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Abstract. Standard end-to-end training of attention-based ASR models
only uses transcribed speech. If they are compared to HMM/DNN sys-
tems, which additionally leverage a large corpus of text-only data and
expert-crafted lexica, the differences in modeling cannot be disentan-
gled from differences in data. We propose an experimental setup, where
only transcribed speech is used to train both model types. To highlight
the difference that text-only data can make, we use Finnish, where an
expert-crafted lexicon is not needed. With 1500h equal data, we find that
both ASR paradigms perform similarly, but adding text data quickly im-
proves the HMM/DNN system. On a smaller 160h subset we find that
HMM/DNN models outperform AED models.
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A large part of recent speech recognition (ASR) approaches can be divided
into two categories: end-to-end attention-based encoder-decoder models (AED)
and hybrid hidden Markov model deep neural network (HMM/DNN) models.
There are many reasons to choose one approach or the other: some reasons
are theoretical (e.g. emphasising the joint optimization of AED models), some
practical (e.g. needing the phone-level alignments provided by HMM/DNN mod-
els), some simply empirical (which has lower word error rate). The diverged ap-
proaches have naturally been compared in terms of performance. Performance
comparisons are inherently empirical and the results depend on the constraints
of the task [3, 17]. These constraints generally mean the data that is available,
as well as any technical limitations such as a maximum latency. Without special
techniques [9, 27, 10, 20], end-to-end training only uses transcribed speech, but
it is typical for standard ASR tasks to also include expert-crafted pronunciation
dictionaries and a large amount of text-only data, which standard HMM/DNN
models can leverage.

In this work we focus on the text resource constraints. From a practical
perspective, it is natural to include extra text in standard tasks: text-only data
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is usually much more plentiful or cheap to produce and thus available to help.
From an academic perspective, we argue that experiments with different data
constraints could disentangle the effect of differences in data from differences in
modeling.

Firstly we propose an experimental design where the HMM/DNN approach
is constrained to use the same data as an end-to-end trained AED model. The
experimental design allows us to disentangle the effect of extra text data from
model performance. In this constrained setting, the focus shifts to building a
suitable language model for the HMM/DNN despite the lack of extra text data,
rather than trying to augment the AED approach with extra text data.

Secondly, we find that under this design, in a 1500h Finnish ASR task,
the AED and HMM/DNN approaches perform similarly, but on a smaller 10%
data task, the HMM/DNN model outperforms the AED model. We find Finnish
especially well suited to this constraint, because Finnish has a very transpar-
ent orthography, and thus the effect having an expert-crafted lexicon (or lack
thereof) is annulled.

Thirdly, we extend the subword lexicon handling to support SentencePiece
models for HMM/DNNs, as we find subword models vital for the constrained
HMM/DNN.

1 Related work

Using an external language model with the AED approach in shallow fusion [9]
can also achieve an equal data setting, but the resulting system is no longer
trained end-to-end. Using more audio data is shown to reduce dependency on
an external language model [28].

There are many special methods which extend end-to-end training of AED
models so that text-only data can be used, including tighter integration of a lan-
guage model [27], and synthesizing audio-side information for text-only data [10,
20].

Comparisons between AED and HMM/DNN approaches exist, but to the
best of our knowledge the equal data experimental design proposed here has not
been explored before. It is generally thought that with large data sets, AED per-
forms as well or even better than HMM/DNN [3], and with less data HMM/DNN
starts to fare better [30], and that both approaches can be certainly be compet-
itive [17, 8].

2 Data

Our training dataset is derived from a combination of three speech datasets:
the large Finnish parliament dataset (≈1560h) containing recordings from the
Finnish parliments sessions [18], the Speecon corpus (≈160h) containing read
speech in various conditions [12], and the Speechdat database (≈220h) containing
read and spontaneous, phonetically rich telephone quality (8kHz) speech from
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a large number of speakers [21]. After the Kaldi toolkit [19] standard cleanup,
a combined ≈1500h training set remains. From this data, 10% of utterances
(randomly sampled) are taken to form a ≈160h smaller scale training set.

