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Abstract
In Fennoscandia, the Glacial Isostatic Adjustment (GIA) causes intraplate deformations that affect the national static refer-
ence frames. The GNSS-determined velocities are important data for constraining the GIA models, which are necessary for 
maintaining the national reference frames. The Nordic Geodetic Commission (NKG) has published a dense and consistent 
GNSS station velocity solution in 2019, and we present now an update of the solution covering additional 3.5 years of data. 
Undetected positional offsets are the main factor decreasing the accuracy of the velocity estimates. We developed a method 
for the semi-automatic offset detection to improve the quality of our solution. The results show that we could correctly detect 
74% of the manually determined offsets, and the undetected offsets would have caused a median 0.1 mm/y bias in trend. 
The method pointed out some otherwise unnoticed offsets and will decrease the need for manual analysis in the future. The 
updated velocity solution especially improves the velocity estimates of the newly established stations and the quality of 
the velocity estimates in Baltic countries. The formal uncertainties estimated using the power-law plus white noise model 
were at a median of 0.06 and 0.15 mm/y for horizontal and vertical velocities, respectively. However, we concluded that the 
systematic velocity uncertainties due to the reference frame alignment were approximately at the same level.

Keywords  Offset detection · Time series analysis · GNSS velocities · Reference frames · Uncertainties

Introduction

GNSS-determined velocity fields are widely used in geodetic 
and geophysical studies locally, regionally, and globally. In 
Fennoscandia, the Glacial Isostatic Adjustment (GIA) pro-
cess causes intraplate deformations that affect the national 
static reference frames, and the GNSS-determined velocities 
are important data for their maintenance. For example, they 
constrain GIA models and align the models to a geodetic 
reference frame to produce the required deformation models.

Today, the increased number of GNSS stations enables 
more detailed analysis of intraplate deformations. In Europe, 
Kenyeres et  al. (2019) have published a dense velocity 
field by integrating long-term national solutions computed 

according to the current processing standards. Much effort 
has been expended on homogenizing and cross-checking 
the input solutions and on visual inspection of time series. 
However, the total of nearly 2000 stations set limits on the 
manual analysis. In the Nordic and Baltic countries, the 
densest sets of station velocities have been estimated under 
the Baseline Inferences for Fennoscandian Rebound, Sea-
level, and Tectonics (BIFROST) project, of which the latest 
solution includes data until 2015.0 (Kierulf et al. 2021). This 
solution does not have equal station density in all Nordic and 
Baltic countries, and the focus has been on geodynamic stud-
ies. The GNSS Analysis Centre (AC) of the Nordic Geodetic 
Commission (NKG) was launched in 2011 to improve the 
station coverage and to estimate both positions and velocities 
utilizing the local knowledge of the stations. The methods 
of the NKG GNSS AC were presented by Lahtinen et al. 
(2018), and the first dense position and velocity solution was 
published by Lahtinen et al. (2019). This solution included 
velocities for 252 stations computed from the daily posi-
tional solutions between 1997 and 2017.1.

Abrupt positional changes, called offsets, are the main 
cause of the degrading of the GNSS velocity estimates. They 
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can relate to equipment or processing changes, earthquakes, 
or remain unknown. The effect of the offsets depends on 
their size and position in the time series and its noise con-
tent. The GNSS position time series contain temporally 
correlated noise that has a spectrum of the power-law: f −n , 
where f  is the frequency and n is the spectral index. White 
noise ( n = 0 ), flicker noise ( n = 1 ), and random walk ( n = 2 ) 
are special cases of the power-law noise. The spectral index 
describes the stability of the time series. The white noise is 
very stable, whereas the flicker noise, which has typically 
been used to describe the GNSS data, may have offset-like 
behavior by its nature. The possibility that undetected off-
sets may cause random walk noise in the time series has 
also been discussed by Williams et al. (2003). Therefore, the 
power-law nature of the time series makes the offset detec-
tion challenging, as the noise itself can mimic small real 
offsets very well.

