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Abstract—Accurate prediction of traffic congestion at the
granularity of road segment is important for planning travel
routes and optimizing traffic control in urban areas. Previous
works often calculated only the average congestion levels of a
large region covering many road segments and did not take
into account spatial correlation between road segments, resulting
in inaccurate and coarse-grained prediction. To overcome these
issues, we propose in this paper CPM-ConvLSTM, a spatiotem-
poral model for short-term prediction of congestion level in
each road segment. Our model is built on a spatial matrix
which incorporates both the congestion propagation pattern and
the spatial correlation between road segments. The preliminary
experiments on the traffic data set collected from Helsinki,
Finland prove that CPM-ConvLSTM greatly outperforms 6
counterparts in terms of prediction accuracy.

I. Introduction

Traffic congestion has received much attention in recent
years due to its great impact on people’s daily life. Fine-
grained congestion prediction for each road segment in urban
cities can help people schedule travel routes in advance and
assist traffic control to relieve traffic congestion. Consequently,
it is important to design an accurate congestion prediction
model at the granularity of road segment.

The widely available sensors, such as GPS receivers and
traffic cameras, provide rich data for mobility analysis in urban
areas. One application is to predict traffic congestion based on
spatial and temporal patterns shown in the traffic. For example,
in [1], [2], classic ARIMA models were used for predicting
traffic congestion based on previous observations. However,
these works did not take into account the spatial correlation
between road segments, which affects the congestion propa-
gation across road segments. On the other hand, many works
[3], [4]simply divide an area of interest into grid cells and
calculate the average value in each cell, ignoring the variation
between road segments within each grid cell.

More recently, the two works [5], [6] identify congestion
propagation patterns across a subset of road segments. For
example, in Figure 1, when the road segmentr1 becomes
congested at a certain time of dayT1 (e.g., Monday 8:00AM)
because many people living aroundr1 rush to their office.
After a while, the congestion onr1 may cause the congestion
on the upstream roadsr2 andr3 at T2 and later the congestion
on r4 at T3. Regarding temporal dimension, the congestion of
road has temporal auto-correlations. However, such congestion
propagation patterns do not take into account the geographical
positions of road segments.

Fig. 1. Example of congestion propagation pattern

In this paper, we propose a spatiotemporal traffic predic-
tion model, namely, CPM-ConvLSTM, to make short-term
prediction of congestion level for each road segment. The
key idea is to define a spatial matrix which incorporates both
the congestion propagation pattern across road segments and
the spatial correlation between road segments. Given the time
series of historical spatial matrices, we exploit a recent popular
spatiotemporal deep learning model ConvLSTM [7] by taking
as input the time series of historical spatial matrices and
predicting the future short-term spatial matrix.

The contributions of our study are summarized as follows:

• Unlike the tree structures presented in [5], [6], we rep-
resent congestion prorogation patterns with a directed
acyclic graph (DAG).

• The issue of the widely used grid map can not make
accurate prediction at the granularity of road segment.
The proposed spatial matrix can overcome this issue
by incorporating the DAG-based congestion prorogation
patterns. The spatial matrix can be comfortably fed into
ConvLSTM for traffic prediction.

• Our preliminary experiments on the traffic data set
collected from Helsinki, Finland prove that CPM-
ConvLSTM greatly outperforms 6 counterparts in terms
of prediction accuracy.

The rest of the paper is organized as follows. Section II
first gives the problem setting, and Section III describes the
design of proposed CPM-ConvLSTM. After that, Section IV
reports our experiments, and Section V reviews the related
works. Finally, Section VI concludes this paper.

II. Problem Definition

Before giving the problem definition, we introduce the
following definitions.

Definition 1 Road network: A road networkN = {I ,R} con-
tains a set of road intersections I (vertices) and directed road



segments R (edges) connecting intersections. Let R= {r1, ..., rn}

be a set of N road segments within a road network.

Definition 2 Congestion level: The congestion level is a real
number in the range of 0.0 to 10.0, A bigger value indicates
more congested traffic.

