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Convex Regularization in Monte-Carlo Tree Search

Tuan Dam 1 Carlo D’Eramo 1 Jan Peters 1 Joni Pajarinen 1 2

Abstract
Monte-Carlo planning and Reinforcement Learn-
ing (RL) are essential to sequential decision mak-
ing. The recent AlphaGo and AlphaZero algo-
rithms have shown how to successfully combine
these two paradigms to solve large-scale sequen-
tial decision problems. These methodologies ex-
ploit a variant of the well-known UCT algorithm
to trade off the exploitation of good actions and
the exploration of unvisited states, but their em-
pirical success comes at the cost of poor sample-
efficiency and high computation time. In this
paper, we overcome these limitations by intro-
ducing the use of convex regularization in Monte-
Carlo Tree Search (MCTS) to drive exploration ef-
ficiently and to improve policy updates. First, we
introduce a unifying theory on the use of generic
convex regularizers in MCTS, deriving the first
regret analysis of regularized MCTS and showing
that it guarantees an exponential convergence rate.
Second, we exploit our theoretical framework to
introduce novel regularized backup operators for
MCTS, based on the relative entropy of the policy
update and, more importantly, on the Tsallis en-
tropy of the policy, for which we prove superior
theoretical guarantees. We empirically verify the
consequence of our theoretical results on a toy
problem. Finally, we show how our framework
can easily be incorporated in AlphaGo and we
empirically show the superiority of convex regu-
larization, w.r.t. representative baselines, on well-
known RL problems across several Atari games.

1. Introduction
Monte-Carlo Tree Search (MCTS) is a well-known algo-
rithm to solve decision-making problems through the com-
bination of Monte-Carlo planning and an incremental tree
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structure (Coulom, 2006). MCTS provides a principled ap-
proach for trading off between exploration and exploitation
in sequential decision making. Moreover, recent advances
have shown how to enable MCTS in continuous and large
problems (Silver et al., 2016; Yee et al., 2016). Most remark-
ably, AlphaGo (Silver et al., 2016) and AlphaZero (Silver
et al., 2017a;b) couple MCTS with neural networks trained
using Reinforcement Learning (RL) (Sutton & Barto, 1998)
methods, e.g., Deep Q-Learning (Mnih et al., 2015), to
speed up learning of large scale problems. In particular, a
neural network is used to compute value function estimates
of states as a replacement of time-consuming Monte-Carlo
rollouts, and another neural network is used to estimate
policies as a probability prior for the therein introduced
PUCT action selection strategy, a variant of well-known
UCT sampling strategy commonly used in MCTS for ex-
ploration (Kocsis et al., 2006). Despite AlphaGo and Al-
phaZero achieving state-of-the-art performance in games
with high branching factor like Go (Silver et al., 2016) and
Chess (Silver et al., 2017a), both methods suffer from poor
sample-efficiency, mostly due to the polynomial conver-
gence rate of PUCT (Xiao et al., 2019). This problem,
combined with the high computation time to evaluate the
deep neural networks, significantly hinder the applicability
of both methodologies.

In this paper, we provide a theory of the use of convex
regularization in MCTS, which proved to be an efficient
solution for driving exploration and stabilizing learning in
RL (Schulman et al., 2015; 2017a; Haarnoja et al., 2018;
Buesing et al., 2020). In particular, we show how a reg-
ularized objective function in MCTS can be seen as an
instance of the Legendre-Fenchel transform, similar to pre-
vious findings on the use of duality in RL (Mensch & Blon-
del, 2018; Geist et al., 2019; Nachum & Dai, 2020a) and
game theory (Shalev-Shwartz & Singer, 2006; Pavel, 2007).
Establishing our theoretical framework, we can derive the
first regret analysis of regularized MCTS, and prove that a
generic convex regularizer guarantees an exponential con-
vergence rate to the solution of the regularized objective
function, which improves on the polynomial rate of PUCT.
These results provide a theoretical ground for the use of
arbitrary entropy-based regularizers in MCTS until now
limited to maximum entropy (Xiao et al., 2019), among
which we specifically study the relative entropy of policy
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updates, drawing on similarities with trust-region and prox-
imal methods in RL (Schulman et al., 2015; 2017b), and
the Tsallis entropy, used for enforcing the learning of sparse
policies (Lee et al., 2018). Moreover, we provide an em-
pirical analysis of the toy problem introduced in Xiao et al.
(2019) to evince the practical consequences of our theo-
retical results for each regularizer. Finally, we empirically
evaluate the proposed operators in AlphaGo, on several
Atari games, confirming the benefit of convex regularization
in MCTS, and in particular the superiority of Tsallis entropy
w.r.t. other regularizers.

