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a b s t r a c t

This paper investigates the distributed consensus tracking control problem for general linear multi-
agent systems with external disturbances and heterogeneous time-varying input and communication
delays under a directed communication graph topology, containing a spanning tree. First, for all
agents whose state matrix has no eigenvalues with positive real parts, a communication-delay-related
observer, which is used to construct the controller, is designed for followers to estimate the leader’s
state information. Second, by means of the output regulation theory, the results are relaxed to the case
that only the leader’s state matrix needs to be asymptotically stable or marginally stable and, under
these relaxed conditions, the controller is redesigned. Both cases lead to a closed-loop error system
of which the stability is guaranteed via a Lyapunov–Krasovskii functional with sufficient conditions
in terms of input-delay-dependent linear matrix inequalities (LMIs). An extended LMI is proposed
which, in conjunction with the rest of LMIs, results in a solution with a larger upper bound on delays
than what would be feasible without it. It is highlighted that the integration of communication-delay-
related observer and input-delay-related LMI to construct a fully distributed controller (which requires
no global information) is scalable to arbitrarily large networks. The efficacy of the proposed scheme
is demonstrated via an illustrative numerical example.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The design of algorithms for distributed coordination in
network systems has attracted significant attention by many
disciplines over the last few decades, such as control, commu-
nication, physics, biology, and computer science. The emergence
of this type of network systems, stretching from smart grids,
social, robotic, and traffic networks of various sorts to embedded
electronic devices, has sparked immense interest in distributed
coordination problems. One such coordination problem is con-
sensus tracking control of multi-agent systems (MASs) in which
followers are designed to track their leader; see, e.g., Olfati-Saber
and Murray (2004).

The design of feedback control systems in MASs connected
over a communication network inherits two types of delays:
input and communication delays. Input delays (IDs) are related
to the existence of communication links in the feedback control
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loop (sensor-to-controller delay and controller-to-actuator delay)
inducing delays (due to, e.g., limited bandwidth, retransmissions,
and slow processing times) while exchanging data among de-
vices. Communication delays (CDs) are attributed to the delayed
information from neighboring agents via the underlying com-
munication network (due to retransmissions, congestion, limited
bandwidth, etc.). Both types of delays affect the stability of the
whole system.

Many consensus controllers have been proposed to tackle
homogeneous CDs, e.g., in Zhou and Lin (2014). One key advantage
of addressing the problem of having homogeneous delays is the
easiness to put the MAS dynamics into a compact mathemati-
cal form related to the Laplacian matrix of the communication
graph. For heterogeneous delays, however, the above advantage
disappears and linear matrix inequality (LMI) conditions are of-
ten proposed, e.g., in Sun and Wang (2009), to deal with the
heterogeneous nature of CDs. However, these LMI conditions
are not scalable to arbitrarily large networks as the dimension
of the LMI increases with the number of agents. Alternatively,
heterogeneous fixed delays can be transformed into the Laplace
domain and approaches in the frequency domain (e.g., general-
ized Nyquist criterion) can be utilized to design controllers for
specific dynamics of MASs, i.e., single-input-single-output (Münz,
Papachristodoulou, & Allgöwer, 2010), first order (Ahmed, Khan,
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Saeed, & Zhang, 2020) and general linear dynamics (Jiang, Chen,
& Charalambous, 2021). However, time-varying delays cannot be
transformed and analyzed in the frequency domain. The difficulty
of standard techniques to deal with time-varying heterogeneous
CDs (HCDs) motivates this work.

Different from CDs, IDs have been investigated for decades
for the single-agent system. To actively compensate for IDs, pre-
dictive controllers have been proposed in the literature, e.g., the
Smith predictor, the finite spectrum assignment approach, Art-
stein’s model reduction technique and the transport partial dif-
ferential equation technique; see Fridman (2014) and references
therein. Apart from the Smith predictor in the frequency domain,
above predictive controllers always have an integral term. As it
is claimed in Van Assche, Dambrine, Lafay, and Richard (1999),
the integral term discretization should be carefully executed in real
applications, especially for open-loop unstable systems, because the
bad discretization may make systems become unstable. Therefore,
it is beneficial to drop the integral term, not only for improving
the computational efficiency, but also for not compromising the
stability of the system. Besançon, Georges, and Benayache (2007)
proposed the predictive observer approach without any integral
term, which is followed in Najafi, Hosseinnia, Sheikholeslam, and
Karimadini (2013) for constant IDs and in Léchappé, Moulay,
and Plestan (2016) for time-varying IDs. For MASs, the problem
considering heterogeneous IDs (HIDs) emerges and is challenging
as Kronecker format dynamics for MASs cannot be constructed
like in the case of homogeneous ones. To deal with this problem,
there are mainly two methods: (i) One is the frequency-domain
approach for constant delays which is, e.g., utilized in De, Sahoo,
and Wahi (2018) with single/double integrator dynamics. (ii) The
other, instead of dealing with HIDs for the whole MAS using the
Kronecker product method, is transforming the consensus prob-
lem into studying a single agent with its own ID, see, e.g., in Xu,
Liu, and Feng (2018) where only the constant ID is handled and
a sum term related to historical input information is needed in
the discrete-time dynamics which echoes the integral term in
the continuous-time dynamics. To the authors’ best knowledge,
to deal with time-varying HIDs for general linear MASs is still an
open challenge, which is the other motivation of this work.

There are also some works considering IDs and CDs simulta-
neously. For example, for constant IDs and CDs, see Ahmed et al.
(2020), Jiang et al. (2021) and Tian and Liu (2008); for constant
IDs but time-varying CDs, see Xu et al. (2018) and Zhou and Lin
(2014). To the authors’ best knowledge, there is no work dealing
with time-varying IDs and CDs simultaneously, which is more
realistic in real applications. In this paper, we aim to close this
gap.

In this paper, time-varying HIDs and HCDs and external distur-
bances are addressed for multi-agent consensus tracking under a
directed graph topology. Instead of designing an observer related
to IDs and CDs together as in Jiang et al. (2021), the idea is to
decouple IDs and CDs during controller construction by designing
an only-CD-related observer such that the ID can be dealt with
inside each agent separately using the LMI technique. The main
contributions are as follows.

• This work can deal with time-varying HIDs and time-varying
HCDs simultaneously.

• A larger upper bound of IDs is achieved by proposing a
new objective-function-transformed LMI when optimizing
existing LMIs. How to adjust this LMI to make unstable MASs
become stable is also provided.

• The proposed controller is fully distributed (no global infor-
mation is needed) compared to aforementioned works in the
literature dealing with delays, such as, Ahmed et al. (2020),
De et al. (2018), Sun and Wang (2009) and Zhou and Lin
(2014) and without integral terms (which is computation-
ally efficient and does not compromise stability).