In the NKG GNSS AC, we have relied on manual off-
set analysis, which has thus far performed better than the 
automatic methods. However, manual analysis of hundreds 
of stations is very time-consuming, and more automatic 
routines are needed. The (semi)automatic methods can also 
ideally reveal small offsets that were not found in the manual 
analysis. The manual analysis also includes human factors, 
and a more automatic method may therefore homogenize 
the results.

Many offset detection methods have been developed 
during the past two decades. The performance is typically 
evaluated by the ratios between correctly found offsets (true 
positives, TP), false positives (FP), and false negatives (FN). 
The FPs correspond to false alarms and the FNs to unde-
tected offsets. Gazeaux et al. (2013) reported on the results 
of the Detection of Offsets in GPS Experiment (DOGEx), 
in which different methods were blind tested on the same 
synthetic data set. The best performance rates were achieved 
with the manually analyzed solutions, and they achieved 
approximately 40% for TPs. The best performing automatic 
solution achieved approximately 35% for TPs. Later, Bruni 
et al. (2014) presented the results of the Sequential t test 
Analysis of Regime Shifts (STARS) procedure, achiev-
ing a ratio of 48% for TPs. Recently, Amiri-Simkoeii et al. 
(2018) achieved approximately 30% for TPs with the uni-
variate method and approximately 75% with the multivariate 
method. The north, east, and up components were analyzed 
separately in univariate method and simultaneously in multi-
variate method. Here, a predefined maximum number of off-
sets was used that affected the number of FPs. Additionally, 
the offsets were added to the same epoch for all components, 
which may produce an optimistic figure for the performance 
of the multivariate solution.

Khazraei and Amiri-Simkoeii (2020) improved the 
method of Amiri-Simkoeii et al. (2018) by adding splines to 
the functional model. The results showed 53% for TPs with 

the old method without any predefined number of offsets 
and 61% for TPs with the improved model. Khazraei and 
Amiri-Simkoeii also tested the method on the DOGEx data 
set and achieved 33% for TPs. This was a little higher than 
the best automatic solutions submitted to DOGEx. Khaz-
raei and Amiri-Simkoeii had used a different assumption 
for TPs than Gazeaux et al. (2013), and therefore lower TP 
ratios were achieved for the best models. In general, this 
indicates that the performance metrics are very dependent 
on the time series on which they have been tested on, how 
the assumption for TPs is defined, and whether an automatic 
or manually defined criterion for stopping the iterative offset 
search has been used. All these synthetic data sets included 
many offsets, and their performance with real data is difficult 
to evaluate.

From the perspective of operational work, we cannot 
obtain perfect results by using any method. The power-law 
noise can always mimic or hide a small offset. The methods 
presented in the literature typically do not use any metadata 
in decision making, but it plays a major role in the opera-
tive offset analysis. We want to add an offset if we can link 
it to a known change, though the size of the offset may be 
at a millimeter level. On the other hand, we want to avoid 
over-segmenting the data with unknown offsets. The use of 
metadata, therefore, enables the automating of the proce-
dures of the manual offset detection.

This study presents an update of the NKG position and 
velocity solution covering 23.5 years of data. In the next 
chapter, we present the offset detection approach that we 
have developed and utilized in the pre-analysis of the time 
series. In the third chapter, we describe the methodology 
used for the computation of the cumulative position and 
velocity solution. In the fourth chapter, we show the results 
of the performance of the offset detection approach and 
evaluate the updated velocity solution with uncertainties. 
Finally, we discuss the developed methodology and the 
results and conclude the study.

Automatic offset detection

First, we present the methodology of our offset detection 
method. Second, we study its performance, using synthetic 
data to define a limit for minimum unknown offsets that can 
be found sufficiently reliably. The offset detection method 
has been empirically developed, mainly utilizing data from 
Finnish stations that included different types of offset.