Definition 3 Traffic congestion propagation pattern: The
traffic congestion propagation pattern indicates that a strong
spatialtemporal relationship among the congestion levelsof
certain road segments in a road networkN (which can be
treated as a subgraph ofN), the example can be seen in
Figure 1. Let CP= {cp1, ..., cpk} be a set of traffic congestion
propagation patterns. Given a set of road segments R, a
congestion propagation pattern cpi is defined as a subset of
road segments such that∅ ⊂ cpi ⊆ R.

Given the definition of traffic congestion propagation pattern
CP, we could use a graph structure (typically a DAG: directed
acyclic graph) to describe theCP. For example, Figure 1(c)
indicates an example pattern, which can be modeled by a tree
structure (a special case of DAG).

We use aspatial matrix to maintain a traffic congestion
propagation pattern with respect to (w.r.t) a certain time
interval (e.g., one hour from Monday 8:00AM to 9:00AM).
Given a 12-hour time span from Monday 8:00AM to 8:00PM,
a given pattern is then associated with 12 spatial matrices.
Formally, a spatial matrix of certain pattern w.r.t a time interval
is defined as follows.

Definition 4 Spatial Matrix: We build a grid map by dividing
the area covered by the road segments in eachCP into grid
cells and convert the grid map into a spatial matrix. In a
spatial matrix, each matrix element indicates the congestion
level of one road segment corresponding to the connectivity
between nodes in the DAG representing traffic propagation
pattern.

More details of spatial matrix will be given in Section III.

Problem 1 Given a historical dataset of congestion levels in
a road networkN including a set of road segments R from
T1 to Tn. After constructing severalCPsfromN, for each CP
in each time period [Ti , Ti+1](with 1 ≤ i ≤ n− 1), we build a
spatial matrix Mi . Given the(n − 1) matrices M1...Mn−1, we
predict the spatial matrix Mn for the time span from Tn to
Tn+1 for everyCP.

III. D esign of CPM-ConvLSTM

A. Overview

In this section, we give an overview of the solution, namely,
CPM-ConvLSTM, to Problem 1. As shown in Figure 2, the
algorithm consists of three steps.

(1) Congestion propagation pattern graph construction:
In the first step, given the historical dataset of congestionlevels
in a road network, we need to detectCPs in the road network.

,

Combine subtrees

Construct congestion 

spatial matrix by SpaMat

Step 1

Step3

, ,

Step 2

Prediction by ConvLSTM.

Fig. 2. Architecture of CPM-ConvLSTM

After removing the redundancy of patterns, we use a graph
structure to maintainCP.

(2) Spatial matrix construction: The second step is to
construct a spatial matrix w.r.t eachCP for a certain time
period. The matrix is constructed with help of the geographical
positions of the road segments inCP.

(3) Congestion level prediction: In the third step, for a
given CP, when given the input of those spatial matrices
from Ti to Tn, we predict the congestion level of related road
segment atTn+1, e.g. ConvLSTM [7].

B. Congestion propagation pattern graph construction

STCTree [5] can effectively detectCPswhich are represent-
ed by congestion tree structure. Given the historical database
of congestion levels in a road network, STCTree generates
a forest of congestion trees. However, the forest leads to
significant redundancy. For example, in the 1st step of Figure
2, the road segmentsr2 and r3 repeatedly appear within two
congestion trees.

The redundancy above leads to the following issues. Since
a road segment, e.g.,r2 in Figure 2, could appear within
multiple congestion propagation pattern trees, the associated
congestion levels are repeatedly predicted in these trees.Given
the congestion levels, how to merge them into a single one is
non-trivial. For example, using an average of the congestion
levels may not correctly estimate the true congestion levelon
the road segment.

Consequently, to eliminate the redundancy in the forest of
congestion trees, we propose to combine the congestion trees
involving redundancy into a DAG. Given the two congestion
trees involving the two redundant road segmentsr2 and r3,
Figure 2 gives an example DAG which removes the redundant
segmentsr2 and r3.