2. Preliminaries
2.1. Markov Decision Processes

We consider the classical definition of a finite-
horizon Markov Decision Process (MDP) as a 5-tuple
M = 〈S,A,R,P, γ〉, where S is the state space, A is
the finite discrete action space, R : S × A × S → R is
the reward function, P : S × A → S is the transition
kernel, and γ ∈ [0, 1) is the discount factor. A policy
π ∈ Π : S×A → R is a probability distribution of the event
of executing an action a in a state s. A policy π induces a
value function corresponding to the expected cumulative
discounted reward collected by the agent when executing
action a in state s, and following the policy π thereafter:
Qπ(s, a) , E

[∑∞
k=0 γ

kri+k+1|si = s, ai = a, π
]
, where

ri+1 is the reward obtained after the i-th transition. An
MDP is solved finding the optimal policy π∗, which
is the policy that maximizes the expected cumulative
discounted reward. The optimal policy satisfies the
optimal Bellman equation (Bellman, 1954) Q∗(s, a) ,∫
S P(s′|s, a) [R(s, a, s′) + γmaxa′ Q

∗(s′, a′)] ds′,
and is the fixed point of the opti-
mal Bellman operator T ∗Q(s, a) ,∫
S P(s′|s, a) [R(s, a, s′) + γmaxa′ Q(s′, a′)] ds′. We de-

fine the Bellman operator under the policy π as TπQ(s, a) ,∫
S P(s′|s, a)

[
R(s, a, s′) + γ

∫
A π(a′|s′)Q(s′, a′)da′

]
ds′,

the optimal value function V ∗(s) , maxa∈AQ
∗(s, a),

and the value function under the policy π as
V π(s) , maxa∈AQ

π(s, a).

2.2. Monte-Carlo Tree Search and Upper Confidence
bounds for Trees

Monte-Carlo Tree Search (MCTS) is a planning strategy
based on a combination of Monte-Carlo sampling and tree
search to solve MDPs. MCTS builds a tree where the nodes
are the visited states of the MDP, and the edges are the ac-
tions executed in each state. MCTS converges to the optimal
policy (Kocsis et al., 2006; Xiao et al., 2019), iterating over
a loop composed of four steps:

1. Selection: starting from the root node, a tree-policy is

executed to navigate the tree until a node with unvisited
children, i.e. expandable node, is reached;

2. Expansion: the reached node is expanded according
to the tree policy;

3. Simulation: run a rollout, e.g. Monte-Carlo simula-
tion, from the visited child of the current node to the
end of the episode;

4. Backup: use the collected reward to update the action-
values Q(·) of the nodes visited in the trajectory from
the root node to the expanded node.

The tree-policy used to select the action to execute in each
node needs to balance the use of already known good ac-
tions, and the visitation of unknown states. The Upper Con-
fidence bounds for Trees (UCT) sampling strategy (Kocsis
et al., 2006) extends the use of the well-known UCB1 sam-
pling strategy for multi-armed bandits (Auer et al., 2002),
to MCTS. Considering each node corresponding to a state
s ∈ S as a different bandit problem, UCT selects an action
a ∈ A applying an upper bound to the action-value function

UCT(s, a) = Q(s, a) + ε

√
logN(s)

N(s, a)
, (1)

where N(s, a) is the number of executions of action a in
state s, N(s) =

∑
aN(s, a), and ε is a constant parameter

to tune exploration. UCT asymptotically converges to the
optimal action-value function Q∗, for all states and actions,
with the probability of executing a suboptimal action at the
root node approaching 0 with a polynomial rate O( 1

t ), for a
simulation budget t (Kocsis et al., 2006; Xiao et al., 2019).

3. Regularized Monte-Carlo Tree Search
The success of RL methods based on entropy regulariza-
tion comes from their ability to achieve state-of-the-art per-
formance in decision making and control problems, while
enjoying theoretical guarantees and ease of implementa-
tion (Haarnoja et al., 2018; Schulman et al., 2015; Lee et al.,
2018). However, the use of entropy regularization is MCTS
is still mostly unexplored, although its advantageous explo-
ration and value function estimation would be desirable to
reduce the detrimental effect of high-branching factor in
AlphaGo and AlphaZero. To the best of our knowledge,
the MENTS algorithm (Xiao et al., 2019) is the first and
only method to combine MCTS and entropy regularization.
In particular, MENTS uses a maximum entropy regularizer
in AlphaGo, proving an exponential convergence rate to
the solution of the respective softmax objective function
and achieving state-of-the-art performance in some Atari
games (Bellemare et al., 2013). In the following, motivated
by the success in RL and the promising results of MENTS,
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we derive a unified theory of regularization in MCTS based
on the Legendre-Fenchel transform (Geist et al., 2019), that
generalizes the use of maximum entropy of MENTS to
an arbitrary convex regularizer. Notably, our theoretical
framework enables to rigorously motivate the advantages of
using maximum entropy and other entropy-based regular-
izers, such as relative entropy or Tsallis entropy, drawing
connections with their RL counterparts TRPO (Schulman
et al., 2015) and Sparse DQN (Lee et al., 2018), as MENTS
does with Soft Actor-Critic (SAC) (Haarnoja et al., 2018).