Offset detection method

The aim is to detect millimeter level offsets, and such small 
changes may not be visible in all coordinate components. 
We, therefore, do the offset detection separately for the 
north, east, and up components of the time series. We model 
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the time series using linear velocity, annual and semi-annual 
periodical signals, plus known offsets. We call it a standard 
linear trajectory model by Bevis and Brown (2014).

We utilize the findoffset program of the Hector software 
(Bos et al. 2013) to search for potential offset positions and 
estimate their sizes. Hector uses the maximum likelihood 
method to estimate the parameters of the standard linear 
trajectory model and the noise. It thus also enables the use of 
different noise models in offset detection. First, the param-
eters of the standard linear trajectory model and the noise 
of the time series are estimated. Second, for each epoch in 
the time series, an offset is added. The parameters of the 
model and noise, and the corresponding log-likelihood are 
recomputed using the fixed covariance matrix C from the 
first step. This produces the Bayesian Information Criterion 
(BIC) time series with fixed C: BICC. It is proportional to 
−2lnL(�|x) , where lnL is the log-likelihood, � the estimated 
parameters, and x the observations. The implementation of 
the BICC computation in the findoffset program includes 
additional penalty parameters used for iterative offset detec-
tion, but they are not used in nor affected by our method and 
are therefore not described here. The BICC describes the 
model’s goodness of fit, so we assume that we find the most 
probable offset at the epoch of minimum BICC.

Figure 1 shows an example time series with an antenna 
change offset at 2019.5 and the computed BICC time series. 
In the case of using the white noise model, we see a clear 
minimum of the BICC time series at the antenna change 
epoch, whereas in the case of the power-law plus white 
noise, there are only single epochs with smaller BICC val-
ues. The BICC values range to approximately 30 units for 
the power-law-based BICC time series compared to the 400 
units for the white noise. Therefore, the use of the power-
law noise model is not, in this case, sufficiently sensitive to 
detect the rather clear offset. The method is simplified to the 
standard least squares solution with the white noise model 
because no noise model parameters are to be estimated using 
the maximum likelihood method. However, the iterative pen-
alty parameter method of Hector is not sufficiently powerful 
if only white noise is used, leading to over-segmentation. 
A new criterion for the significance analysis of a potential 
offset is therefore needed.

The pattern of the BICC time series varies depending on 
the nature of the time series. It can be as clear and sharp as 
in Fig. 1, but it can also be smoother without a sharp mini-
mum epoch. By studying the BICC time series of the NKG 
GNSS AC solutions, we identified that the difference of the 
median and minimum BICC values were linked to the exist-
ence of a real known offset. We define ΔBIC as a measure 
of the significance of a potential offset.

(1)ΔBICC = med
(

BICC

)

− min
(

BICC

)

We computed the ΔBICC for all the Finnish stations of 
the NKG GNSS AC solution with observations between 2 
and 23.5 years. Figure 2 shows that the ΔBICC is larger than 
100 for all manually detected offsets. On the other hand, 
as the absolute value of BICC grows as a function of the 
number of observations, the fixed absolute limit prevents 
the unwanted false positives in case of short time series. 

Fig. 1   An example residual time series (top) and the BICC time series 
(bottom) using white noise and power-law plus white noise models

Fig. 2   Computed ΔBICC values for each time series as a function of 
time series length. The color of the dots describes whether an off-
set has been detected or not in manual analysis. The unknown cases 
describe a potential unknown offset that should be studied in more 
detail
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We can detect about 90% of the offsets of the data set using 
only the fixed ΔBICC limit. Therefore, we use the ΔBICC 
as an efficient measure to find the potential time series for 
subsequent offset analysis.

