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Abstract. Cell differentiation and development are for a great part
steered by cell type specific enhancers. Transcription factor (TF) binding
to an enhancer together with DNA looping result in transcription initia-
tion. In addition to binding motifs for TFs, enhancer regions typically
contain specific histone modifications. This information has been used to
detect enhancer regions and classify them into different subgroups. How-
ever, it is poorly understood how TF binding and histone modifications
are causally connected and what kind of molecular dynamics steer the
activation process.
Contrary to previous studies, we do not treat the activation events as
static epigenetic marks but consider the enhancer activation as a dynamic
process. We develop a mathematical model to describe the dynamic
mechanisms between TF binding and histone modifications known to
characterize an active enhancer. We estimate model parameters from
time-course data and infer the causal relationships between TF binding
and different histone modifications. We benchmark the performance of
this framework using simulated data and survey the ability of our method
to identify the correct causal mechanisms for a variety of system dynamics,
noise levels and the number of measurement time points.

Keywords: dynamic modeling · enhancer activation · cell differentiation

1 Introduction

Cell differentiation is steered by highly complex molecular machinery which
controls the execution of cell type specific transcriptional programs. Transcrip-
tional programs are typically initiated by external signaling molecules which
bind receptors on the cell surface and activate downstream signaling pathways.
Signaling cascades in turn activate lineage determining transcription factors that
bind selected regions in the genome and control the regulatory functions of these
regions, for instance, by modifying the structure of chromatin. An important class
of genomic regions bound by lineage specifying transcriptions factors are so-called
enhancer regions which facilitate DNA looping, and as a consequence, enable
interaction between enhancer and promoter sequences leading to the initiation of
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transcription [24, 7]. Systematic activation of these selected regulatory regions is
an important part of lineage determine supervision, but the detailed molecular
kinetics behind these epigenetic mechanisms are poorly understood [16]. Modern
high-throughput measurement techniques, such as chromatin immunoprecipi-
tation sequencing, provide practical means to observe the epigenetic states in
different cell types. Such methods have vigorously been used to determine global
chromatin markings across different cell types. Further, new insights on the molec-
ular mechanisms can be gained by analyzing these data using computational
approaches.

Computational methods that have been used to study epigenetic mechanisms
include, for instance, Bayesian networks, sparse partial correlation networks and
maximum entropy framework [13, 12, 18, 26]. Yu et al. [25] have also combined
gene expression data analysis with histone modification networks and theoretical
investigations of histone modification networks have also been proposed in [9].
Even though these existing approaches provide invaluable information about
the structure of epigenetic signaling networks, the approaches are limited in the
sense that they provide only a static view on the network structure and do not
account for dynamic causative relationships between epigenetic modifications. In
other words, these approaches provide information about statistical dependencies
between measured quantities but are incapable of capturing mechanistic features
of the underlying system. Dynamic view on epigenetic signaling is especially im-
portant when considering cell differentiation processes which depend on enhancer
activity.

During cell differentiation processes, the state of an enhancer typically changes
transiently from an inactive state to an active state. The activation process
is steered by enzymatic signals (readers and writers of histone modifications)
accompanied with appropriate transcription factor activities [2]. Consequently, in
order to learn dynamic behavior leading to active enhancer state, it is necessary
to quantify the dynamic and causative relationships between the key components
of this complex molecular system.

In this study, we take the first steps towards mechanistic analysis of epigenetic
signaling events that lead to the enhancer activation. We construct a mechanistic
ordinary differential equation model to describe central histone modification
and transcription factor dynamics leading to active enhancer state and apply
this model to study enhancer activation during human T helper 2 (Th2) cell
differentiation. Our model is designed to capture the dynamics of histone H3 lysine
4 monomethylation (H3K4me1), histone H3 lysine 27 acetylation (H3K27ac),
and an activating TF. Highly enriched levels of histone modifications H3K4me1
[10] and H3K27ac [3] are known to characterize the active enhancer state in
Th2 cells and for example STAT6 is a central transcription factor driving the
differentiation into Th2 lineage [17]. To carry out the analysis in a data driven
manner, we embed the causal model into a statistical framework which makes it
possible to infer the model structure as well as parameters from experimental
data. Our result show that experimental data from as few as five time point is
sufficient to distinguish cascade of enhancer activation events.
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Fig. 1. A possible pathway model of chromatin changes during enhancer activation
that are reflected by the abundance data.