The transcripts of the full training set consists of ≈9M words, with ≈400k
unique words. The 10% subset transcrips have ≈900k words, with ≈100k unique
words. In the equal data setting, only the transcripts are used for language
modeling. However, there is an order-of-magnitude larger text-only dataset, the
Kielipankki text corpus [5] available, consisting of newspaper articles and books.
The Kielipankki corpus has a total of ≈143M words, with ≈4.2M unique words.

The main evaluation data is broadcast news shows from Finland’s national
public service media company YLE. The test set is ≈6h. There is a separate YLE
development set of the same type, of ≈5h. However, no matching training set
exists for this data. It can be expected that particularly the news articles in the
Kielipankki corpus can be helpful on the YLE data. The Finnish parliament data
also has a test set, which is in-domain for the training data. It has two sections:
one for speakers seen in the training data, one for unseen speakers. Surprisingly,
empirically the unseen speakers test data has been easier ; probably the members
of parliament that speak rarely more often read their speech from notes.

3 Attention-based system

We train AED models end-to-end using the ESPnet toolkit [29]. In initial exper-
iments, Transformer architectures outperformed RNN-based architectures, thus
we opt for a Transformer model. This architecture also generally fares well in
AED applications [13]. The ESPnet toolkit supports using the CTC criterion in
a multi-task setup (with weight α) to aid the encoder training [14]. The separate
CTC decoder is can also be used in decoding (with weight γ). We find that it
offers a minor improvement in this task.

The common output units for AED models are characters or larger subword
units. We conduct experiments with SentencePiece [15] BPE subword units, as
they are well integrated into ESPnet, but interestingly find no improvement in
this task. Thus we simply use character output units.

For the full 1500h data we tune the model size on the YLE development
set, ending with 16 encoder layers and 8 decoder layers of width 2048 each.
We also search for ideal weights for the CTC multitask learning and decoding,
setting α = 0.2, γ = 0.1. Besides output units, CTC parameters, and model
size, we refer to recipes of similarly sized data for the other hyperparameters,
using dropout rate 0.1 and label smoothing 0.1. We train the models with early
stopping on the YLE development data. Before decoding, we average the last 10
model checkpoints’ weights, and decode with the averaged model.

On the smaller 10% data we simply used the same hyperparameters as with
the 1500h model. We experimented with a smaller model size (anticipating that
having less data could lead to overfitting), but the same model size performed
better.
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4 HMM system

For the HMM/DNN approach, we use the Kaldi toolkit. As a baseline for acoustic
model development we refer to results from [26]. Like [26], we use context- and
word-position dependent grapheme-units. However, their models use i-vectors
for speaker-aware training, as is typical in the Kaldi toolkit. The AED approach
seems to get similar benefit from speaker-aware training as the HMM/DNN
methods [6, 22, 1], and so we argue that either both or neither of the paradigms
should use speaker-aware methods. For simplicity, we opt for neither.

We train a new, large (chain-style) time delay neural network (TDNN) based
model, without i-vectors. By using more TDNN-layers than Smit et al. we are
able to achieve similar performance on the YLE development set without i-
vectors, as shown in table 1. Thus we choose this acoustic model for the HMM
approach. On the smaller 10% data, we simply keep the same hyperparameters.

Table 1. Validating the new acoustic model, without i-vectors, against the best pub-
lished result with TDNN-BLSTM and i-vectors.