We introduce three parameters for the decision making. 
The time window defines the time span that we use in search 
of matching equipment or other known changes. In the case 
of small offsets in noisy time series, the minimum BICC 
may not occur exactly at the epoch of equipment change. 
Additionally, we set limits for minimum sizes of known and 
unknown offsets. The limit for minimum known offsets is 
used to avoid unrealistically small offsets being matched 
with known changes. The limit for minimum unknown off-
sets can be set based on the performance of the method ana-
lyzed using synthetic data (see next chapter).

We formulate the strategy of the ΔBICC offset detection 
with real data as follows:

1.	  Compute the BICC time series for the time series.
2.	  If the ΔBICC > 100, compute the size of the offset added 

to the epoch of the minimum BICC.
3.	  Then try to match the epoch with the station’s metadata. 

If a match within a set time window is found, and the 
offset is larger than the minimum limit for known off-
sets, add an offset according to the metadata.

4.	  Otherwise, if the size is larger than the minimum limit 
for unknown offsets, suggest that it be checked.

5.	  Iterate steps 1–4 if an offset has been added or suggested 
in step 3 or 4.

Limit for minimum unknown offset

The aim is to set the limit of the size for unknown offsets 
so that only very probable unknown offsets are suggested to 
be set. Therefore, we studied the performance of the ΔBICC 
method with synthetic data in which the true offset posi-
tions were known. We created data using the simulatenoise 
program of the Hector software and parameters summa-
rized in Table 1. The parameters were selected based on the 
median values of the power-law plus white noise estimates 
of the time series presented in Lahtinen et al. (2019). For the 
median case, the estimated fraction for white noise was zero. 
We, therefore, used only the power-law noise model. We 
added one offset for a random epoch of each time series. We 

repeated the setup with fifty time series and varying offset 
sizes ten times for six data sets: horizontal and vertical time 
series with lengths of 2000, 3000, and 5000 days. A true 
positive was achieved if the found offset was within 60 days 
of the correct day. This corresponds to our experience with 
the test data set. We set the limit for minimum size of an 
offset to 0.1 mm smaller than the STD of the noise, and we 
did not set any limit for the sizes of the known offsets.

Figure 3 shows the success rates of the ΔBICC method. 
The success rate increases as a function of the offset size as 
expected, but flattens when the rate reaches a minimum of 
80%. It corresponds to offset sizes of 1.8 mm in the horizon-
tal and 6.0 mm in the vertical, and factors of 2.5 and 2.2 of 
the noise amplitudes. The used spectral index was 0.1 unit 
higher for the vertical time series, meaning a slightly more 

Table 1   Parameters used in the 
generation of the synthetic data

Parameter Horizontal Vertical

STD of the noise 0.7 mm 2.7 mm
Power-law spectral index  − 0.8  − 0.7
Amplitude (yearly/half-yearly) 0.4 / 0.1 mm 1.0 / 0.5 mm
Offsets 0.8 – 2.8 mm (step 0.2 mm) 2.5 – 8.5 mm (step 0.5 mm)
N, time series length 2000, 3000, 5000 days 2000, 3000, 5000 days

Fig. 3   Offset size versus the success rate of the offset detection with 
2000, 3000, and 5000  days of observations for horizontal (top) and 
vertical (bottom) time series. The positions of the dots in the offset 
size axis have been shifted slightly to avoid the datasets overlapping
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stable time series, and we could therefore detect slightly 
smaller offsets relative to the amplitude of the noise. The 
length of the time series did not significantly affect the 
success rates. The detection accuracy, i.e., the number of 
days between the correct and detected offset date, improved 
as a function of increasing offset size. It was at maximum 
six days for 90% of the time series with 1.8/6.0 mm offset 
size. The results indicate that there is a risk of up to 20% 
for a false offset if we use the 1.8/6.0 mm as the minimum 
unknown offset. We consider this a good tradeoff between 
perfect results and potential FPs and FNs. We applied the 
ΔBICC method on our NKG GNSS AC time series, and the 
results are shown in the Results chapter.