2 Methods

2.1 Mathematical Model

The STAT family of transcription factors plays a crucial role in the enhancer
activation as well as in the differentiation of Th cells in general [23]. TF is one
of the transcritption factors that initiate and steer the differentiation process
towards Th2 lineage [14]. One such scenario leading to enhancer activation is
illustrated in Figure 1. Initially, there are no TFs bound to the enhancer site
and the enhancer associated histone modifications are absent (Figure 1, initial
state 1). As the first step, enhancer activation is initiated by TF that binds the
enhancer (Figure 1, state 2) and, in the considered scenario, TF binding is first
followed by H3K4me1 (Figure 1, state 3) and then finally by the third activation
event H3K27ac (Figure 1, state 4). This chain of three causative activation steps
leads to active enhancer state and if the underlying assumptions of the causal
relationships between the key components are correct, we can build a dynamic
model for the activation process by using ODEs that describe the key components.

Because TF activation is driven by T cell activation as well as inducing
cytokine signals, we can simply assume that there is a persistent input signal
affecting TF. Thus, TF dynamics can be described by the ordinary differential
equation

d [TF]

dt
= αTF − δTF[TF], (1)

where αTF and δTF are unknown association and dissociation rate constants of
TF and [TF] represent the TF abundance at the enhancer site. Further, if we
assume that enzymatic signals that cause the methylation of the histone tail
H3K4me1 result from TF binding, we can model H3K4me1 enrichment at the
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enhancer cite by means of the equation

d[H3K4me1]

dt
= αme[TF]− δme[H3K4me1], (2)

where αme and δme are unknown methylation and demethylation rate constants
and [H3K4me1] represent the H3K4me1 abundance at the enhancer site. Similarly,
if H3K27ac is driven by H3K4me1 driven enzymatic signals, its enrichment
[H3K27ac] at the site can be modeled using the differential equation

d[H3K27ac]

dt
= αac[H4K3me1]− δac[H3K27ac], (3)

where αac and δac are unknown acetylation and deacetylation rate constants.
If the causative relationships between the key component TF, H3K4me1, and
H3K27ac are correct, the resulting ODE system can be used to approximate
the complex molecular kinetics consisting, for example, of TF binding events,
enzymatic signals, methylation, acetylation etc.

The approximative model that we derive above indicates that the TF signal
drives H3K4me1 which, in turn, drives H3K27ac. In other words, we have a
cascade of causative events leading to the active enhancer state and this can be
denoted by writing

TF binding→ H3K4me1→ H3K27ac.

However, because the detailed kinetics remain unknown, we cannot be sure if
the causative relationships are correct. In other words, the true order of the
activation events in the cascade can be, for instance,

H3K4me1→ TF binding→ H3K27ac.

Additionally, some of the activating events can also be synergistic in nature.
For example, TF binding and H3K4me1 can drive H3K27ac in a manner which is
either additive or multiplicative. These synergistic models can be defined formally
using the following equations

d[H3K27ac]

dt
= αac1[TF] + αac2[H3K4me1]− δac[H3K27ac], (4)

and
d[H3K27ac]

dt
= αac[TF][H3K4me1]− δac[H3K27ac]. (5)

All different scenarios that can be derived by altering the order or the type of
the activation steps can be modeled using the rate equations given in Equations
1-5. Altogether there are 13 effectively different alternative models (see Table 1.).
Importantly, all these alternative scenarios result in different dynamics of the
model output. Further, the dynamics of the model output can be directly linked
to observed time-course data and, by means of quantitative statistical methods,
it is possible to infer the most likely causative relationships between the key
components leading to enhancer activation.
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Table 1. A ⊥⊥B denotes that events A and B are independent; A → B denotes that A
regulates B; (A ∨ B) denotes A or B; (A ∧ B) denotes A and B.