C. Spatial matrix construction

Given a spatial pattern (i.e., a DAG), we need to represent
the DAG by a matrix which is next taken as the input of the
3rd step (congestion level prediction). Using the traditional
adjacent matrix to represent the DAG could be useful to
indicate the topology information of a DAG. However, the
adjacent matrix might miss the geographical relation among
road segments. To this end, we develop a spatial matrix of



Fig. 3. Example of spatial matrix construction

Algorithm 1 SpaMat:spatial matrix construction
Input: CGraph:a congestion graph
Output: CSMat:the spatial matrix for the congestion propagation

pattern.
1: roadGrid = GridMap();
2: positionRoad[(0, 0)] = f irstRoad;
3: for eachroad ∈ CGraphdo
4: position= RelativePosition(road.re f Road, road, roadGrid);
5: while position< positionRoad.keysdo
6: re f Road= positionRoad[position];
7: position= RelativePosition(re f Road, road, roadGrid);
8: end while
9: roadPosition[road] = position;

10: positionRoad[position] = road;
11: end for
12: minX,minY= GetMinXY(positionRoad);
13: for eachposition∈ positionRoad.keysdo
14: roadMatId = (position[1] − minY) ∗ cols+ (position[0] −

minX) + 1;
15: spatialMatrix[roadMatId] = CpositionRoad[ position];
16: end for

congestion levels(definition 4), named CSMat, for eachCP.
Each entry of the CSMat corresponds to a divided spatial grid.
The grid contains at most one road segment with its associated
congestion level.

Suppose that we have derived aCP in Figure 3(a) involving
5 road segmentsr1, ..., r5. Next, if we divide the area covered
by the corresponding road network into a 4× 3 grid map,
a road segments (e.g.,r2) appears within multiple grid cells
and a grid cell (e.g., at the 1st row and 2nd column) contains
zero or multiple partial road segments as shown in Figure
3(b). Unlike this traditional grid map, the CSMat makes sure
that each matrix element corresponds to at most one entire
road segment ignoring the distance of it and an entire road
segment corresponds to only one element. In Figure 3(c), the
CSMat involves only two rows and four columns. Here, a
road segment e.g.r3, though appearing across 3 grid cells
(see Figure 3(b)), only one matrix element at the 2nd row and
2nd column corresponds tor3. Though a road segment appears
within only one matrix element, using a CSMat can roughly
approximate the geographical information of road segments.

The general idea of constructing a CSMat is described as
follows. Given a input congestion propagation pattern DAG
named CGraph, we first start from the root of CGraph (i.e.,
the node with an indegree equal to 0), and traverse the CGraph

level by level in a top-down manner. For each traversed node
in the CGraph, we make sure that only one matrix element
corresponds to the visited node. The matrix elements can
approximate the geographical position of road segments within
a road network. Thus, the CSMat can be intuitively treated
as a distorted grid map which can approximate the topology
information of CGraph.

Algorithm 1 gives the pseudocode of constructing the con-
gestion spatial matrix based on CGraph. Here we take the
CGraph in Figure 3(a) as example. First, we divide the area
of interest involving the CGraph into aH × W grid map,
Figure 3(b) gives the 4× 3 grid map dividing the area of
interest into 100m× 100m grid cells. The first visited node
(i.e., a road segment such asr1 in Figure 3(a)) is the one
with an indegree equal to 0, and we choose a grid cell in
the grid map as the matrix element corresponding to the
node. In case that this road segment appears in multiple grid
cells, we choose only one of them which covers more of the
road segment than the other grids. After that, we traverse the
remaining road segments of CGraph hierarchically (line 3).
For those road segments linked by the edges in CGraph, we
ensure that the corresponding matrix elements in CSMat are
adjacent. For instance, in Figure 3(c),r1 is linked to r2, and
the corresponding matrix elements are adjacent. Similarly, r2

is linked to r3 and r4, and the element corresponding tor2

is also adjacent to the ones ofr3 and r4. Here, the key of
using the adjacent element is to approximate the geographical
positions of road segments within a road network. When all
road segments in CGraph are traversed, we then output the
CSMat.