2. Preliminaries and problem formulation

2.1. Notations and graph theory

Throughout this paper, R,Rm×n and Rn are the real number
space, the m × n real matrix space and the n-dimensional Eu-
clidean vector space, respectively. ⊗ is the Kronecker product
and diag(a1, . . . , an) represents a diagonal matrix with diagonal
elements a1, . . . , an. Matrices are assumed to have compatible
dimensions if not explicitly stated. A matrix A ∈ Rn×n is called
Metzler if every off-diagonal entry of A is non-negative. λmin(A)
and λmax(A) represent the minimum and maximum eigenvalues
of A, respectively. The square matrix A ≻ 0 (A ⪰ 0) means A is
symmetric and positive (semi) definite. L∞(a, b) is the space of
essentially bounded functions φ : (a, b) → Rn with the norm
∥φ∥∞ = ess supθ∈(a,b) |φ(θ )|. For a vector x, denote ∥x∥ as its
2-norm. For any integer a ≤ b, denote Iba = {a, a + 1, . . . , b}.
Symmetric terms in symmetric matrices are denoted by ∗, e.g.,[
A B
∗ C

]
=

[
A B
BT C

]
.

In a weighted graph G = (V, E,A), V = {1, 2, . . . ,N} and E ⊆

V × V are respectively the nodes and edges. A = [aij] ∈ RN×N

is the weighted adjacency matrix with aij = 1, (i, j) ∈ E and
aij = 0 otherwise. An edge (i, j) ∈ E means agent i can get
information from j but not necessarily conversely. The Laplacian
matrix L =

[
lij
]
∈ RN×N is defined as lij = −aij, i ̸= j and lii =∑

j̸=i aij. A directed path from node i to j is a sequence of edges
(i, i1) , (i1, i2) , . . . , (ih, j) in the directed network with distinct
nodes i1, i2, . . . , ih. A digraph (i.e., directed graph) contains a
directed spanning tree if there is a node from which a directed
path exists to each other node.

2.2. System model

Consider a group of homogeneous MASs with N followers and
the leader indexed by 0 as

ẋi(t) =Axi(t)+ Bui(t − τui (t))+ vi(t), i ∈ IN1 , (1)

ẋ0(t) =Ax0(t), (2)

where xi(t) = [xi1(t), . . . , xin(t)]T ∈ Rn and ui(t) ∈ Rp are
respectively the state and input of the i-th follower and x0(t) ∈
Rn. The impact of an uncertain environment on each agent’s
dynamics is modeled by the exogenous disturbance vi(t) ∈ Rn

which is supposed to be locally essentially bounded, meaning
that vi(t) ∈ L∞[0, t),∀t > 0, i.e., ∥vi∥∞ ≤ ∆i with ∆i being a
priori given. (A, B) is controllable. Not all followers can receive
the leader’s state information. τui (t) is the unknown time-varying
HID. Denote the CD from agent j to agent i as τcij (t) which can
be heterogeneous and time-varying. τui (t) and τcij (t) satisfy the
following assumptions.

Assumption 1. Input delays are upper bounded (0 ≤ τui (t) ≤

τ̄i, τ̄ = maxi∈IN1 τ̄i) and differentiable with their derivatives upper
bounded (τ̇ui (t) ≤ τ̂i, τ̂ = maxi∈IN1 τ̂i).

Assumption 2. Each agent i knows the value of τcij (t) when it
receives information from its neighbor agent j.

In several real-world applications, devices use timestamps at
the transmitted packets. As a result, the receiving node i is able to
measure the delay τcij (t) for a packet arriving from node j. Note
that the assumption of known CDs appears in several works in
the literature (see, e.g., Hou, Fu, Zhang, and Wu (2017), Jiang et al.
(2021) and Zhou and Lin (2014) and references therein).
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Assumption 3. Graph G contains a directed spanning tree in
which the leader acts as the root node.

Then, the Laplacian matrix L of G can be partitioned as L =[
0 01×N

L2 L1

]
, where L2 ∈ RN×1 and L1 ∈ RN×N . We denote

the multi-agent set with and without the leader as N and N̄ ,
respectively. Based on (1) and (2), denote the consensus tracking
error for follower i as x̃i(t) = xi(t)− x0(t) and we have

˙̃xi(t) = Ax̃i(t)+ Bui(t − τui (t))+ vi(t), i ∈ IN1 . (3)

In addition to homogeneous MASs, we also consider the hetero-
geneous ones as

ẋi(t) =Aixi(t)+ Biui(t − τui (t))+ vi(t),

yi(t) =Cixi(t), i ∈ IN1 ,
ẋ0(t) =A0x0(t), y0(t) = C0x0(t),

(4)

where xi(t) ∈ Rni , vi(t) ∈ Rni , ui ∈ Rpi , yi (t) ∈ Rq and x0(t) ∈ Rn,
y0(t) ∈ Rq. (Ai, Bi) are controllable. Ci and C0 are output matrices.
Here, the reason to choose A0 for the leader instead of A is for
the presentation convenience. Other variables are the same as
the ones in homogeneous MASs. We change x̃i(t) = xi(t) − x0(t)
for homogeneous MASs as the output consensus error x̃i(t) =

yi(t)− y0(t) for heterogeneous MASs.

Problem 1. Considering time-varying HIDs and HCDs, for any
given initial states xi(0)∪ x0(0), design a distributed controller to
achieve the following objectives:
I: the tracking error x̃i(t) for homogeneous MASs (1) and (2) is

exponentially stable if vi(t) ≡ 0, i ∈ IN1 , and stays bounded if
vi(t) ∈ L∞[0, t),∀t > 0;

II: the output consensus error x̃i(t) for heterogeneous MASs (4)
stays bounded;

III: MASs can endure larger delays.

3. Communication-delay-related observer

In this section, the CD-related observer is the first step (also
the key step), to address multi-agent consensus when the time-
varying IDs and CDs are considered simultaneously. In the rest of
this paper, for the convenience of presentation, we will omit the
term (t) in τcij (t) or τui (t). When there exists no confusion, the
variable t will be omitted, e.g., x = x(t).

3.1. Observer & controller for homogeneous MASs

Assumption 4. The state matrix A for MASs has no eigenvalues
with positive real parts.