Methods of the cumulative solution

This updated GNSS station velocity solution follows mostly 
the same methods that were used in Lahtinen et al. (2019). 
We focus here on the changes and improvements that we 
have applied. We describe the input data, the pre-analysis 
with semi-automatic offset detection approach, and the 
methods of the velocity and uncertainty estimation.

Data

We used the daily position time series of the NKG GNSS AC 
covering the years 1997–2020.5. Nine local analysis centers 
(LAC) processed their subnet solutions that were combined 
to daily NKG solutions (Lahtinen et al. 2018). The daily 
processing was done with the Bernese GNSS software (Dach 
et al. 2015) and the combination using the CATREF soft-
ware (Altamimi et al. 2018). The solutions until 2017.1 were 
from the reprocessing of the historical GPS-only data (NKG 

Repro1), described in detail in Lahtinen et al. (2019). These 
solutions were corrected with the IGN antenna model cor-
rection from IGS08 to IGS14 to avoid the positional shifts 
due to the antenna model change in 2017.1. The remaining 
solutions were from the operational processing with a simi-
lar setup as in the reprocessing, but GPS/GLONASS data 
have been used until 2019.4 and GPS/GLONASS/Galileo 
thereafter. Figure 4 shows an overview of all included sta-
tions. We have 323 stations in total and 41 co-located sta-
tions. The length of the time series varied from very new 
stations up to 23.5 years.

Pre‑analysis of the time series

We pre-analyzed the position time series before velocity 
estimation to smooth the computationally heavy stacking 
of the cumulative solution. We searched for the offsets and 
rejected the snow-affected data. In this study, we did the 
offset analysis both manually and with the automatic ΔBICC 
method described in the previous section.

The manual time series analysis was based on visual 
interpretation by local analysis centers with existing infor-
mation of the stations, like site log files and case studies. 
The analysis was done using mainly the Tsview software 
(Herring 2003), which enables the easy testing of the effect 
of different actions. The manual analysis of the BICC time 
series also indicated some otherwise undetected small off-
sets. In the case of a questionable offset, its effect on the 
trend was also evaluated. Although we analyzed the coor-
dinate components separately, we set up offsets at the same 
epochs for all components in the station velocity estimation. 
Therefore, the effect of a potential offset needs to be ana-
lyzed for all components. We may skip adding an offset due 

Fig. 4   An overview of all the 
stations included in the NKG 
GNSS AC solution. The orange 
circles represent the stations 
used in the reference frame 
alignment
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to a small jump visible only in one component, if it changes 
significantly the velocity of another component. This may 
happen with unstable or short time series. In general, our 
principle was to define the offsets utilizing the best possi-
ble local knowledge of the stations. We used the manually 
defined offsets as true values in the performance analysis of 
the automatic ΔBICC method, and in the velocity estimation.

Position, velocity, and uncertainty estimation

The cumulative position and velocity solution was computed 
by combining the daily solutions with full covariance infor-
mation using the least-squares methods of the CATREF soft-
ware. The combination model is based on a seven-parameter 
similarity transformation, where each of the daily NKG solu-
tions is transformed into the combined solution at the refer-
ence epoch (Altamimi et al. 2016, 2018). We aligned our 
solution to the EPN cumulative release of the IGb14 that 
covered the data until GPS week 2115 (Bruyninx et al. 2019; 
Legrand 2020). The reference stations are shown in Fig. 4. 
The other potential solutions could not be used: the IERS 
release of the ITRF2014 (Altamimi et al. 2016) is incompat-
ible with the IGS14 antenna models, and the IGS14/IGb14 
realizations of the ITRF2014 included too few usable sta-
tions in our area.

We constrained the velocities of the co-located stations to 
be the same for all co-located stations except in Sweden. We 
found significant velocity differences between some of the 
Swedish co-located stations in Lahtinen et al. (2019), and the 
differences remained at the same level for this updated solu-
tion. The stations have different monument types (concrete 
pillars versus steel grid mast) that may behave differently. 
We modeled the large post-seismic deformations of the Ice-
landic stations FJOC, INTA, and KALF due to earthquakes 
in late 2014 using the exponential model and approximated 
relaxation times.