Model YLE Dev WER

TDNN-BLSTM + i-vectors 17.3
Large TDNN 17.4

The Finnish language is agglutinative, which leads to very large vocabularies.
Particularly on small text datasets, such as the speech transcripts used here, the
data sparsity problem is evident, if using traditional word-based language mod-
els. Instead, we use a subword language model, which dramatically reduces the
vocabulary size. With subword language models, long n-gram contexts may be
necessary for good performance [11], and therefore we use the variKN toolkit [23]
to train Kneser-Ney varigram n-gram models of up to 10-gram order. Addition-
ally, we train standard LSTM-based RNNLMs with TheanoLM [7], optimizing
network size on the YLE development data transcript perplexity. This leads to
network size 1024 units. The RNNLM is applied in lattice rescoring.

To segment the training transcripts into subwords, we use the same Senten-
cePiece BPE algorithm as in the AED approach. This way, both approaches
had the same segmentation style available. We optimize the variKN scale pa-
rameter, and the number of BPE units, for perplexity on the YLE development
set transcripts. Table 2 shows the resulting numbers of BPE merges for different
model types and data sizes. We optimize the language model weight for the YLE
development set word error rate.

4.1 Correct subword handling in Lexicon FST

Using subword-based language models requires some care in constructing the
lexicon FST. Firstly, when using word-position-dependent units [16], the lexicon
should take subword concatenation into account when handling word-boundary
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Fig. 1. SentencePiece lexicon FST showing which word positions SentencePiece units
can be placed at, depending on where the space character appears on example unit
SUBWORD (for instance, at the start of the unit: SUBWORD). Also shows three disam-
biguation symbols, and two more are needed for spaces inside units.

units [25]. For example, the lexicon should only transduce the word-start and
word-end units at true word boundaries, but not at every subword boundary.
Secondly, as SentencePiece units may have word boundaries as part of the sub-
word units, the optional silence at word boundaries needs to be handled specially.
As part of this work, we extend the tools introduced by [25] to support Senten-
cepiece segmentation3.

Figure 1 shows which different word positions SentencePiece units can be
placed at, depending on where the space character appears in them. The figure
also shows three word-position dependant disambiguation symbols; two more are
needed for in-unit spaces.

To validate the proposed SentencePiece lexicon FST, we compare the ASR
results to those of Morfessor generated subwords [4, 24] as presented by [25], as
shown in table 3. The SentencePiece models achieve a slightly lower error rate
on the larger corpus and slightly higher on the smaller one. The SentencePiece
lexicon comes at the cost of larger search graph (HCLG) FSTs compared to
Morfessor, for a similar sized language model, because SentencePiece requires a
more complex word boundary handling scheme.

5 Results

Table 4 lists the model sizes. Everything combined, the 1500h HMM/DNN sys-
tem matches the AED model size quite well.

Table 5 shows the performance of the best equal data AED and HMM/DNN
systems on the YLE evaluation data. The absolute word error rates are quite
similar on the full 1500h data. Note that the percentage in brackets indicates

3 https://github.com/aalto-speech/subword-kaldi
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Table 2. Optimal number of BPE merges for different data sizes and model types. In
this task the AED systems did not benefit from BPE units, and character-level models
were used instead. This was optimized on YLE Development WER (end-to-end). On
the HMM side, the number of units was optimized for LM perplexity. With the limited
10% transcripts, a small number of BPE units was marginally better than character
units, but with the full transcript and with the ≈17 times larger Kielipankki text data,
BPE units clearly improved.

Model Number of merges

HMM 10% Transcripts ≈100
HMM All Transcripts ≈1700
HMM Kielipankki ≈10000

AED 10% Data 0
AED All Data 0

Table 3. SentencePiece units compared to Morfessor units on the YLE development
data, using the same acoustic models. The small models used the Parliament tran-
scripts, while the large models used the larger Kielipankki corpus.

Model YLE Dev WER

Morfessorsmall 27.4
SentencePiecesmall 28.4

Morfessorlarge 17.4
SentencePiecelarge 15.8

the bootstrap estimate [2] of the probability of improving over the competing
model (with 10000 repetitions); with strict 95% confidence cutoffs the YLE 1500h
WER result would be inconclusive. On the 10% data, the HMM/DNN system
outperforms the AED system.