index type of interaction order of events

0 independent H3K4me1 ⊥⊥H3K27ac ⊥⊥TF binding
1 cascade H3K27ac → H3K4me1 → TF binding
2 cascade H3K27ac → TF binding → H3K4me1
3 cascade H3K4me1 → H3K27ac → TF binding
4 cascade H3K4me1 → TF binding → H3K27ac
5 cascade TF binding → H3K27ac → H3K4me1
6 cascade TF binding → H3K4me1 → H3K27ac
7 multiplicative synergy (H3K4me1 ∧ H3K27ac) → TF binding
8 multiplicative synergy (H3K4me1 ∧ TF binding) → H3K27ac
9 multiplicative synergy (H3K27ac ∧ TF binding) → H3K4me1
10 additive (H3K4me1 ∨ H3K27ac) → TF binding
11 additive (H3K4me1 ∨ TF binding) → H3K27ac
12 additive (H3K27ac ∨ TF binding) → H3K4me1

2.2 Statistical Framework

We combine the dynamic ODE models with time-course data by means of statis-
tical modeling. More specifically, we set up a statistical framework for the ODE
models by using Bayesian methodology as outlined in [8] and carry out posterior
inference for the parameters and for the most likely causative relationships be-
tween the key components steering enhancer activation [6] (alternative models
are listed in Table 1). In the following, we describe the details of our statistical
framework.

Let us denote the output of the model Mk by φMk
(θk, t) ∈ RN where N is

the number of components in the model, θk is the vector of parameters of the
model and t is the time point. Further, θkl is the l’th element of θk. Also, let
D = (y11, . . . , yNT ) be the experimental data which consists of measurements yij
of the components i = 1, . . . , N at the time points t = 1, . . . , T . Accordingly,
φik(θk, tj) is the is i’th element at j’th time point of the model output. By
assuming normal errors, we define likelihood as

p(D |Mk,θk) =

N∏
i=1

T∏
j=1

N (yij | φik(θk, tj), σ
2
k)

where N is the normal probability density function with mean φik(θk, tj) and
variance σ2

k. Posterior distribution of the model Mk is

p(Mk | D) ∝ p(D |Mk)π(Mk)

or

log(p(Mk | D)) = log(p(D |Mk)) + log(π(Mk)) + C
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where π(Mk) is the prior distribution for the model Mk and C is constant. The
marginal likelihoods

p(D |Mk) =

∫
p(D |Mk,θk)π(θk |Mk)dθk

is used to compare models with respect to each other. It can be approximated in
many ways [4]. In this study, we apply Laplace approximations (as described e.g.
[1]). Assuming uniform prior distribution for the models, i.e. prior probabilities
π(Mk) are equal, for all k = 0, . . . , 12, we obtain Bayesian information criterion
[21] defined by

BIC = log(p(D | θ̂k,Mk))− 1

2
k0 log(n),

where p(D | θ̂k, Mk) is the maximum likelihood for model Mk, k0 is the number
of parameters and n is the number of observations.

2.3 Computational Implementation

In this work, we applied tools and methods reported being successful in dynamical
modeling in systems biology. The ODE models and the model selection were
implemented in Matlab (The MathWorks Inc., Natick, MA, USA) by using
PESTO toolbox [22] for parameter optimization and AMICI toolbox [5] for solving
the ODE systems numerically. Maximum likelihood estimates for parameters
were obtained by employing the sensitivity equations in combination with a
multi-start strategy based on latin hypercube sampling as suggested in [19, 20].
We optimized the parameters by maximizing the log-likelihood function from 100
starting points with interior-point algorithm in Matlab’s fmincon function.

3 Results

3.1 Evaluation of Model Identifiability and Discrimination

In practice, time-course measurements for histone modifications and TF binding
can be carried out only at a few time points. Being aware of the limited size of
real data sets, we use a small number of time-points also in our experiments with
simulated data. In these experiments, we consider three different scenarios for
measurements time-point selection, in the first one the samples are collected at
three time points (0, 4 and 72 hours), in the second one the samples are collected
at four time points (0, 4, 8, and 72 hours), and in the third samples are collected
at five time points ( 0, 4, 8, 12 and 72 hours). For each scenario we considered
eight levels of measurement noise. The ladder was used to estimate the upper
limit of heterogeneity in enhancer activation signals supporting this approach. In
addition, we introduced additional variability between the data sets by drawing
the model parameters from normal distributions with fixed means shown in
Table 2 and five percent coefficient of variation. This leads to heterogeneous data
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Fig. 2. Y axis shows the percentages of successful model selections, meaning that the
correct model has the top rank (i.e. the highest marginal likelihood) for a given data.
X axis shows tested measurement noise variances. 50 data sets are analyzed for each
model and noise variance value. Model parameters, initial values and measurement
noise variance were all inferred from simulated data.