3.1. Legendre-Fenchel transform

Consider an MDP M = 〈S,A,R,P, γ〉, as previously
defined. Let Ω : Π → R be a strongly convex function.
For a policy πs = π(·|s) and Qs = Q(s, ·) ∈ RA, the
Legendre-Fenchel transform (or convex conjugate) of Ω is
Ω∗ : RA → R, defined as:

Ω∗(Qs) , max
πs∈Πs

TπsQs − τΩ(πs), (2)

where the temperature τ specifies the strength of regulariza-
tion. Among the several properties of the Legendre-Fenchel
transform, we use the following (Mensch & Blondel, 2018;
Geist et al., 2019).

Proposition 1 Let Ω be strongly convex.

• Unique maximizing argument: ∇Ω∗ is Lipschitz and
satisfies

∇Ω∗(Qs) = arg max
πs∈Πs

TπsQs − τΩ(πs). (3)

• Boundedness: if there are constants LΩ and UΩ such
that for all πs ∈ Πs, we have LΩ ≤ Ω(πs) ≤ UΩ,
then

max
a∈A

Qs(a)− τUΩ ≤ Ω∗(Qs) ≤ max
a∈A

Qs(a)− τLΩ.

(4)

• Contraction: for any Q1, Q2 ∈ RS×A

‖ Ω∗(Q1)− Ω∗(Q2) ‖∞≤ γ ‖ Q1 −Q2 ‖∞ . (5)

Note that if Ω(·) is strongly convex, τΩ(·) is also strongly
convex; thus all the properties shown in Proposition 1 still
hold1.
Solving equation (2) leads to the solution of the optimal pri-
mal policy function ∇Ω∗(·). Since Ω(·) is strongly convex,
the dual function Ω∗(·) is also convex. One can solve the

1Other works use the same formula, e.g. Equation (2) in Nicu-
lae & Blondel (2017).

optimization problem (2) in the dual space (Nachum & Dai,
2020b) as

Ω(πs) = max
Qs∈RA

TπsQs − τΩ∗(Qs) (6)

and find the solution of the optimal dual value function
as Ω∗(·). Note that the Legendre-Fenchel transform of
the value conjugate function is the convex function Ω, i.e.
Ω∗∗ = Ω. In the next section, we leverage on this primal-
dual connection based on the Legendre-Fenchel transform
as both conjugate value function and policy function, to
derive the regularized MCTS backup and tree policy.

3.2. Regularized backup and tree policy

In MCTS, each node of the tree represents a state s ∈ S
and contains a visitation count N(s, a). Given a trajec-
tory, we define n(sT ) as the leaf node corresponding to the
reached state sT . Let s0, a0, s1, a1..., sT be the state action
trajectory in a simulation, where n(sT ) is a leaf node of T .
Whenever a node n(sT ) is expanded, the respective action
values (Equation 7) are initialized as QΩ(sT , a) = 0, and
N(sT , a) = 0 for all a ∈ A. For all nodes in the trajectory,
the visitation count is updated byN(st, at) = N(st, at)+1,
and the action-values by

QΩ(st, at) =

{
r(st, at) + γρ if t = T

r(st, at) + γΩ∗(QΩ(st+1)/τ) if t < T

(7)
where QΩ(st+1) ∈ RA with QΩ(st+1, a), ∀a ∈ A, and ρ is
an estimate returned from an evaluation function computed
in sT , e.g. a discounted cumulative reward averaged over
multiple rollouts, or the value-function of node n(sT+1)
returned by a value-function approximator, e.g. a neural
network pretrained with deepQ-learning (Mnih et al., 2015),
as done in (Silver et al., 2016; Xiao et al., 2019). We revisit
the E2W sampling strategy limited to maximum entropy
regularization (Xiao et al., 2019) and, through the use of
the convex conjugate in Equation (7), we derive a novel
sampling strategy that generalizes to any convex regularizer