In order to achieve consensus tracking, each follower should
have knowledge about the leader’s state information. Thus, design
a distributed observer ξi(t) ∈ Rn to estimate x0(t) as

ξ̇i(t) =Aξi(t)+ ϵ
∑

j∈N̄ ,j̸=i

aij[e
Aτcij ξj(t − τcij )− ξi(t)]

+ ϵai0[eAτci0 x0(t − τci0 )− ξi(t)], i ∈ IN1 , (5)

where 0 < ϵ ∈ R is a constant and ξi(t) = 0, t ≤ 0. ξj(t − τcij )
denotes the communication-delayed observer information from
agent j to agent i, i.e., ξj(t − τcij ) means agent j sends its observer
information ξj(t) to the neighboring agent i via communication
topology edge (i, j) which has communication delay τcij . The same
holds for the leading agent x0(t − τci0 ). Denote the observer
estimating error as ξ̃i = ξi − x0.

Remark 1. From the construction of observer (5), agent i does
not need to use a delayed value of its state, unlike, e.g., Hou et al.
(2017), Jiang et al. (2021) and Zhou and Lin (2014) in which their
results would not be feasible if an agent does not use a delayed
value of its state. Since the receiving node i is able to measure
the delay τcij for a packet arriving from node j (Assumption 2), it
is able to calculate observer (5).

Lemma 1. Under Assumptions 2–4 and ϵ > 0, the observer
estimating error yields limt→∞ ξ̃i(t) = 0 exponentially.

Proof. See Appendix A.1 ■

Now, the control input is chosen to be of the form as

ui(t) = K (xi(t)− ξi(t)), i ∈ IN1 , (6)

where the controller gain matrix K ∈ Rp×n will be designed later.
Based on ui = K (xi − ξi − x0 + x0) = K (x̃i − ξ̃i), integrating the
above equation into (3) gives

˙̃xi = Ax̃i + BK x̃i(t − τui )+ vi − BK ξ̃i(t − τui ). (7)

We regard the term vi(t)− BK ξ̃i(t− τui ) as the disturbance to the
error dynamics (7). As vi(t) ∈ L∞[0,∞) in (1) and limt→∞ ξ̃i(t) =
0 in Lemma 1, (vi(t)− BK ξ̃i(t − τui )) ∈ L∞[0,∞). Since (7) is only
related to agent index i, thus, i will be omitted in the following.
Therefore, denote ζ := x̃i, τ (t) := τui (t),ϖ := vi − BK ξ̃i(t − τui )
and τ̂ := τ̂i such that τ̇ (t) ≤ τ̂ from Assumption 1. Then, the
transformed error dynamics is

ζ̇ (t) = Aζ (t)+ BKζ (t − τ (t))+ϖ (t). (8)

3.2. Observer & controller for heterogeneous MASs

Results in Assumption 4 is restrictive for all followers and the
leader. However, for relaxing this assumption, one way is that fol-
lowers and the leader should have different state matrix A, i.e., the
system transforms to heterogeneous MAS as in (4). Then, the
following assumption based on output regulation theory in Huang
(2004) is needed.

Assumption 5. There exist solutions (Xi,Ui) for each follower i
to the following linear matrix equations:

XiA0 = AiXi + BiUi, C0 = CiXi, i ∈ IN1 . (9)

Assumption 6. Eigenvalues of the leader’s state matrix A0 have
one of the following properties: (i) negative real parts; (ii) zero
real part but are simple, i.e., eigenvalues on the imaginary axis
are all distinct from one another.

Based on Assumption 5, Assumption 4 can be relaxed to As-
sumption 6 in which the leader dynamics is asymptotically stable
or marginally stable [Theorem 8.1, Hespanha (2018)]. The motiva-
tion behind this is that several real-world scenarios may involve
follower state dynamics Ai that are open-loop unstable (e.g., fight
aircrafts). The distributed observer in (5) is thus changed to

ξ̇i(t) =A0ξi(t)+ ϵ
∑

j∈N̄ ,j̸=i

aij[e
A0τcij ξj(t − τcij )− ξi(t)]

+ ϵai0[eA0τci0 x0(t − τci0 )− ξi(t)], i ∈ IN1 (10)

with ξi(t) ∈ Rn. The difference is the replacement of A in (5)
to A0 in (10). Therefore, limt→∞ ξ̃i(t) = 0 is still valid under
Assumptions 2, 3 and 6 with the necessary condition for the

1 Details of proofs and simulation setting can be found in our technical
report (Jiang, Liu, & Charalambous, 2021).
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positive parameter ϵ as Re(λ(IN ⊗ A0 − L1 ⊗ (ϵIn))) < 0. We
redesign the control input as

ui(t) = K 1
i xi(t)−K 2

i ξi(t), i ∈ IN1 , (11)

where the controller gain matrices K 2
i = Ui−K 1

i Xi and K 1
i ∈ Rpi×ni

will be designed later. Denote x̄i = xi−Xix0. Based on (9), we have

x̃i = yi − y0 = Ci(x̄i + Xix0)− C0x0 = Cix̄i, (12)

which means the output consensus error x̃i is dependent on the
term x̄i. Based on Eqs. (4), (9) and (11), the derivative of x̄i is
calculated as
˙̄xi =Aix̄i + BiK 1

i x̄i(t − τui )+ vi − BiK 2
i ξ̃i(t − τui )

− BiUi(x0(t)− x0(t − τui )). (13)

One can see (13) has a similar math format as (7). Similarly,
denote ζ := x̄i, τ (t) := τui (t),ϖ := vi−BiK 2

i ξ̃i(t−τui )−BiUi(x0(t)−
x0(t − τui )), τ̂ := τ̂i and A := Ai, B := Bi, K := K 1

i . Then, (13)
transforms to (8). We should verify ϖ ∈ L∞[0,∞).

Denote ϱi(t) = x0(t)−x0(t−τui ); then, from (4) it is easy to get
ϱ̇i = A0ϱi + τ̇uiA0x0(t − τui ). Denote another augmented variable
ϱ̄i(t) = [ϱT

i (t), x
T
0(t − τui )]

T and we have

˙̄ϱi =

[
A0 τ̇uiA0

0 A0

]
ϱ̄i = (

[
1 τ̇ui

0 1

]
⊗ A0)ϱ̄i.

Based on the fact that given the eigenvalues of S ∈ Rn×n and
T ∈ Rm×m are λ1, . . . , λn and µ1, . . . , µm, respectively, then the
eigenvalues of S ⊗ T are λiµj, i = 1, . . . , n, j = 1, . . . ,m, one can
verify that the stability of ϱ̄i(t) is determined by the eigenval-
ues of A0. Thus, based on Assumption 6, ϱ̄i(t) is asymptotically
or marginally stable, i.e., ϱi(t) is bounded. Therefore, ϖ (t) ∈

L∞[0,∞) is still valid here. Finally, K 1
i will be designed as K in (8)

such that x̄i(t) is bounded. Based on (12), x̃i(t) for heterogeneous
MASs (4) will be accordingly also bounded.

