orthogonal planes for automatic
facial expression recognition. In: Affective Computing and Intelligent Interaction (ACII), 2013 Humaine
Association Conference on IEEE; 2013. p. 356–361.

[36] Gupta R, Malandrakis N, Xiao B, Guha T, Van Segbroeck M, Black M, et al. Multimodal prediction
of affective dimensions and depression in human-computer interactions. In: Proceedings of the 4th
International Workshop on Audio/Visual Emotion Challenge ACM; 2014. p. 33–40.

[37] Perez H, Escalante HJ, Villasenor-Pineda L, et al. Fusing Affective Dimensions and Audio-Visual
Features from Segmented Video for Depression Recognition. In: Proceedings of the 4th International
Workshop on Audio/Visual Emotion Challenge ACM; 2014. p. 49–55.

[38] Senoussaoui M, Sarria-Paja M, Santos JF, Falk TH. Model Fusion for Multimodal Depression Classifi-
cation and Level Detection. In: Proceedings of the 4th International Workshop on Audio/Visual Emotion
Challenge ACM; 2014. p. 57–63.

[39] Williamson JR, Quatieri TF, Helfer BS, Ciccarelli G, Mehta DD. Vocal and facial biomarkers of depres-
sion based on motor incoordination and timing. In: Proceedings of the 4th International Workshop on
Audio/Visual Emotion Challenge ACM; 2014. p. 65–72.

[40] Ma X, Yang H, Chen Q, Huang D, Wang Y. Depaudionet: An efficient deep model for audio based
depression classification. In: Proceedings of the 6th international workshop on audio/visual emotion
challenge; 2016. p. 35–42.

[41] He L, Chan JCW, Wang Z. Automatic depression recognition using CNN with attention mechanism
from videos. Neurocomputing 2021;422:165–175.

[42] Song S, Jaiswal S, Shen L, Valstar M. Spectral Representation of Behaviour Primitives for Depression
Analysis. IEEE Transactions on Affective Computing 2020;p. 1–1.

[43] Uddin MA, Joolee JB, Lee YK. Depression level prediction using deep spatiotemporal features and
multilayer bi-ltsm. IEEE Transactions on Affective Computing 2020;p. 1–1.

[44] Baltrušaitis T, Robinson P, Morency LP. Openface: an open source facial behavior analysis toolkit. In:
Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on IEEE; 2016. p. 1–10.

[45] Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
CoRR 2015;abs/1409.1556.

[46] Xie S, Girshick RB, Dollár P, Tu Z, He K. Aggregated Residual Transformations for Deep Neural
Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017;p. 5987–
5995.

23



[47] Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, Inception-ResNet and the Impact of Resid-
ual Connections on Learning. In: Proceedings of the Thirty-First AAAIConference onArtificial Intelligence
AAAI’17, AAAI Press; 2017. p. 4278–4284.

[48] Howard A, Zhu M, Chen B, Kalenichenko D, WangW, Weyand T, et al. MobileNets: Efficient Convo-
lutional Neural Networks for Mobile Vision Applications. ArXiv 2017;abs/1704.04861.

[49] Zhang X, Zhou X, Lin M, Sun J. ShuffleNet: An Extremely Efficient Convolutional Neural Network
for Mobile Devices. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2018;p.
6848–6856.

[50] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition; 2016. p. 770–778.

[51] Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In:
Advances in neural information processing systems; 2014. p. 3320–3328.

[52] Husain F, Dellen B, Torras C. Action recognition based on efficient deep feature learning in the
spatio-temporal domain. IEEE Robotics and Automation Letters 2016;1(2):984–991.

[53] Ryoo MS, Rothrock B, Matthies L. Pooled motion features for first-person videos. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition; 2015. p. 896–904.

[54] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9.

[55] Cummins N, Joshi J, Dhall A, Sethu V, Goecke R, Epps J. Diagnosis of depression by behavioural
signals: a multimodal approach. In: Proceedings of the 3rd ACM InternationalWorkshop on Audio/visual
Emotion Challenge ACM; 2013. p. 11–20.

[56] Sidorov M, Minker W. Emotion Recognition and Depression Diagnosis by Acoustic and Visual Fea-
tures: A Multimodal Approach. In: Proceedings of the 4th International Workshop on Audio/Visual
Emotion Challenge ACM; 2014. p. 81–86.

[57] Jan A, Meng H, Gaus YFA, Zhang F, Turabzadeh S. Automatic Depression Scale Prediction using
Facial Expression Dynamics and Regression. In: Proceedings of the 4th International Workshop on
Audio/Visual Emotion Challenge ACM; 2014. p. 73–80.

[58] Kaya H, Çilli F, Salah AA. Ensemble CCA for continuous emotion prediction. In: Proceedings of the
4th International Workshop on Audio/Visual Emotion Challenge ACM; 2014. p. 19–26.

24