Since Finnish tends to have long words with inflections, character error rate
(CER) is a useful metric as well. Table 6 shows the YLE CER evaluation. On
the 1500h data this paints a different picture than the WER evaluation: the
AED model outperforms the HMM/DNN system. However, on the 10% data
the HMM/DNN system has lower CER as well. This CER evaluation did not
consider spaces.

The equal data results of tables 5 and 6 are contrasted by the results in
table 7, which details a set of experiments where a number of random lines was
added from the Kielipankki corpus to the HMM/DNN language model training
data set (in addition to the speech transcripts). This shows how fast the WER
would decrease as slightly better matching text data was added. New language
models were trained on the total resulting text data. We optimized the language
model and subword segmentation parameters again for each new text corpus
obtained this way.

The equal data models from tables 5 and 6 are also evaluated on the Finnish
Parliament test sets. Table 8 shows the WER results and table 9 shows the
CER results. We emphasize that these models were optimized on the YLE De-
velopment data. For constrast, we show a result [18] that was optimized on the
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Table 4. Comparison of model capacity in terms of number of parameters. N-gram
number of parameters measured by number N-grams included in the model; the number
of arcs in the resulting finite state transducer is about 50% more.

Model Number of parameters

AED 35M

HMM Total 35M
Acoustic model 20M
N-gram LM 6M
RNNLM 9M

AED10% 35M

HMM10% Total 22M
Acoustic model 20M
N-gram LM 2M

Table 5. At the top, the comparison of the best attention (AED) and HMM based
models, trained on the 1500h equal data, evaluated on the YLE broadcast data. The
percentage in brackets indicates the bootstrap estimate [2] of the probability of im-
proving over the competing model (inside the same horizontal lines). In the middle:
the RNNLM (also trained on transcripts only) does not meaningfully improve over
the 10-gram Kneser-Ney LM. In the bottom, similar comparison of the best attention
and HMM-based models trained on the smaller 10% random subset of the 1500h equal
data.

YLE
Model Dev WER Test WER

AED 28.7 27.8 (78%)
HMM 28.4 (87%) 28.1

HMM +RNNLM 29.0 28.0

AED10% 36.8 35.8
HMM10% 35.0 (100%) 34.0 (100%)

Table 6. Character error rate equivalent of table 5

YLE
Model Dev CER Test CER

AED 5.96 (95%) 5.57 (99.7%)
HMM 6.13 5.88

HMM +RNNLM 6.29 6.07

AED10% 7.73 7.21
HMM10% 7.24 (100%) 6.96 (100%)

Parliament data: this is by far the lowest WER. Based on both WER and CER,
the 1500h equal data AED and HMM/DNN models perform similarly. Again,
on the 10% data, the HMM/DNN system outperforms the AED system.
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Table 7. YLE evaluation WER decreasing as more text data is added to the
HMM/DNN approach from the Kielipankki corpus. The number in brackets indicates
how large the resulting text dataset is compared to the original.

YLE
Text data condition Dev WER Test WER

Transcripts only 28.4 28.1
+100k KP lines (1.1x) 23.7 23.7
+200k KP lines (1.2x) 22.4 22.1
+500k KP lines (1.7x) 20.3 20.5
+1M KP lines (2.3x) 18.8 19.1
All of KP (16.9x) 15.8 16.2

Table 8. At the top, as a baseline we show Parl-opt HMM, which uses a large (20M
token) in-domain text corpus for language modeling, and is optimized for the parlia-
ment data. Then, the same models as table 5, evaluated on the Parliament test set
(but models still optimized for YLE). Here the RNNLM improves slightly, indicating
it has slightly overfit to the Parliament data compared to YLE data in table 5.