4. Stability analysis

From the previous section, one can see that by taking advan-
tage of designing the only CD-related observer ξi(t) for either
homogeneous or heterogeneous MASs, both the original cooper-
ative consensus tracking problem is transformed into the input-
to-state stability problem of ‘‘single agent system’’ (8) involving
only the time-varying ID. The LKF with descriptor method (Frid-
man, 2014) will be adopted to design K . Inspired by the work
of Fridman (2014), design one type of LKF as

V =ζ TPζ +

∫ t

t−τ̄

e2δ(s−t)ζ T (s)Sζ (s)ds

+

∫ t

t−τ (t)
e2δ(s−t)ζ T (s)Q ζ (s)ds

+ τ̄

∫ 0

−τ̄

∫ t

t+θ

e2δ(s−t)ζ̇ T (s)Rζ̇ (s)dsdθ,

where 0 ≤ τ (t) := τui ≤ τ̄ from Assumption 1, δ > 0 is a constant
and matrices P ≻ 0,Q⪰0, R ≻ 0, S ≻ 0. Denote a scaler γ > 0
and

W = V̇ + 2δV −ϖ Tγϖ. (14)

The calculation of W is presented in Appendix B. Following the
Proposition 1 in Fridman and Dambrine (2009), if there exist
δ > 0, γ > 0 and matrices {P, S, R} ≻ 0,Q ⪰ 0 such that
along the trajectories of (8), the LKF satisfies the condition W < 0
(i.e., the matrix inequality Φ1 in (B.2) satisfies Φ1 ≺ 0 and (B.3)
is feasible), then, the solution of error dynamics (8) satisfies

ζ T (t)Pζ (t) ≤e−2δtζ T (0)Pζ (0)

+ (1− e−2δt )
γ

2δ
∥ϖ [0, t]∥2

∞
, t > 0. (15)

Remark 2. The reason for adopting the descriptor method (P2, P3
in (B.1)) is that the controller parameter K can be designed con-
veniently and that some comparison simulations in Section 6.1.3
of Jiang (2018) shows that the closed-loop system can endure
larger delays with the descriptor method used. It also shows
that there is a trade-off between the exponential convergence
rate δ and upper bound τ̄ : the larger the rate δ, the smaller the
upper bound τ̄ . Q = 0 means the system can endure the fast-
varying delay (i.e., τui (t) does not have any constraints on the
delay derivative, e.g., τ̇ui (t) ≥ 1) as the derivative upper bound
τ̂ will disappear in Φ1(4, 4) (Fridman, 2014).

Lemma 2. Under Assumptions 1–4 (or Assumptions 1–3, 5–6),
given τ̄ ≥ 0, τ̂ ∈ [0, 1), δ > 0, γ > 0 and ε ∈ R, if there exist
n × n matrices {P̄, Q̄ , R̄, S̄} ≻ 0 (Q̄ = 0 for including the case of
τ̂ ≥ 1), {S̄12,M} ∈ Rn×n, Y ∈ Rp×n such that the following LMIs are
feasible:

Φ2 =

⎡⎢⎢⎢⎢⎢⎣
Φ2(1, 1) Φ2(1, 2) e−2δτ̄ S̄12 Φ2(1, 4) In

∗ Φ2(2, 2) 0 εBY εIn
∗ ∗ Φ2(3, 3) Φ2(3, 4) 0
∗ ∗ ∗ Φ2(4, 4) 0
∗ ∗ ∗ ∗ −γ In

⎤⎥⎥⎥⎥⎥⎦ ≺ 0,

(16)

Φ ′

2 =

[
R̄ S̄12
∗ R̄

]
⪰ 0, (17)

Φ2(1, 1) =2δP̄ + S̄ + Q̄ − e−2δτ̄ R̄+ AM +MTAT ,

Φ2(1, 2) =P̄ −M + εMTAT ,Φ2(3, 4) = e−2δτ̄ (R̄− S̄T12),

Φ2(1, 4) =BY + e−2δτ̄ (R̄− S̄12),

Φ2(2, 2) =τ̄ 2R̄− εMT
− εM,Φ2(3, 3) = −e−2δτ̄ (S̄ + R̄),

Φ2(4, 4) =− (1− τ̂ )e−2δτ̄ Q̄ + e−2δτ̄ (−2R̄+ S̄12 + S̄T12),
then, objective I (II) of Problem 1 is solved by the distributed con-
troller consisting of input (6) and observer (5) (input (11) and
observer (10)). The controller gain matrix is thus designed as K =

YM−1 (K 1
i = YM−1, K 2

i = Ui − K 1
i Xi, (Xi,Ui) is the solution to the

output regulation equation (9)).

Proof. For objective I, recalling ζ := x̃i,ϖ := vi−BK ξ̃i(t−τui ) and
limt→∞ ξ̃i(t) = 0 exponentially, based on (15), if matrix inequal-
ities Φ1< 0 (B.2) and (B.3) are feasible, then limt→∞ x̃i(t) = 0
exponentially if vi(t) ≡ 0; otherwise,

∥x̃i(t)∥2 ≤
γ

2δλmin(P)
∆2

i , t → ∞. (18)

For objective II, similarly, as t → ∞,

∥x̃i(t)∥2 ≤
γ ∥Ci∥

2

2δλmin(P)
(∆2

i + ∥BiUi(x0 − x0(t − τui ))∥
2). (19)

The problem left is to calculate the controller gain matrix K . Recall
that the decay rate δ, which is related to τ̄ in Remark 2, is a
system convergence requirement and should be set in advance,
meaning δ is known. As K in (8) is unknown, Φ1 contains two
nonlinear terms: PT

2 BK and PT
3 BK , since P2, P3 are also unknown.

From descriptor method, by setting P3 = εP2, nonlinear matrix
inequality Φ1 has then one nonlinear term PT

2 BK . Denote M :=

P−1
2 , P̄ := MTPM, Q̄ := MTQM, R̄ := MTRM, S̄ := MT SM, S̄12 :=

MT S12M . Note that from the construction of Φ2(2, 2), the feasi-
bility of Φ2 guarantees that M or P2 is positive definite. Then, in-
spired from Liu, Fridman, and Xia (2020), multiplying Φ1 in (B.2)
by diag(MT ,MT ,MT ,MT , In) and diag(M,M,M,M, In) from the
left and right side, respectively, and denoting Y = KM , Φ1 in (B.2)

4
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is linearized as LMI Φ2 in (16). Similarly, Φ ′

1 in (B.3) transforms
to Φ ′

2 in (17). After M and Y are calculated through LMIs (16) and
(17), one has K = YM−1.