The uncertainties were computed from the position 
residual time series of the CATREF solution using Hector 
software, which includes power-law-based noise modeling. 
The residuals were modeled using the standard linear trajec-
tory model. We introduced the same discontinuities that had 
been used in the CATREF solution. The uncertainties of 
the co-located and constrained stations were computed from 
Hector’s uncertainty estimates using the formula derived in 
Lahtinen et al. (2019).

The Hector software uses the Generalized Gauss Markov 
(GGM) model by Langbein (2004) to approximate the flicker 
and general power-law noise. The (1 − Φ) term describes 
the flattening of the power spectral curve at low frequen-
cies. In Lahtinen et al. (2019), the flicker plus white noise 
estimates were computed using the individually estimated 
flattening term (1 − Φ) due to computational issues with the 
very small (1 − Φ) terms. This resulted mostly in a better fit 

of the model with the data. However, the fit varied from time 
series to time series. We therefore re-analyzed the spectral 
properties of the time series to choose the model on the basis 
of the varying spectral properties of the time series.

Results

We first summarize the performance of the offset detec-
tion approach in the NKG time series. Second, we evalu-
ate the updated velocity solution and present the estimated 
uncertainties.

Performance of offset detection approach

The performance of the ΔBICC offset detection method 
was tested on the daily position time series of 268 stations 
included in NKG GNSS AC. We excluded the stations in 
Greenland, Iceland, and Svalbard, because they typically 
include nonlinear trends that are not considered in this 
approach. Additionally, we did not analyze a few stations 
because we decided to reject data instead of adding an offset. 
These were typically stations where the gradual tree growth 
was seen as a changed or nonlinear trend, and tree-cutting 
causes a jump in the time series (see example in Lahtinen 
et al. 2019). The reprocessed data were rather clear of gross 
errors or systematical outliers due to snow, as they had 
already been pre-analyzed for the NKG Repro1 solution. 
The operational data since the 2017.1 epoch were added to 
the time series without any pre-analysis. A standard residual 
screening was performed within the offset detection process, 
using the limit of three times the interquartile range.

In the manual analysis, we identified small offsets at the 
epoch of the switch from reprocessed to operational data, 
despite the antenna model correction. We, therefore, added 
the 2017.1 epoch as a known epoch in addition to the infor-
mation of the receiver and antenna changes. We used the 
1.8 mm and 6.0 mm limits for the minimum unknown offsets 
based on the tests with the synthetic data. We set the time 
window to match the potential offsets to known equipment 
changes to ± 60 days, and for the switch from repro to opera-
tional to ± 30 days, based on our experience of the data.

Table 2 summarizes the results of the offset detection. 
Our ΔBICC method detected on average 74% of the manually 
defined offsets. The results vary a little among the countries 
depending on the number of stations and the quality of the 
time series. On the other hand, the method could not detect 
26% of the manually detected offsets. Those were typically 
cases, in which the iteration stopped to some unknown-but-
insignificant offset, and the smaller known offsets was not 
detected. This is typical for unstable time series. In addition, 
offsets that do not significantly affect the trend, may have 
been missed. Such cases included several small consecutive 
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offsets, and offsets at the very end of the time series. The 
FNs were linked to 21 stations, and their effect on the esti-
mated trends were for 90% of the stations below 0.15, 0.09, 
and 0.41 mm/y for north, east, and up respectively.