πt(at|st) = (1− λst)∇Ω∗(QΩ(st)/τ)(at) +
λst
|A|

, (8)

where λst = ε|A|/log(
∑
aN(st,a)+1) with ε > 0 as an explo-

ration parameter, and∇Ω∗ depends on the measure in use
(see Table 1 for maximum, relative, and Tsallis entropy).
We call this sampling strategy Extended Empirical Exponen-
tial Weight (E3W) to highlight the extension of E2W from
maximum entropy to a generic convex regularizer. E3W
defines the connection to the duality representation using
the Legendre-Fenchel transform, that is missing in E2W.
Moreover, while the Legendre-Fenchel transform can be
used to derive a theory of several state-of-the-art algorithms
in RL, such as TRPO, SAC, A3C (Geist & Scherrer, 2011),
our result is the first introducing the connection with MCTS.
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3.3. Convergence rate to regularized objective

We show that the regularized value VΩ can be effectively
estimated at the root state s ∈ S, with the assumption that
each node in the tree has a σ2-subgaussian distribution.
This result extends the analysis provided in (Xiao et al.,
2019), which is limited to the use of maximum entropy.

Theorem 1 At the root node s where N(s) is the number
of visitations, with ε > 0, VΩ(s) is the estimated value, with
constant C and Ĉ, we have

P(|VΩ(s)− V ∗Ω(s)| > ε) ≤ C exp{ −N(s)ε

Ĉσ log2(2 +N(s))
},

(9)

where VΩ(s) = Ω∗(Qs) and V ∗Ω(s) = Ω∗(Q∗s).

From this theorem, we obtain that the convergence rate of
choosing the best action a∗ at the root node, when using the
E3W strategy, is exponential.

Theorem 2 Let at be the action returned by E3W at step t.
For large enough t and constants C, Ĉ

P(at 6= a∗) ≤ Ct exp{− t

Ĉσ(log(t))3
}. (10)

This result shows that, for every strongly convex regularizer,
the convergence rate of choosing the best action at the root
node is exponential, as already proven in the specific case
of maximum entropy (Xiao et al., 2019).

4. Entropy-regularization backup operators
From the introduction of a unified view of generic strongly
convex regularizers as backup operators in MCTS, we nar-
row the analysis to entropy-based regularizers. For each
entropy function, Table 1 shows the Legendre-Fenchel trans-
form and the maximizing argument, which can be respec-
tively replaced in our backup operation (Equation 7) and
sampling strategy E3W (Equation 8). Using maximum
entropy retrieves the maximum entropy MCTS problem in-
troduced in the MENTS algorithm (Xiao et al., 2019). This
approach closely resembles the maximum entropy RL frame-
work used to encourage exploration (Haarnoja et al., 2018;
Schulman et al., 2017a). We introduce two novel MCTS
algorithms based on the minimization of relative entropy of
the policy update, inspired by trust-region (Schulman et al.,
2015; Belousov & Peters, 2019) and proximal optimization
methods (Schulman et al., 2017b) in RL, and on the maxi-
mization of Tsallis entropy, which has been more recently
introduced in RL as an effective solution to enforce the
learning of sparse policies (Lee et al., 2018). We call these
algorithms RENTS and TENTS. Contrary to maximum and

relative entropy, the definition of the Legendre-Fenchel and
maximizing argument of Tsallis entropy is non-trivial, being

Ω∗(Qt) = τ · spmax(Qt(s, ·)/τ), (11)

∇Ω∗(Qt) = max{Qt(s, a)

τ
−
∑
a∈KQt(s, a)/τ − 1

|K|
, 0},

(12)

where spmax is defined for any function f : S ×A → R as

spmax(f(s, ·)) , (13)∑
a∈K

(
f(s, a)2

2
−

(
∑
a∈K f(s, a)− 1)2

2|K|2

)
+

1

2
,

and K is the set of actions that satisfy 1 + if(s, ai) >∑i
j=1 f(s, aj), with ai indicating the action with the i-th

largest value of f(s, a) (Lee et al., 2018). We point out
that the Tsallis entropy is not significantly more difficult to
implement. Although introducing additional computation,
requiring O(|A| log(|A|)) time in the worst case, the order
of Q-values does not change between rollouts, reducing the
computational complexity in practice.