FINNISH PARLIAMENT
Model Test-Seen WER Test-Unseen WER

Parl-opt HMM[18] 5.9 5.2

AED 10.2 (95%) 10.2
HMM 10.6 9.6 (98%)

HMM +RNNLM 9.7 9.0

AED10% 18.2 18.1
HMM10% 14.9 (100%) 13.7 (100%)

Table 9. Character error rate equivalent of table 8. Character error rates were not
available for the Parl-opt HMM.

FINNISH PARLIAMENT
Model Test-Seen CER Test-Unseen CER

AED 2.91 (81%) 2.99 (56%)
HMM 2.99 3.01

HMM +RNNLM 2.80 2.85

AED10% 4.64 4.92
HMM10% 3.66 (100%) 3.69 (100%)

6 Discussion

On the whole it can be said that in the full 1500h equal data scenario, the AED
and HMM/DNN approaches performed similarly. The CER results on the YLE
data favour the AED approach, which may be connected to the observation
that character-level units performed better than BPE-subwords for the AED
approach, and generally CER evaluation de-emphasizes the role of the language
model.
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In contrast to the full 1500h data, on the 10% utterances (160h) subset, the
HMM/DNN consistently performed better than the AED approach. This is in
line with the general understanding that HMM/DNN systems fare better with
less data.

Table 7 shows just how much the extra text-only data could help. Text-
only data can be naturally leveraged by HMM/DNN models, but improvements
could certainly be found with the AED text-data leveraging techniques as well.
Which of these techniques works best for AED models is an active research
question, but not in the scope of this work. Together these experiments show
how the proposed equal data experimental design can provide a new perspective:
with the data being equal, the models’ inherent strengths and weaknesses are
emphasized.

We used our best transformer model to represent the AED approach and the
HMM/DNN approach was represented by a strong TDNN acoustic model cou-
pled with our best optimized language model. The models have similar number
of parameters. Undoubtedly both approaches could have been optimized further:
on competitive datasets such as LibriSpeech, the research community competes
for tenths of percentage points of WER. Thus we feel that the differences be-
tween AED and HMM/DNN models on the full 1500h data should be seen as
inconclusive: both performed similarly. However, some results were clearer: the
10% data favors the HMM/DNN approach and the additional text-only data
was obviously the key to better error rates on the YLE data.

Thus the results here suggest there is a medium dataset scale, where the
AED and HMM/DNN can perform similarly, as long as techniques for leveraging
external text-only data are developed for the AED-models.

7 Conclusions

We have proposed an equal data experimental design where HMM/DNN systems
and end-to-end trained attention-based systems are compared by artificially lim-
iting the data to transcribed speech only. This sort of task is well suited for
Finnish, which has a transparent orthography, ruling out the lexicon’s effect.
In our equal data experiments, HMM/DNN models and AED models perform
similarly at full 1500h data, but HMM/DNN models outperform AED models
on a smaller 10% subset. Extra text-only data clearly improves the HMM/DNN
models, which emphasizes our argument that when HMM/DNN models and
end-to-end trained AED models are compared, unequal data resources can hide
differences in modeling.

As part of developing the HMM/DNN models under constraints set by this
comparison, we also implement a lexicon FST which handles the SentencePiece
subword segmentation correctly.
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Ney, H.: RWTH ASR Systems for LibriSpeech: Hybrid vs Attention. In: Proc.
Interspeech 2019. pp. 231–235 (2019). https://doi.org/10.21437/Interspeech.2019-
1780, http://dx.doi.org/10.21437/Interspeech.2019-1780

18. Mansikkaniemi, A., Smit, P., Kurimo, M.: Automatic construction
of the finnish parliament speech corpus. In: Proc. Interspeech 2017.
pp. 3762–3766 (2017). https://doi.org/10.21437/Interspeech.2017-1115,
http://dx.doi.org/10.21437/Interspeech.2017-1115

19. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hanne-
mann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely,
K.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding. IEEE Signal Processing Society (Dec
2011), iEEE Catalog No.: CFP11SRW-USB
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