D. Convolutional LSTM

Convolutional LSTM (ConvLSTM) [7] is an extension of
LSTM by combining convolutions with LSTM. ConvLSTM
uses convolutions directly as part of reading input into the
LSTM units, which is different from the hybrid model of CNN
and LSTM. The main equations in ConvLSTM are shown as
follows.

it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi) (1)

ft = σ(Wx f ∗ Xt +Wh f ∗ Ht−1 +Wc f ◦ Ct−1 + bf ) (2)

Ct = ft−1 ◦ C + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc) (3)

ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo) (4)

Ht = ot ◦ tanh(Ct) (5)

where it, ft, ot are the output of input gate, forget gate and
output gate for timestamp t respectively.Ct,Ht are the cell
output and hidden state of the cell at time step t, the∗ and
◦ denote the convolution operation and Hadamard product,
respectively.

The input of ConvLSTM is a three-dimension spatiotempo-
ral tenser, where the first two dimensions are spatial dimension
and the output is a two-dimension spatial tenser at next time
step. With the help of ConvLSTM, given then spatial matrices
from T1 to Tn, we predict the spatial matrix atTn+1, as shown
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Fig. 4. ConvLSTM model

Fig. 5. Study Area

in Figure 4. We use ConvLSTM to extract spatiotemporal
features of eachCP (represented by CSMat) fromT1 to Tn

and predict the values atTn+1 based on the extracted features.

IV. Evaluation

In this section, we first introduce the data used in experi-
ments, and next evaluate the performance of CPM-ConvLSTM
against six counterparts.

A. Data Description

In this paper, we collected the traffic congestion data of
Helsinki, Finland by using HERE Traffic API. In Figure
5, we selected the area with longtitude from 24.83903E to
25.00858E and latitude from 60.14826N to 60.23113N. The
area includes 689 road segments. As shown in Table I, each
data sample has a unique road segment ID, the latitude
and longitude coordinates of the road from start point to
end point and the congestion level at a specific time. The
requests were sent to HRER sever every 60 seconds from
2018/09/01 to 2018/10/06. The dataset is divided into two
subsets: weekdays and weekends data sets since the congestion
levels in weekdays and weekends are significantly different.
We extract 105CPs including 553 road segments from the
historical congestion data. In addition, we use the first 80%of
the crawled data (from the start date) as the training data, and
the remaining one as the test data to evaluate the performance.

TABLE I
Example of a road congestion record

Time 2018-09-01 20:34:00
Road ID 1

Start 60.21063/24.88800
End 60.20902/24.248890

Congestion Level 3.5

B. Performance Metrics and Baseline Method

Performance Metrics We use Mean Squared Error (MSE)
and Mean Absolute Error (MAE) for performance evaluation.

MS E=
∑

n

MS E=

N∑
j
( 1

S

S∑
i

(yi − yi)
2)

N
(6)

MAE =
∑

n

MAE =

N∑
j
( 1

S

S∑
i
|yi − yi |)

N
(7)

whereyi andyi are the actual and predicted congestion levels
of a specific road segment, respectively.S is the total number
of road segments in aCP and N is the total number of
congestion propagation pattern graphs. A small MSE/MAE
indicates good prediction performance.

Counterparts: We mainly compare the proposed CPM-
ConvLSTM against 6 following counterparts.
• LSTM is used to predict the congestion level indepen-

dently at the granularity of road segment by treating the
congestion levels of each road segment as long-term time
series data. We use a two-layer LSTMs for the time series
prediction.

• CNN-LSTM: A 2D CNN is used to extract spatial fea-
tures, and a two-layer LSTM is used to extract temporal
features. By combining the CNN and LSTM, the hybrid
model can perform the prediction based on a grid map.
Similar to the LSTM approach above, we again perform
the prediction at the granularity of road segment.