For objective II in heterogeneous MASs, we give each matrix
(not scalars) with a subscript i, e.g., replacing A, P as Ai, Pi, i ∈ IN1
and solve all LMIs together to get Mi, Yi to calculate K 1

i . ■

The application of Lemma 2 is summarized as follows.

Algorithm 1. Controller design for upper bound τ̄

1: Input: Delay derivative bound τ̂ and decay rate δ based on
system specifications (δ determines how fast (exponentially)
the MAS converges).

2: Initialization: Set parameters ϵ in (5) and ε.
3: Define P̄, Q̄ , R̄, S̄, S̄12 and γ ,M, Y as variables.
4: Solve LMIs (16) and (17) to get M and Y .
5: Output: Compute input parameter K = YM−1.

5. Delay size analysis

This section is for objective III of Problem 1, i.e., analyzing
how to get an improved upper bound τ̄ . As stated in Remark 2,
the larger the rate δ, the smaller the upper bound τ̄ . Herein, δ is
predefined and fixed.

Different delay-dependent LMI conditions (e.g., LMIs (16),
(17)) are successfully proposed to prove the stability of single-
agent system for different control scenarios; see, e.g., Besançon
et al. (2007), Fridman (2014) and Najafi et al. (2013). However,
the aforementioned methods do not perform a delay size analysis
and the derived conditions are usually restricted to relatively
small delays.

Note that LMIs (16) and (17) in Lemma 2 are the only sufficient
conditions for MAS stability. The main idea to get an improved
upper bound τ̄ is by using the following reasoning. If the upper
bound τ̄ is so large that LMIs (16) and (17) are not feasible, then
the tracking error would possibly diverge, i.e., ∥x̃i(t)∥ in (18)/(19)
would possibly diverge. It may also mean, in this situation, that
the value of γ /(2δλmin(P)) would be very large (check the analysis
of Fig. 2(d)–(f)). So, it is easily deduced that the objective of min-
imizing γ /(2δλmin(P)) and keeping ∥x̃i(t)∥ in (18)/(19) bounded
simultaneously is preferred. However, the eigenvalue function
of unknown LMI variables (e.g., P) is not available, thus some
transformation is needed. In addition to the predefined δ, only
λmin(P) needs attention. On the contrary to the common setting
of P ≻ 0, design P ⪰ In/µ,µ > 0 such that λmin(P) ≥ 1/µ.
Then, γ /(2δλmin(P)) ≤ (2γµ)/(4δ). In this way, based on the
law 2γµ ≤ γ 2

+ µ2, the minimizing objective can change to an
optimization constraint, i.e., by asking

γ

2δλmin(P)
≤

2γµ
4δ

≤
γ 2

+ µ2

4δ
≤ χ, χ > 0

with χ predefined, the constraint becomes

γ 2
+ µ2

− 4δχ ≤ 0 (20)

with adding µ as an LMI variable, which can be transformed into
an LMI, i.e.,

Φ3 =

⎡⎣4δχ γ µ

γ 1 0
µ 0 1

⎤⎦ ⪰ 0. (21)

One can see (20) can be transformed as ∥[γ , µ]T∥2 ≤ 2
√
δχ ,

which is a second-order cone constraint. As semi-definite pro-
gramming contains second-order cone programming, a second-
order cone constraint (20) can be written as an LMI (21).

Fig. 1. The digraph G satisfying Assumption 3.

From M = P−1
2 , P̄ = MTPM and P ⪰ In/µ we have P̄ −

MT (In/µ)M ⪰ 0. In addition to µIn ≻ 0, by Schur complement
lemma, condition P ⪰ In/µ,µ > 0 can be transformed into

Φ4 =

[
P̄ MT

∗ µIn

]
⪰ 0, µ > 0. (22)

Algorithm 2. Controller design for larger upper bound τ̄ .
1: Same steps 1–2 in Algorithm 1 and χ > 0 in (20).
2: Define P̄, Q̄ , R̄, S̄, S̄12 and γ ,M, Y , µ as variables.
3: Solve LMIs (16), (17), (21) and (22) to get M and Y by tuning

the value of χ .
4: Output: Compute input parameter K = YM−1.

Theorem 1. Based on Lemma 2, additionally χ > 0, by tuning χ if
LMIs (16), (17), (21) and (22) are feasible, then, for Problem 1, the
objectives I, II are solved and the MAS can endure larger delay upper
bound τ̄ compared to Lemma 2, i.e., objective III is solved.

Proof. The proof follows the same lines of the one of Lemma 2.
The difference is that now, instead of P ≻ 0, we add LMIs (21)
and (22) here. The intuition explanation is that by adding an
objective-function-transformed constraint (i.e., (20)) on the right-
hand side of consensus tracking error ∥x̃i(t)∥ (18)/(19), and by
tuning the value of χ which provides a freedom to control the
bound of γ /(2δλmin(P)) compared to Algorithms 1 which cannot
control that bound, the value of ∥x̃i(t)∥ will be more difficult to
diverge or become large, i.e., the system could endure larger delay
size. ■

Remark 3. Algorithms 1–2 can be applied to single agent system.
Unlike Sun and Wang (2009), the dimension of proposed LMIs
is not related to agent number N or delay number n, thus will
not increase when N or n increases. It means Algorithms 1–2 are
also scalable to a large number of agents. Unlike Algorithm 1 in
which K is calculated and is fixed for a given delay upper bound
τ̄ , i.e., the controller is fixed, Algorithm 2 allows for calculating
different K for a fixed τ̄ by tuning χ . As aforementioned, χ is
tuned for controlling the upper bound of γ /(2δλmin(P)), i.e., tun-
ing χ offers the freedom for Algorithm 2 to design K and then
the controller. The χ tuning mechanism is described for different
τ̄ in Fig. 2(d)–(f) and for a fixed τ̄ in Fig. 3.

6. Simulations

Heterogeneous MASs are considered here with the graph G
shown in Fig. 1. Set the dynamics of agents 1 and 4 as the
platooning dynamics in simulation of Jiang et al. (2021); set
agents 2 and 3 respectively as the linearized mobile vehicle and
the Caltech wireless tested vehicle in simulation of Jiang, Wen,
Peng, Huang, and Rahmani (2019). Set the output matrix as C1 =

C4 = [I2, 02×1], C2 = [I2, 02×2], C3 = [I2, 02×4]. Denote v̄ =

[sin(10t), cos(10t), sin(20t)]T and set the disturbances as vi(t) =
0, t ∈ [0, 200), i ∈ I41; v1(t) = 13v̄, v2(t) = [2v̄; 0], v3(t) =

[3v̄; 0; 0; 0], v4(t) = v̄, t ∈ [200, 400]. Set τ̂ = 0.8, δ =

0.1, ε = 0.3, ϵ = 0.3. Initial conditions are randomly set and
ui(t) = 0, t ∈ [−τ̄ , 0], i ∈ I41. Set the communication delays
as τc10 = 6 + sin(0.5t), τc21 = 6 + 2 sin(0.4t), τc23 = τc32 =

5
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Fig. 2. (a), (b), (c) depict a comparison of the first dimension of output consensus tracking error of agent 1 for different leader dynamics A0 using Algorithm 1 with
τu = 0.5, τ̄ = 0.9. (d), (e), (f) depict a comparison of output consensus tracking error of agent 2 related to the input delay bound τ̄ for Algorithms1–2.