The ratios of the TPs, FNs, and FPs were split into 49%, 
16%, and 35%, respectively. The FPs were typically offsets 
that were considered insignificant in the manual analysis. 
The method found several potential small offsets close to the 
dates of receiver changes in the past. However, we consid-
ered some of them insignificant. The number of false posi-
tives can be considered reasonable because it also provides 
useful information concerning the potential offsets or nonlin-
earities in the time series. The epoch of an offset may also be 
detected incorrectly just outside the search window despite 
our rather loose limits. In the performance analysis, this will 
cause an FN because the known offset was missed and an FP 
because the offset was detected outside the search window.

We obtained notifications, either true or false positives, 
from 15% of the number of analyzed time series. Thus, most 
of the time series did not include potential offsets, and with 
this approach, we could reduce and homogenize the manual 
pre-analysis of the time series. The offset detection performs 
very well with good quality stations, and the most anoma-
lous time series with potential offsets can be identified from 
the residual time series.

Cumulative position and velocity solution

Our cumulative position and velocity solution, NKG_
Repro1_IGb14_C2111, includes 275 stations with a min-
imum of three years of data. The means of the weighted 
RMS of the daily positions were 1.0 and 3.3 mm for hori-
zontal and vertical components, respectively. We achieved a 
good agreement with the EPN C2115 cumulative reference 
frame release. The WRMS were 0.3, 0.6, and 1.9 mm for 
the positions and 0.0, 0.1, and 0.2 mm/year for the velocities 
in NEU respectively. The REYK and NYA1 stations were 
included in the datum, although they were not included in 

the highest-class stations defined by the EPN. The REYK 
improved the reference frame alignment in Iceland, and the 
NYAL prevented the north–south tilt compared to the results 
of the corresponding IGS cumulative solution.

Figures 5 and 6 show the estimated horizontal and verti-
cal velocities in IGb14 for the stations with a minimum of 
three years of data. The vertical velocities show the common 
land uplift pattern, whereas the horizontal velocities mostly 
reflect the plate tectonics. The station coverage has improved 
in Finland, although we excluded about 25 recently installed 
stations. We also excluded many lower-class stations in Esto-
nia to improve the quality over the station density in the area. 
The numerical dataset of the NEU velocities is given in the 
electronic supplement.

Table 2   Results of the offset 
detection method by each 
country/network. The columns 
describe the number of stations 
(#stations), the number of 
manually defined offsets 
(#manual), the ratio between TP 
and manually defined offsets, 
the ratio between FP and the 
number of time series, and the 
ratios between TP, FN and FP

Country #Stations #Manual TP/#Manual (%) FP/#Timeseries 
(%)

TP (%) FN (%) FP (%)

DNK 16 5 100.0 6.3 62.5 0.0 37.5
EST 32 6 66.7 7.3 30.8 15.4 53.8
FIN 51 32 75.0 6.5 60.0 15.0 25.0
LAT 16 4 100.0 2.1 80.0 0.0 20.0
LIT 27 5 60.0 4.9 33.3 22.2 44.4
SWE 64 27 63.0 7.8 40.5 23.8 35.7
NOR 36 10 90.0 7.7 47.4 5.3 47.4
EPN 26 15 73.3 7.7 52.4 19.0 28.6
total 268 104 74.0 6.8 49.0 15.9 35.0
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Fig. 5   Estimated vertical velocities for the Nordic and Baltic coun-
tries. Smaller circles have been used for the newer Swedish co-
located stations that were not constrained to the old ones. The Eura-
sian/North American plate border splitting Iceland is shown with a 
gray line
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Figure 7 shows the velocity differences from the pre-
vious results by Lahtinen et al. (2019). The largest differ-
ences are mostly linked to the stations with the shortest 
time series plotted with smaller circles, where the amount 
of data increased relatively most. We could improve veloc-
ity estimates of several stations by adding previously unde-
tected offsets, rejecting anomalous data and modeling the 
large post-seismic deformations. We also see approximately 
0.1 mm/y systematic difference in an east–west direction due 
to the different reference frame realization. In general, we 
could improve the quality of the velocity estimates for the 
short or otherwise unstable time series.