4.1. Regret analysis

At the root node, let each children node i be assigned
with a random variable Xi, with mean value Vi, while
the quantities related to the optimal branch are denoted
by ∗, e.g. mean value V ∗. At each timestep n, the mean
value of variable Xi is Vin . The pseudo-regret (Coquelin &
Munos, 2007) at the root node, at timestep n, is defined as
RUCT
n = nV ∗ −

∑n
t=1 Vit . Similarly, we define the regret

of E3W at the root node of the tree as

Rn = nV ∗ −
n∑
t=1

Vit = nV ∗ −
n∑
t=1

I(it = i)Vit (14)

= nV ∗ −
∑
i

Vi

n∑
t=1

π̂t(ai|s),

where π̂t(·) is the policy at time step t, and I(·) is the indi-
cator function.
The expected regret is defined as

E[Rn] = nV ∗ −
n∑
t=1

〈π̂t(·), V (·)〉 . (15)

Theorem 3 Consider an E3W policy applied to the tree.
Let define DΩ∗(x, y) = Ω∗(x)− Ω∗(y)−∇Ω∗(y)(x− y)
as the Bregman divergence between x and y, The expected
pseudo regret Rn satisfies

E[Rn] ≤− τΩ(π̂) +
n∑
t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) (16)

+O(
n

log n
).
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Table 1. List of entropy regularizers with Legendre-Fenchel transforms and maximizing arguments.

Entropy Regularizer Ω(πs) Legendre-Fenchel Ω∗(Qs) Max argument∇Ω∗(Qs)

Maximum
∑
a π(a|s) log π(a|s) τ log

∑
a e

Q(s,a)
τ

e
Q(s,a)
τ∑

b e
Q(s,b)
τ

Relative DKL(πt(a|s)||πt−1(a|s)) τ log
∑
a πt−1(a|s)e

Qt(s,a)
τ

πt−1(a|s)e
Qt(s,a)

τ∑
b πt−1(b|s)e

Qt(s,b)
τ

Tsallis 1
2 (‖ π(a|s) ‖22 −1) Equation (11) Equation (12)

This theorem bounds the regret of E3W for a generic convex
regularizer Ω; the regret bounds for each entropy regularizer
can be easily derived from it. Let m = mina∇Ω∗(a|s).

Corollary 1 Maximum entropy regret:
E[Rn] ≤ τ(log |A|) + n|A|

τ +O( n
logn ).

Corollary 2 Relative entropy regret:
E[Rn] ≤ τ(log |A| − 1

m ) + n|A|
τ +O( n

logn ).

Corollary 3 Tsallis entropy regret:
E[Rn] ≤ τ( |A|−1

|A| ) + n|K|
2 +O( n

logn ).

Remarks. The regret bound of UCT and its variance have
already been analyzed for non-regularized MCTS with bi-
nary tree (Coquelin & Munos, 2007). On the contrary, our
regret bound analysis in Theorem 3 applies to generic regu-
larized MCTS. From the specialized bounds in the corollar-
ies, we observe that the maximum and relative entropy share
similar results, although the bounds for relative entropy are
slightly smaller due to 1

m . Remarkably, the bounds for Tsal-
lis entropy become tighter for increasing number of actions,
which translates in limited regret in problems with high
branching factor. This result establishes the advantage of
Tsallis entropy in complex problems w.r.t. to other entropy
regularizers, as empirically confirmed in Section 5.

4.2. Error analysis

We analyse the error of the regularized value estimate at
the root node n(s) w.r.t. the optimal value: εΩ = VΩ(s)−
V ∗(s).

Theorem 4 For any δ > 0 and generic convex regularizer
Ω, with some constant C, Ĉ, with probability at least 1− δ,
εΩ satisfies

−

√
Ĉσ2 log C

δ

2N(s)
− τ(UΩ − LΩ)

1− γ
≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
.

(17)

To the best of our knowledge, this theorem provides the first
result on the error analysis of value estimation at the root
node of convex regularization in MCTS. To give a better
understanding of the effect of each entropy regularizer in
Table 1, we specialize the bound in Equation 17 to each
of them. From (Lee et al., 2018), we know that for maxi-
mum entropy Ω(πt) =

∑
a πt log πt, we have − log |A| ≤

Ω(πt) ≤ 0; for relative entropy Ω(πt) = KL(πt||πt−1),
if we define m = mina πt−1(a|s), then we can derive
0 ≤ Ω(πt) ≤ − log |A| + log 1

m ; and for Tsallis entropy
Ω(πt) = 1

2 (‖ πt ‖22 −1), we have − |A|−1
2|A| ≤ Ω(πt) ≤ 0.

Then, defining Ψ =

√
Ĉσ2 log C

δ

2N(s) ,

Corollary 4 Maximum entropy error:

−Ψ− τ log |A|
1− γ

≤ εΩ ≤ Ψ.

Corollary 5 Relative entropy error:

−Ψ−
τ(log |A| − log 1

m )

1− γ
≤ εΩ ≤ Ψ.

Corollary 6 Tsallis entropy error:

−Ψ− |A| − 1

2|A|
τ

1− γ
≤ εΩ ≤ Ψ.