6 + 3 sin(0.5t), τc42 = 6 + 4 sin(2t), τc14 = 6 + 5 sin(0.1t).
Set the input delays as τu1 = τu + 0.1 cos(0.5t), τu2 = τu +

0.2 sin(0.5t), τu3 = τu+0.3 cos(0.1t), τu4 = τu+0.4 sin(0.5t) with
τu ≥ 0.4 guaranteeing τui ≥ 0, i ∈ I41. It also means τ̄ = τu + 0.4
which satisfies τ̄ ≥ τui . In the following, by changing the value of
τu, the upper bound τ̄ can be found and comparison simulations
can be provided.

To verify Assumption 6, we set A0 as marginally stable, asymp-
totically stable and unstable, respectively as follows:

A0 =

[
0 1
0 −1

]
,

[
−1 1
0 −1

]
,

[
0 1
0 0

]
.

The eigenvalues of A0 are correspondingly shown in Fig. 2(a)–
(c). The solutions (Xi,Ui) to the output regulation equation (9)
are thus obtained by using [Lemma 4, Cai, Lewis, Hu, and Huang
(2017)]. Fig. 2(a)–(c) demonstrate that Assumption 6 is precise
and Algorithm 1 is available for MAS consensus tracking control
as (i) errors are bounded with effects of external disturbances
attenuated during t ∈ [200, 400]; (ii) when t ∈ [0, 200) without
disturbances, x̃11(t) is bounded (equals 0.2) in (a), zero in (b) and
unbounded in (c) which verifies (19).

In the following, to better present the performance compari-
son, we neglect the disturbance performance, i.e., we set vi(t) =
0. Fig. 2(d)–(f) show that Algorithm 2 can help systems endure
larger input delay size. The value setting mechanism of χ in
the proposed objective-function-transformed constraint (20) is
as follows. In Fig. 2(e), we get γ /(2δλmin(P)) = 9.7842 × 103

from Algorithm 1 for agent 2 which becomes unstable first. So we
should choose χ > 9.7842× 103, e.g., χ = 2.5× 105 in Fig. 2(f).
In fact, it is stable for χ = 1 × 105 with τ̄ = 5.5, but not stable
with τ̄ = 5.6, then we choose χ = 2.5×105. The reason that the
output tracking error in Fig. 2(e) becomes unbounded is because
τ̄ = 5.4 is too large for the whole MAS to remain stable under the
controller designed using Algorithm 1. This point also proves the
superior performance of Algorithm 2 with the freedom of tuning
the value of χ to allow for a larger value of τ̄ to be endured by
the MAS.

Fig. 3 gives more details about analyzing the influence of
constraint (20). When χ = 1 in Fig. 3(a), MAS is unstable, which

may be due to the too strong constraint for LMI variables γ and µ

in (γ 2
+µ2)/(4δ) ≤ 1. Then, this constraint is relieved in Fig. 3(b)–

(f) where one can see MAS becomes stable gradually. Note that
further alleviation of the constraint is not very helpful as there is
nearly no performance difference between Fig. 3(e) and (f). This
finding also verifies (18)/(19).

Remark 4. Fig. 2(e)–(f) and Fig. 3 show when the closed-loop sys-
tem is on the edge of stable/unstable state with delays, adjusting
the constraint of (γ 2

+ µ2)/(4δ) ≤ χ can improve the system
ability of keeping stable, i.e., tuning χ provides a freedom for a
system to endure a larger delay size. From Fig. 3 and Fig. 2(f), a
basic rule is that for a larger delay upper bound τ̄ , a larger χ is
required. For a fixed χ , a fast way of finding a good bound for the
delay is to use the bisection algorithm.

7. Conclusions and future directions

This paper can address the heterogeneous and time-varying
input and communication delays simultaneously by decoupling
them when designing observers and using the Lyapunov–
Krasovskii functional. A new linear matrix inequality (LMI) is
added to existing LMIs to construct an extended LMI approach
to help an agent/a system endure larger delays compared to
existing LMI solutions. Detailed analysis on how to obtain a
larger delay upper bound and better robust control performance
are also provided. The proposed controllers and algorithms are
without any integral term and thus, can be easily implemented
in real applications. It is also easy to apply the proposed theory to
large-scale systems because (i) there is no requirement for global
information, e.g., the eigenvalues of communication graph; (ii)
the LMI dimension will not increase as agent number and delay
number increase.

Future work will focus on designing observers that the state
matrix can have eigenvalues with positive real parts and that het-
erogeneous time-varying communication delays can be unknown.

6
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Fig. 3. Influence of the value of χ to MAS stability for Algorithm 2 with a fixed delay upper bound τ̄ = 2.4.
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Appendix A. Proof of Lemma 1

Lemma 3 (Theorem 2, Moreau, 2004). Consider the linear system
Θ : ẋ(t) = diag(A(t))x(t) + (A(t) − diag(A(t)))x(t − τ ) with
x ∈ Rn, τ > 0 and diag(A(t)) is the obvious notation for the diagonal
matrix obtained from A(t) by setting all off-diagonal entries equal to
zero. Assume that the system matrix A(t) is a bounded and piecewise
continuous function of time. Assume that, for every time t, the system
matrix is Metzler with zero row sums. Under Assumption 3, the
equilibrium set of consensus states is uniformly exponentially stable.
In particular, all components of any solution of system Θ converge
to a common value as t → ∞.