containing dynamics of varying rates. In total, we created independently 4800
different data sets.

We evaluated the model selection in two settings. First one was designed to
be as flexible as possible. Model parameters, initial values and measurement noise
variance were all inferred from simulated data. The rate parameters were con-
strained to the range [10−3, 100], initial values at range [0.05, 0, 5] and standard
deviations [0.05, 3]. Model selection is shown in Figure 2. Not surprisingly model
selection is relatively unreliable with three times points. Yet, with four time
points cascade model starts to become recognizable, when measurement noise is
reasonable small (standard deviation less than, say, 1). Using five measurement
times enables reliable model selection for cascade and additive models. However,
it is difficult for this framework to identify the correct model from very limited
amounts of data when synergistic model is used to generate the data. Moreover,
the framework with this amount of flexibility, seems to favour models with some
dependencies between the enhancer activation signals even when data is created
from models consisting independent variables.

The other setting is more rigid. In this scenario, only rate parameters are
inferred from the data while initial values and values for measurements noise are
fixed to the correct values. In experimental work, it may be difficult to fix these
parameters to exactly correct values, but it increases the number of data points
relative to the number of inferred parameters making model ranking theoretically
more sound. Model selection results are shown in Figure 3. The pattern is similar
to the previous case where data from three or four time points were not sufficient
to trace the correct model whereas model ranking starts to become more accurate
when data is available from five time points.
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Fig. 3. Y axis shows the percentages of successful model selections, meaning that the
correct model has the top rank (i.e. the highest marginal likelihood) for a given data.
X axis shows tested measurement noise variances. 50 data sets are analyzed for each
model and noise variance value. Model parameters were inferred from simulated data
while initial values and measurement noise variance were set to correct value.

We assessed the uncertainties in the estimated parameter values of the models
with parameter identifiability analysis by using the profile likelihood method [11].
The parameter profile likelihood for lth parameter of model Mk is defined by
maximum likelihood

PLθkl
(c) = max

θk∈{θk|θkl=c}
log p (D|θk,Mk) . (6)

The profile likelihood determines confidence intervals for estimated parameter
values given a fixed confidence level [11, 15]. Profile qualifies whether the parameter
is identifiable or not. There are three basic categories for parameter identifiability.
Clean, smooth profile with obvious maximum which furthermore has reasonably
constrained confidence interval is clearly identifiable. A flat profile leads to an
infinite confidence interval indicating structural non-identifiability whereas a
confidence interval constrained only at one end is practically non-identifiable.

As a likelihood based method identifiability analysis clearly depends on both
data and measurement noise. We applied profile likelihoods to simulated data
containing five time points where measurement noise has standard deviation
0.15. With this kind of data, parameters were generally identifiable for all models
except for synergistic model family. Figure 4 illustrates this case. Even then
most of the parameters were identifiable. Surprisingly, parameters of a synergis-
tic model calibrated to data derived from cascade model were all identifiable.
Moreover, the same model calibration applied to additive model resulted in one
practically non-identifiable parameter while others were indentifiable. Together,
the results indicate that the inference framework performs well and model ranking
is promisingly powerful.