These results show that when the number of actions |A| is
large, TENTS enjoys the smallest error; moreover, we also
see that lower bound of RENTS is always smaller than for
MENTS.

5. Empirical evaluation
In this section, we empirically evaluate the benefit of the
proposed entropy-based MCTS regularizers. First, we com-
plement our theoretical analysis with an empirical study
of the synthetic tree toy problem introduced in Xiao et al.
(2019), which serves as a simple scenario to give an in-
terpretable demonstration of the effects of our theoretical
results in practice. Second, we compare to AlphaGo (Sil-
ver et al., 2016), recently introduced to enable MCTS to
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Figure 1. For each algorithm, we show the convergence of the value estimate at the root node to the respective optimal value (top), to the
UCT optimal value (middle), and the regret (bottom).

solve large scale problems with high branching factor. Our
implementation is a simplified version of the original algo-
rithm, where we remove various tricks in favor of better
interpretability. For the same reason, we do not compare
with the most recent and state-of-the-art MuZero (Schrit-
twieser et al., 2019), as this is a slightly different solution
highly tuned to maximize performance, and a detailed de-
scription of its implementation is not available.
The learning time of AlphaZero can be slow in problems
with high branching factor, due to the need of a large num-
ber of MCTS simulations for obtaining good estimates of
the randomly initialized action-values. To overcome this
problem, AlphaGo (Silver et al., 2016) initializes the action-
values using the values retrieved from a pretrained network,
which is kept fixed during the training.

5.1. Synthetic tree

This toy problem is introduced in Xiao et al. (2019) to high-
light the improvement of MENTS over UCT. It consists of
a tree with branching factor k and depth d. Each edge of
the tree is assigned a random value between 0 and 1. At
each leaf, a Gaussian distribution is used as an evaluation
function resembling the return of random rollouts. The
mean of the Gaussian distribution is the sum of the values
assigned to the edges connecting the root node to the leaf,

while the standard deviation is σ = 0.052. For stability, all
the means are normalized between 0 and 1. As in Xiao et al.
(2019), we create 5 trees on which we perform 5 different
runs in each, resulting in 25 experiments, for all the combi-
nations of branching factor k = {2, 4, 6, 8, 10, 12, 14, 16}
and depth d = {1, 2, 3, 4, 5}, computing: (i) the value es-
timation error at the root node w.r.t. the regularized opti-
mal value: εΩ = VΩ − V ∗Ω ; (ii) the value estimation er-
ror at the root node w.r.t. the unregularized optimal value:
εUCT = VΩ − V ∗UCT; (iii) the regret R as in Equation (14).
For a fair comparison, we use fixed τ = 0.1 and ε = 0.1
across all algorithms. Figure 1 and 2 show how UCT and
each regularizer behave for different configurations of the
tree. We observe that, while RENTS and MENTS converge
slower for increasing tree sizes, TENTS is robust w.r.t. the
size of the tree and almost always converges faster than all
other methods to the respective optimal value. Notably, the
optimal value of TENTS seems to be very close to the one
of UCT, i.e. the optimal value of the unregularized objective,
and also converges faster than the one estimated by UCT,
while MENTS and RENTS are considerably further from
this value. In terms of regret, UCT explores less than the
regularized methods and it is less prone to high regret, at the
cost of slower convergence time. Nevertheless, the regret of

2The value of the standard deviation is not provided in Xiao
et al. (2019). After trying different values, we observed that our
results match the one in Xiao et al. (2019) when using σ = 0.05.
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Figure 2. For different branching factor k (rows) and depth d (columns), the heatmaps show: the absolute error of the value estimate at the
root node after the last simulation of each algorithm w.r.t. the respective optimal value (a), and w.r.t. the optimal value of UCT (b); regret
at the root node (c).

(a) Results in trees with high branching factor.

0.010.1 1.0

0.01

0.1

1.0

UCT

0.010.1 1.0

0.01

0.1

1.0

MENTS

0.010.1 1.0

0.01

0.1

1.0

RENTS

0.010.1 1.0

0.01

0.1

1.0

TENTS

0

1000

2000

3000

4000

5000

R

(b) k = 100, d = 1.