Lu and Liu (2017) extended Lemma 3 to the case of time-
varying delays, i.e., τij(t) in [Lemma 3.1, Lu & Liu, 2017]. Denote
w0 := e−Atx0, wi := e−Atξi, i ∈ IN1 . Then, from (2), (5) and based
on eAτcij x0(t − τcij ) = x0(t), we get

ẇ0(t) =−Ae−Atx0(t)+ e−At ẋ0(t) = 0, (A.1)

ẇi(t) =−ϵ
∑

j∈N ,j̸=i

lijwj(t − τcij )− ϵliiwi(t). (A.2)

Denote w̄j(t) = [w0j(t), w1j(t), . . . , wNj(t)]T for each dimension
j, j ∈ In1. Then, we have

˙̄wj(t) = diag(−ϵL)w̄j(t)+ [−ϵL− diag(−ϵL)]w̄j(t − τc)

where w̄j(t − τc) represents the corresponding delay term. Based
on the definition of Laplacian matrix L, from Assumption 3,
one can see −ϵL is Metzler with zero row sums. Thus, based
on Lemma 3 with its extension for time-varying delay case in
[Lemma 3.1, Lu & Liu, 2017], we obtain w0j(t) = w1j(t) = · · · =

wNj(t), j ∈ In1 exponentially as t → ∞, which also means w0(t) =
w1(t) = · · · = wN (t), t → ∞. Based on definitions of w0(t) and
wi(t), we arrive at limt→∞ e−At (ξi(t)−x0(t)) = limt→∞ e−At ξ̃i(t) =
0.

Denote w̃i(t) := e−At ξ̃i(t), w̃(t) = [w̃T
1 (t), . . . , w̃

T
N (t)]

T . The
following follows the proof of Lemma 3.3 in Lu and Liu (2017).
Since limt→∞ w̃(t) = 0 exponentially, there exist positive real
numbers α1 and β such that

∥w̃(t)∥ ≤α1e−βt sup
θ∈[−τ ,0]

∥w̃t (θ )∥

=α1e−βt sup
θ∈[−τ ,0]

∥(IN ⊗ e−Aθ )ξ̃ (θ )∥

≤αe−βt ,

where α is some positive real number. Based on Assumption 4
that Re(λ(A)) ≤ 0, there is a polynomial Γ (t) such that ∥(IN ⊗

eAt )∥ ≤ Γ (t). Then, ∥ξ̃ (t)∥ ≤ ∥(IN ⊗ eAt )∥∥w̃(t)∥ ≤ αe−βtΓ (t).
Therefore, limt→∞ ξ̃ (t) = 0 exponentially. ■

Appendix B. Calculation of W in (14)

Based on (8) and the LKF in Section 4, we have

W =Ξ − (1− τ̇ (t))e−2δτ (t)ζ T (t − τ (t))Q ζ (t − τ (t))

− τ̄

∫ t

t−τ̄

e2δ(s−t)ζ̇ T (s)Rζ̇ (s)ds

≤Ξ − (1− τ̂ )e−2δτ̄ ζ T (t − τ (t))Q ζ (t − τ (t))

− τ̄e−2δτ̄
∫ t

t−τ̄

ζ̇ T (s)Rζ̇ (s)ds

+ 2[ζ TPT
2 + ζ̇ TPT

3 ][Aζ + BKζ (t − τ (t))+ϖ − ζ̇ ]

≤ζ̄ TΦ1ζ̄ (B.1)

7
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with Ξ = 2ζ TP ζ̇ +2δζ TPζ −ϖ Tγϖ + ζ T (S+Q )ζ − e−2δτ̄ ζ T (t−
τ̄ )Sζ (t − τ̄ ) + τ̄ 2ζ̇ TRζ̇ and ζ̄ (t) = [ζ T (t), ζ̇ T (t), ζ T (t − τ̄ ), ζ T (t −
τ (t)),ϖ T (t)]T ,

Φ1 =

⎡⎢⎢⎢⎢⎢⎣
Φ1(1, 1) Φ1(1, 2) e−2δτ̄ S12 Φ1(1, 4) PT

2

∗ Φ1(2, 2) 0 PT
3 BK PT

3

∗ ∗ Φ1(3, 3) Φ1(3, 4) 0
∗ ∗ ∗ Φ1(4, 4) 0
∗ ∗ ∗ ∗ −γ In

⎤⎥⎥⎥⎥⎥⎦ , (B.2)

Φ1(1, 1) = 2δP + S + Q − e−2δτ̄R+ PT
2 A+ ATP2,

Φ1(1, 2) = P − PT
2 + ATP3,Φ1(3, 4) = e−2δτ̄ (R− ST12),

Φ1(1, 4) = PT
2 BK + e−2δτ̄ (R− S12),

Φ1(2, 2) = τ̄ 2R− P3 − PT
3 ,Φ1(3, 3) = −e−2δτ̄ (S + R),

Φ1(4, 4) = −(1− τ̂ )e−2δτ̄Q + e−2δτ̄ (−2R+ S12 + ST12),

where {P2, P3, S12} ∈ Rn×n will be decided later. The inequal-
ity (B.1) comes from τ̇ (t) ≤ τ̂ in Assumption 1, the Jensen’s
inequality and Lemma 3.4 in Fridman (2014) where the matrix
S12 is introduced to satisfy

Φ ′

1 =

[
R S12
∗ R

]
⪰ 0. (B.3)

We use the descriptor method in Fridman (2014) where P2, P3
are introduced to add the last term in the first inequality of (B.1).
That term is identically zero, which comes directly from (8). ■

References

Ahmed, Z., Khan, M., Saeed, A., & Zhang, W. (2020). Consensus control of multi-
agent systems with input and communication delay: A frequency domain
perspective. ISA Transactions, 101, 69–77.

Besançon, G., Georges, D., & Benayache, Z. (2007). Asymptotic state prediction
for continuous-time systems with delayed input and application to control.
In 2007 European Control Conference (pp. 1786–1791).

Cai, H., Lewis, F. L., Hu, G., & Huang, J. (2017). The adaptive distributed observer
approach to the cooperative output regulation of linear multi-agent systems.
Automatica, 75, 299–305.

De, S., Sahoo, S. R., & Wahi, P. (2018). Trajectory tracking control with hetero-
geneous input delay in multi-agent system. Journal of Intelligent and Robotic
Systems, 92(3–4), 521–544.

Fridman, E. (2014). Introduction to time-delay systems: Analysis and control.
Springer.

Fridman, E., & Dambrine, M. (2009). Control under quantization, saturation and
delay: An LMI approach. Automatica, 45(10), 2258–2264.

Hespanha, J. P. (2018). Linear systems theory. Princeton University Press.
Hou, W., Fu, M., Zhang, H., & Wu, Z. (2017). Consensus conditions for general

second-order multi-agent systems with communication delay. Automatica,
75, 293–298.

Huang, J. (2004). Nonlinear output regulation: Theory and applications. SIAM.
Jiang, W. (2018). Fully distributed time-varying formation and containment con-

trol for multi-agent / multi-robot systems (Ph.D. thesis), Automatic Control
Engineering. Ecole Centrale de Lille.