Modeling enhancer activation dynamics 9

0.3 0.4

71

5

10

15

lo
g
-p

ro
fi
le

, 
lo

g
(P

L
)

-0.5 -0.4

72

6

8

10

12

lo
g
-p

ro
fi
le

, 
lo

g
(P

L
)

0 1 2

73

6

8

10

12

lo
g
-p

ro
fi
le

, 
lo

g
(P

L
)

0 1

74

6

8

10

12

lo
g
-p

ro
fi
le

, 
lo

g
(P

L
)

-1.4 -1.3

75

4

6

8

10

12

lo
g
-p

ro
fi
le

, 
lo

g
(P

L
)

-1.4 -1.3

76

4

6

8

10

12

lo
g
-p

ro
fi
le

, 
lo

g
(P

L
)

Fig. 4. The red curves represent the profile likelihoods of the kinetic parameters θ7

represented in base 10 logarithmic scale. The dashed lines show the 95% confidence
interval thresholds. The synergistic multiplicative model (model 7, Table 1.) was
calibrated to data generated with the same model. Basal activation rate θ71 and
deactivation rate θ72 define independent dynamics for the first activation signal x.
Similarly, θ73 and θ74 control the dynamics of the second signal y. Signals x and y
together drive the dynamics of z multiplicatively using parameter θ75 whereas θ76 is
the deactivation rate of z. While other parameters are indentifiable, θ73 and θ74 are
practically unidentifiable.

4 Discussion

We propose a new computational framework which is based on network inference,
representative systems of ODEs, parameter estimation and model ranking to
infer and predict enhancer activation dynamics mechanistically. We verify that
a feasible amount of data is able to distinguish different models by creating
synthetic data that describes different kinds of dynamics and sample data points
to simulate data from wet-lab experiments. When the data is sampled in time
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points that reflect well the dynamic changes in enhancer activation, the correct
model family can be found with only five time points.

In this work, we concern the dynamics of an enhancer activation. The networks
involved consist only the best known histone modifications and one TF factor
binding. The networks can be easily expanded to contain other histone modifica-
tions, TF binding or other molecules as well. In that case, it is important to have
sufficient amount of abundance data from the new components and consider the
possible mechanisms the components can impact to the system. It may be that
new terms representing for example repressive effect to the systems needs to be
introduced to the ODEs. For all expansions detailed attention should be paid to
the experimental design and to the time scale of the studied phenomenon.

Unlike previous methods used to infer causal relations between molecules
engaged in enhancer activation, the suggested method utilizes more effectively
time evolution of abundance data. Instead of snapshots or series of snapshots the
occasional relations captured by for example (dynamic) Bayesian networks, the
proposed approach combines all information into a single complete causal model
of dynamic relations between the molecules. In addition, mechanistic modeling
enables us to predict the (relative) abundances of the molecules.

5 Conclusion

We have represented the first mathematical model to assess dynamic causal
dependencies between key molecular components during cell type specific enhancer
activation. This approach enables both predictions of the dynamics and causality
inference between the activation events going beyond previously available methods
detecting only static features. The introduced method works well with data from a
few time points and hence is applicable in both designing time course experiments
and analyzing experimental data studies.
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Appendix

Table 2. The simulated models and the means of the parameters used in data simu-
lations. One representative from each model family were selected for generating data.
Index k ∈ {0, 1, 7, 11} specifies the model structure as described in Table 1. A sampled
parameter vector θk consists of kinetic parameters θkl, initial values for three ordered
enhancer activation signals denoted by x0, y0 and z0 and the simulation specific mea-
surement noise σs which was 0.15, 0.25, 0.5, 0.75, 1, 1.25 1.5 or 2.0. Independent, cascade
and synergistic models have six kinetic parameters. Consecutive odd and even elements
are the activation rates and the corresponding deactivation rates of the enhancer acti-
vation signal, respectively. Additive models have seven kinetic parameters. First four of
them are the basal activation and the deactivation rates of enhancer activity signal x
and y mediating dynamics independent from other variables while θk5 and θk6 are the
activation rates of z activation caused by x and y and θk7 is the deactivation rate of z.

model k θk1 θk2 θk3 θk4 θk5 θk6 θk7 x0 y0 z0 σ

independent 0 3.1 .3 3.1 .3 3.1 .3 0.03 0.02 0.04 σs

cascade 1 3.1 .3 .3 .25 .9 1 0.03 0.02 0.04 σs

synergistic 7 2.4 .4 2 1 0.05 .05 0.03 0.02 0.04 σs

additive 11 3.1 .3 .2 0.01 .9 0.7 1 0.03 0.02 0.04 σs
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