• CP-CNN-LSTM: We improve CNN-LSTM by incorpo-
rating the proposedCPsalone.

• ConvLSTM: We use a convLSTM2D model based on
grid map alone, without congestion propagation pattern
graph and spatial matrix construction. Again we perform
the prediction on the granularity of each individual road
segment.

• CP-ConvLSTM: We improve ConvLSTM by incorporat-
ing theCPsalone. Differently from the approaches above,
this approach does not perform the prediction indepen-
dently on each road segment but instead incorporatesCPs.

• CPM-CNN-LSTM: We improve CNN-LSTM by using
congestion propagation pattern graphs which are repre-
sented by spatial matrixes.

C. Performance Comparison

We first give the main results of 7 approaches in Table II.
CPM-ConvLSTM leads to the lowest MSE and MAE on both



TABLE II
Performance comparison of different models

weekday weekend
Models MSE MAE MSE MAE
LSTM 0.598624 0.444490 0.317636 0.303783
CNN-LSTM 2.103802 0.993106 1.139783 0.715469
ConvLSTM 1.736250 0.898181 0.977357 0.653928
CP-CNN-LSTM 0.837977 0.544024 0.467619 0.419031
CP-ConvLSTM 0.660635 0.468560 0.337836 0.338780
CPM-CNN-LSTM 0.358728 0.315467 0.166550 0.228535
CPM-ConvLSTM 0.270992 0.187260 0.075692 0.110878

Fig. 6. Performance comparison on partial congestion graphs. Left: week-
days, Right: weekends

workday data and weekend data.
The performance of LSTM is better than CNN-LSTM

and ConvLSTM. It is mainly because LSTM can make
prediction individually for each road segment and CNN-
LSTM/ConvLSTM performs the prediction at the granularity
of grid cells by using the average congestion level of a grid
cell as the congestion level of roads within the cell. It is not
hard to find that the average leads to a higher error than the
simple LSTM approach. In addition, we note that ConvLSTM
is expected to outperform CNN-LSTM, consistent with the
result in ConvLSTM [7].

As the improvement of CNN-LSTM and ConvLSTM, CP-
CNN-LSTM and CP-ConvLSTM incorporateCP and the
used CP does contribute to higher errors. Furthermore, by
representing theCP by SpaMat, CPM-CNN-LSTM and CPM-
ConvLSTM can further reduce the errors of CNN-LSTM and
ConvLSTM, respectively. Until now, it is not hard to find that
SpaMat is rather helpful to improve the performance of CNN-
LSTM and ConvLSTM.

Next, we randomly choose 10 identifiedCPsand are inter-
ested in how four used approaches perform on each of theCPs.
As shown in Figure 6, on both weekdays and weekends, CPM-
ConvLSTM consistently achieves the smallest error. Instead,
the errors of three other approaches significantly fluctuateon
variousCPs.

After that, by randomly selecting a certain road segment, we
plot the predicted congestion levels every one hour throughout
the day in Figure 7. As shown in this figure, the prediction
result of CPM-ConvLSTM is rather close to the actual con-
gestion levels on this road segment.

Finally, by varying the length of time period, we compare
MSE and MAE of CPM-ConvLSTM in Table III. By varying
the period from 1 to 15 minutes, we find that a longer time
interval indicates higher errors. It makes sense: a shortertime

Fig. 7. Comparison of actual and predicted congestion. Left: weekdays,
Right: weekends

TABLE III
Performance comparison on different intervals

Weekday Weekend
Time Period (mins) MSE MAE MSE MAE
1 0.270992 0.187260 0.075692 0.110878
5 0.386714 0.335744 0.156547 0.200715
10 0.564721 0.447017 0.254139 0.280672
15 0.729354 0.533880 0.366197 0.364972

interval means that the more recent and the more accurate
congestion levels are fed into CPM-ConvLSTM.

V. RelatedWork

In the literature, plenty of works have been proposed for
traffic predictions. The models used by these works generally
fall into two categories: statistical methods and neural network
based methods.