Jiang, W., Chen, Y., & Charalambous, T. (2021). Consensus of general linear multi-
agent systems with heterogeneous input and communication delays. IEEE
Control Systems Letters, 5(3), 851–856.

Jiang, W., Liu, K., & Charalambous, T. (2021). Detailed Derivations of ‘‘Multi-
agent consensus with heterogeneous time-varying input and communication
delays in digraph’’. arXiv preprint arXiv:2105.01053.

Jiang, W., Wen, G., Peng, Z., Huang, T., & Rahmani, A. (2019). Fully distributed
formation-containment control of heterogeneous linear multiagent systems.
IEEE Transactions on Automatic Control, 64(9), 3889–3896.

Léchappé, V., Moulay, E., & Plestan, F. (2016). Dynamic observation-prediction for
LTI systems with a time-varying delay in the input. In 55th IEEE Conference
on Decision and Control (pp. 2302–2307).

Liu, K., Fridman, E., & Xia, Y. (2020). Networked control under communication
constraints: A time-delay approach. Springer.

Lu, M., & Liu, L. (2017). Distributed feedforward approach to cooperative output
regulation subject to communication delays and switching networks. IEEE
Transactions on Automatic Control, 62(4), 1999–2005.

Moreau, L. (2004). Stability of continuous-time distributed consensus algorithms.
In 43rd IEEE Conference on Decision and Control. (pp. 3998–4003).

Münz, U., Papachristodoulou, A., & Allgöwer, F. (2010). Delay robustness in
consensus problems. Automatica, 46(8), 1252–1265.

Najafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-
loop control of dead time systems via sequential sub-predictors. International
Journal of Control, 86(4), 599–609.

Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks
of agents with switching topology and time-delays. IEEE Transactions on
Automatic Control, 49(9), 118–173.

Sun, Y. G., & Wang, L. (2009). Consensus of multi-agent systems in directed net-
works with nonuniform time-varying delays. IEEE Transactions on Automatic
Control, 54(7), 1607–1613.

Tian, Y., & Liu, C. (2008). Consensus of multi-agent systems with diverse input
and communication delays. IEEE Transactions on Automatic Control, 53(9),
2122–2128.

Van Assche, V., Dambrine, M., Lafay, J. F., & Richard, J. P. (1999). Some problems
arising in the implementation of distributed-delay control laws. In 38th IEEE
Conference on Decision and Control (pp. 4668–4672).

Xu, X., Liu, L., & Feng, G. (2018). Consensus of discrete-time linear multiagent
systems with communication, input and output delays. IEEE Transactions on
Automatic Control, 63(2), 492–497.

Zhou, B., & Lin, Z. (2014). Consensus of high-order multi-agent systems with
large input and communication delays. Automatica, 50(2), 452–464.

Wei Jiang received his B.S. degree in mechanical en-
gineering and automation from Wuhan University of
Technology, Wuhan, China, in 2011, and M.S. degree
in automobile engineering from Beihang University,
Beijing, China, in 2015 and Ph.D. degree in Automatic,
Computer Engineering, Signal Processing and Images
in CRIStAL, UMR CNRS 9189, Ecole Centrale de Lille,
France, in 2018. He is now a postdoctoral researcher
in Aalto University, Finland. His research interests
include cooperative distributed control, distributed op-
timization, time-delay systems, robotics and intelligent

transportation systems.

Kun Liu (Senior Member, IEEE) received the Ph.D.
degree in electrical engineering and systems from Tel
Aviv University, Tel Aviv-Yafo, Israel, in 2012. From
2013 to 2015, he was a Postdoctoral Researcher at
the ACCESS Linnaeus Centre, KTH Royal Institute of
Technology, Stockholm, Sweden. In 2015, he held Re-
searcher, Visiting, and Research Associate positions
with, respectively, the KTH Royal Institute of Technol-
ogy; CNRS, Laboratory for Analysis and Architecture
of Systems, Toulouse, France; and the University of
Hong Kong, Hong Kong. In 2018, he was a Visiting

Scholar with INRIA, Lille, France. In 2015 he joined the School of Automation,
Beijing Institute of Technology, Beijing, China, where he is currently a tenured
Associate Professor. His current research interests include networked control,
game-theoretic control, and security and privacy of cyber–physical systems.

Dr. Liu currently serves as an Associate Editor for the IMA Journal of
Mathematical Control and Information, and the Journal of Beijing Institute of
Technology. He is a Conference Editorial Board Member of the IEEE Control
Systems Society.

Themistoklis Charalambous (Senior Member, IEEE)
received the B.A. and M. Eng. degrees in electrical and
information sciences from the Trinity College, Cam-
bridge University, in 2004 and 2005, respectively, and
the Ph.D. degree from the Control Laboratory, Engi-
neering Department, Cambridge University, in 2010.
From September 2009 to September 2010, he was with
the Human Robotics Group, Imperial College London,
as a Research Associate for an academic year. From
September 2010 to December 2011, he worked as a
Visiting Lecturer with the Department of Electrical and

Computer Engineering, University of Cyprus. He worked as a Post-Doctoral
Researcher with the Department of Automatic Control, School of Electrical
Engineering, KTH Royal Institute of Technology, from January 2012 to January
2015, and the Department of Electrical Engineering, Chalmers University of
Technology, from April 2015 to December 2016. In January 2017, he joined
the Department of Electrical Engineering and Automation, School of Electrical
Engineering, Aalto University, as a tenure-track Assistant Professor. He has been
a nominated Research Fellow of the Academy of Finland since September 2018
and a tenured Associate Professor since July 2020. His primary research targets
the design and analysis of (wireless) networked control systems that are stable,
scalable, and energy efficient.

8

http://refhub.elsevier.com/S0005-1098(21)00476-3/sb1
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb1
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb1
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb1
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb1
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb3
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb3
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb3
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb3
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb3
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb4
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb4
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb4
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb4
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb4
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb5
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb5
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb5
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb6
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb6
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb6
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb7
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb8
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb8
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb8
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb8
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb8
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb9
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb10
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb10
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb10
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb10
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb10
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb11
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb11
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb11
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb11
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb11
http://arxiv.org/abs/2105.01053
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb13
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb13
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb13
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb13
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb13
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb15
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb15
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb15
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb16
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb16
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb16
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb16
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb16
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb17
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb17
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb17
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb18
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb18
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb18
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb19
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb19
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb19
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb19
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb19
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb20
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb20
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb20
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb20
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb20
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb21
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb21
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb21
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb21
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb21
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb22
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb22
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb22
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb22
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb22
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb24
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb24
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb24
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb24
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb24
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb25
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb25
http://refhub.elsevier.com/S0005-1098(21)00476-3/sb25