0.010.1 1.0

0.01

0.1

1.0

UCT

0.010.1 1.0

0.01

0.1

1.0

MENTS

0.010.1 1.0

0.01

0.1

1.0

RENTS

0.010.1 1.0

0.01

0.1

1.0

TENTS

0

250

500

750

1000

1250

1500

1750

R

(c) k = 8, d = 3.
Figure 3. High branching factor trees (a), regret sensitivity study w.r.t. ε and τ (b, c).
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TENTS is the smallest between the ones of the other regu-
larizers, which seem to explore too much. In Figure 3(a),
we show further results evincing the advantages of TENTS
over the baselines in problems with high branching factor,
in terms of approximation error and regret. Finally, in Fig-
ures 3(b) and 3(c) we carry out a sensitivity analysis of each
algorithm w.r.t. the values of the exploration coefficient ε
and τ in two different trees. Note that ε is only used by
E3W to choose whether to sample uniformly or from the
regularized policy. We observe that the choice of τ does
not significantly impact the regret of TENTS, as opposed to
the other methods. These results show a general superiority
of TENTS in this toy problem, also confirming our theo-
retical findings about the advantage of TENTS in terms of
approximation error (Corollary 6) and regret (Corollary 3),
in problems with many actions.

5.2. Entropy-regularized AlphaGo

Atari. Atari 2600 (Bellemare et al., 2013) is a popular
benchmark for testing deep RL methodologies (Mnih et al.,
2015; Van Hasselt et al., 2016; Bellemare et al., 2017)
but still relatively disregarded in MCTS. We use a Deep
Q-Network, pretrained using the same experimental set-
ting of Mnih et al. (2015), to initialize the action-value
function of each node after expansion as Qinit(s, a) =
(Q(s, a)− V (s)) /τ , for MENTS and TENTS, as done
in Xiao et al. (2019). For RENTS we init Qinit(s, a) =
logPprior(a|s)) + (Q(s, a)− V (s)) /τ , where Pprior is the
Boltzmann distribution induced by action-values Q(s, .)
computed from the network. Each experimental run consists
of 512 MCTS simulations. The temperature τ is optimized
for each algorithm and game via grid-search between 0.01
and 1. The discount factor is γ = 0.99, and for PUCT
the exploration constant is c = 0.1. Table 2 shows the
performance, in terms of cumulative reward, of standard
AlphaGo with PUCT and our three regularized versions, on
22 Atari games. Moreover, we test also AlphaGo using the
MaxMCTS backup (Khandelwal et al., 2016) for further
comparison with classic baselines. We observe that regular-
ized MCTS dominates other baselines, in particular TENTS
achieves the highest scores in all the 22 games, showing
that sparse policies are more effective in Atari. In particular,
TENTS significantly outperforms the other methods in the
games with many actions, e.g. Asteroids, Phoenix, confirm-
ing the results obtained in the synthetic tree experiment,
explained by corollaries 3 and 6 on the benefit of TENTS in
problems with high-branching factor.

6. Related Work
Entropy regularization is a common tool for controlling ex-
ploration in Reinforcement Learning (RL) and has lead to
several successful methods (Schulman et al., 2015; Haarnoja

et al., 2018; Schulman et al., 2017a; Mnih et al., 2016). Typi-
cally specific forms of entropy are utilized such as maximum
entropy (Haarnoja et al., 2018) or relative entropy (Schul-
man et al., 2015). This approach is an instance of the more
generic duality framework, commonly used in convex op-
timization theory. Duality has been extensively studied in
game theory (Shalev-Shwartz & Singer, 2006; Pavel, 2007)
and more recently in RL, for instance considering mirror de-
scent optimization (Montgomery & Levine, 2016; Mei et al.,
2019), drawing the connection between MCTS and regular-
ized policy optimization (Grill et al., 2020), or formalizing
the RL objective via Legendre-Rockafellar duality (Nachum
& Dai, 2020a). Recently (Geist et al., 2019) introduced
regularized Markov Decision Processes, formalizing the
RL objective with a generalized form of convex regular-
ization, based on the Legendre-Fenchel transform. In this
paper, we provide a novel study of convex regularization
in MCTS, and derive relative entropy (KL-divergence) and
Tsallis entropy regularized MCTS algorithms, i.e. RENTS
and TENTS respectively. Note that the recent maximum
entropy MCTS algorithm MENTS (Xiao et al., 2019) is a
special case of our generalized regularized MCTS. Unlike
MENTS, RENTS can take advantage of any action distri-
bution prior, in the experiments the prior is derived using
Deep Q-learning (Mnih et al., 2015). On the other hand,
TENTS allows for sparse action exploration and thus higher
dimensional action spaces compared to MENTS. Several
works focus on modifying classical MCTS to improve ex-
ploration. UCB1-tuned (Auer et al., 2002) modifies the
upper confidence bound of UCB1 to account for variance in
order to improve exploration. (Tesauro et al., 2012) pro-
poses a Bayesian version of UCT, which obtains better
estimates of node values and uncertainties given limited
experience. Many heuristic approaches based on specific
domain knowledge have been proposed, such as adding a
bonus term to value estimates (Gelly & Wang, 2006; Tey-
taud & Teytaud, 2010; Childs et al., 2008; Kozelek, 2009;
Chaslot et al., 2008) or prior knowledge collected during
policy search (Gelly & Silver, 2007; Helmbold & Parker-
Wood, 2009; Lorentz, 2010; Tom, 2010; Hoock et al., 2010).
(Khandelwal et al., 2016) formalizes and analyzes differ-
ent on-policy and off-policy complex backup approaches
for MCTS planning based on RL techniques. (Vodopivec
et al., 2017) proposes an approach called SARSA-UCT,
which performs the dynamic programming backups using
SARSA (Rummery, 1995). Both (Khandelwal et al., 2016)
and (Vodopivec et al., 2017) directly borrow value backup
ideas from RL to estimate the value at each tree node, but
they do not provide any proof of convergence.