Traffic prediction can be considered as a time series predic-
tion problem. For statistical methods, ARIMA, Markov chain,
KNN and Support Vector Regression (SVR) are widely used
in traffic prediction. ARIMA [1], [2] and Markov chain [8]
are both good at time sequence prediction, which consider
the temporal auto-correlations of traffic data to enhance pre-
diction performance. But these methods depend on stationary
time series data. KNN [9] is used to identify similar traffic
patterns for short-term prediction, which can not achieve good
performance when historical data has a few similar patterns.
Some works [10], [11] used SVR to capture the high dynamics
and sensitivity of traffic data to improve the performance of
prediction. However, in summary, these methods can only
be used for the prediction of individual road segment, and
the spatial dependency of adjacent road segments in the road
network is not considered.

Recently, deep learning models have been used to han-
dle traffic prediction. Liu [12] made a detailed summary of
current deep learning-based approaches for traffic prediction
from mobility data. Convolutional Neural Network (CNN)
is widely applied to traffic prediction. Meng [13] proposed
PCNN for short-term traffic congestion prediction based on
a deep convolutional network, which only aims to consider
temporal dependencies. Ma [14] used CNN for traffic speed
prediction based on 2D time-space matrix. The trajectories
are simply and linearly ordered in the space dimension, which
could lose spatial information among trajectories. Zhang [3]
proposed residual CNN named ST-ResNet based on grid map



to extract spatial information for traffic flow prediction. But
they ignored the temporal tendency of traffic flows.

LSTM [15] is known to have good performance for handling
time series data. Yu [16] applied deep LSTM on time sequence
to extract detailed information and predict the traffic flows and
accidents, which unfortunately did not consider the spatial
information. In addition, LSTM is suitable to make traffic
prediction for individual road in a small region. But the traffic
condition of a road segment in road network is influenced by
both temporal and spatial factors.

Some researchers combined CNN and LSTM to extract
spatiotemporal features and make traffic prediction. Wu [17]
proposed CLTFP consisting of 1D CNN and LSTM to predict
traffic flow for some locations, which only targets small
scale road segments. SRCNs [18] and Hetero-ConvLSTM [4]
applied on grid map extract spatiotemporal features and make
traffic prediction for every grid. But, the size of grid map is
hard to set in large scale road network. Other work related to
our study is congestion propagation patterns detection, which
is important to relive traffic. Nguyen [5] proposed a STC-
Tree algorithm based on spatiotemporal information to detect
congestion propagation pattern trees and used AprioriSubtree
algorithm to select the frequent patterns from the forest. Liang
[6] followed the propagation tree and applied a variant of it
with indirect influence consideration. But they both did not
make traffic prediction.

In summary, while the neural network based methods have
achieved good performance in traffic prediction, there are still
some problems. Existing models either fail to account for the
spatial dependency or can not accurately predict the congestion
levels for individual road segments. In our study, we use
congestion propagation patterns to overcome the complexity
of large scale road network and highlight the propagation
relationship among roads. The spatial matrix are applied to
form the spatiotemporal traffic congestion data, which provides
for the input of ConvLSTM to extract the spatiotemporal
information and improve the prediction performance.

VI. Conclusion

In this paper, we propose a deep learning-based congestion
prediction model, namely, CPM-ConvLSTM. The model lever-
ages the identified congestion propagation patterns to predict
the congestion level at the granularity of road segment. The
key contribution of this paper is to use a spatial matrix to
incorporate the congestion propagation patterns and spatial
adjacency of road segments. Our preliminary experiments on
a real-life dataset indicates that the ConvLSTM improved by
spatial matrix can greatly outperform the state-of-the-arts in
terms of prediction errors.

As the future work, we are interested in finer-grained
congestion propagation patterns which can involve both spatial
and temporal knowledge, and more meaningful representation
of congestion propagation patterns. In addition, we also expect
to introduce the external factors, such as weather and surround-
ing environment point of interests to improve the prediction
performance.
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