7. Conclusion
We introduced a theory of convex regularization in Monte-
Carlo Tree Search (MCTS) based on the Legendre-Fenchel



Convex Regularization in Monte-Carlo Tree Search

Table 2. Average score in Atari over 100 seeds per game. Bold denotes no statistically significant difference to the highest mean (t-test,
p < 0.05). Bottom row shows # no difference to highest mean.

UCT MaxMCTS MENTS RENTS TENTS

Alien 1,486.80 1,461.10 1,508.60 1,547.80 1,568.60

Amidar 115.62 124.92 123.30 125.58 121.84

Asterix 4, 855.00 5,484.50 5,576.00 5,743.50 5,647.00

Asteroids 873.40 899.60 1, 414.70 1, 486.40 1,642.10

Atlantis 35, 182.00 35,720.00 36,277.00 35, 314.00 35,756.00

BankHeist 475.50 458.60 622.30 636.70 631.40

BeamRider 2,616.72 2,661.30 2,822.18 2, 558.94 2,804.88

Breakout 303.04 296.14 309.03 300.35 316.68

Centipede 1, 782.18 1, 728.69 2,012.86 2,253.42 2,258.89

DemonAttack 579.90 640.80 1,044.50 1,124.70 1,113.30

Enduro 129.28 124.20 128.79 134.88 132.05

Frostbite 1, 244.00 1, 332.10 2,388.20 2,369.80 2,260.60

Gopher 3, 348.40 3, 303.00 3,536.40 3,372.80 3,447.80

Hero 3, 009.95 3, 010.55 3,044.55 3,077.20 3,074.00

MsPacman 1, 940.20 1, 907.10 2, 018.30 2,190.30 2,094.40

Phoenix 2, 747.30 2, 626.60 3, 098.30 2, 582.30 3,975.30

Qbert 7, 987.25 8, 033.50 8, 051.25 8, 254.00 8,437.75

Robotank 11.43 11.00 11.59 11.51 11.47

Seaquest 3,276.40 3,217.20 3,312.40 3,345.20 3,324.40

Solaris 895.00 923.20 1,118.20 1,115.00 1,127.60

SpaceInvaders 778.45 835.90 832.55 867.35 822.95

WizardOfWor 685.00 666.00 1,211.00 1,241.00 1,231.00

# Highest mean 6/22 7/22 17/22 16/22 22/22

transform. We proved that a generic strongly convex regu-
larizer has an exponential convergence rate for the selection
of the optimal action at the root node. Our result gives theo-
retical motivations to previous results specific to maximum
entropy regularization. Furthermore, we provided the first
study of the regret of MCTS when using a generic strongly
convex regularizer, and an analysis of the error between the
regularized value estimate at the root node and the optimal
regularized value. We use these results to motivate the use
of entropy regularization in MCTS, considering maximum,
relative, and Tsallis entropy, and we specialized our regret
and approximation error bounds to each entropy-regularizer.
We tested our regularized MCTS algorithm in a simple toy
problem, where we give an empirical evidence of the effect
of our theoretical bounds for the regret and approximation er-
ror. Finally, we introduced the use of convex regularization
in AlphaGo, and carried out experiments on several Atari
games. Overall, our empirical results show the advantages

of convex regularization, and in particular the superiority of
Tsallis entropy w.r.t. other entropy-regularizers.
Future developments of this work can investigate the possi-
bility of mixing UCT and the regularized policy in a com-
plementary manner. In our empirical results, we observed
that UCT enjoys a better cumulative regret than regularized
policies, while regularized policies have a better one-step
regret due to the exponential convergence rate. Consider-
ing that cumulative regret and one-step regret can be both
significant objectives to minimize according to the prob-
lem at hand (Bubeck et al., 2009), studying theoretically
sound ways of mixing UCT and regularized policy seems a
promising idea.
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