Figure 8 shows the velocity difference to the EPN densi-
fication solution D2100 by Kenyeres et al. (2019). We see a 
systematic difference of − 0.3 mm/y on the median in the up 
component and large discrepancies at several stations, both 
horizontally and vertically. The systematic difference results 
from the different sets of stations used in the reference frame 
alignment. The largest differences at individual stations are 
a sum of several reasons. Our solution includes data since 
1997, but the EPN’s D2100 solution includes only data 
since 2008. This affects some of the stations with the long-
est time series due to their nonlinear changes. Furthermore, 
the velocity constraints of the co-located stations have been 
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Fig. 6   Estimated horizontal velocities for the Nordic and Baltic coun-
tries. The color of the circles shows the magnitude of the velocity, 
and the vectors show the direction. The vectors are shown only for a 
part of the stations for clarity

Fig. 7   Velocity differences from 
the previous results by Lahtinen 
et al. (2019). The vectors show 
the horizontal velocity differ-
ences, and the circles show the 
vertical velocity differences. 
The size of the circles changes 
with respect to the length of the 
time series
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set up based on the site ID in the EPN densification solution, 
whereas we have made some exceptions based on our view 
of the stations. Finally, the different modeling of stations in 
Iceland causes large differences in velocity estimates.

Uncertainties

Table 3 summarizes the spectral indexes of the north, east, 
and up time series describing the stability of the position 
time series. The median values were − 0.8 for horizontal 
components and − 0.7 for the up component. The vertical 
time series were, therefore, on average, slightly more sta-
ble than the horizontal components, though the standard 
deviation of the noise was typically larger. However, the 
spectral indexes were between − 0.4 and − 1.0, showing vari-
ability in the power spectral properties of the stations. The 
spatial distribution of the spectral indexes is similar to the 
figures shown in Lahtinen et al. (2019). Especially in the 

east component, the spectral indexes for the stations in the 
eastern part of the network were closer to flicker noise, and 
in the western part, they were at a level of − 0.5.

The large variation in spectral indexes shows that the 
flicker noise assumption is too pessimistic for most of the 
stations. In general, the individually estimated power spec-
tral index produces a much better fit of the model to the data. 
We can see a flattening of the power spectrum in low fre-
quencies for the most stable stations, as Fig. 9 shows. How-
ever, the estimation of the flattening term cannot be reliably 
done with the short time series. We, therefore, selected the 
power-law plus white noise model for the final uncertainty 
estimation.

The uncertainty differences between this updated solu-
tion and the NKG Repro1 solution by Lahtinen et al. (2019) 
were mostly negligible in the horizontal components. Fig-
ure 10 shows differences in the up component. In general, 
we expect lower uncertainties for the updated solution with 
more data, but the change of the noise model from the flat-
tened flicker noise to power-law noise affects the uncertainty 
estimates. The largest positive and negative differences were 
linked to the short time series plotted with smaller circles. 
They are affected most, as the estimation of the noise model 
parameters is more uncertain when we lack the samples in 
low frequencies.

Table 4 describes the estimated uncertainties. The median 
uncertainties were 0.06, 0.07, and 0.15 mm/y for north, east, 
and up, respectively. They describe the internal uncertainty 
of the time series. However, we see the same sizes of sys-
tematic velocity differences in Fig. 7 between our solutions. 
The systematic differences typically originate from the dif-
ferences in the reference frame alignment. The comparison 
of the station velocity estimates between IGS and EPN 
cumulative solutions shows that the accuracy of the station 
velocities is not at the level of 0.1 mm/y. This means that 
depending on the purpose, one may need to estimate and add 
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Fig. 8   The comparison of the velocities to the EPN densification 
solution D2100. The vectors show the horizontal velocity differences, 
and the circles show the vertical velocity differences. There are both 
systematic and random differences

Table 3   Spectral indexes of the time series

North East Up

Min −1.00 −1.00 −0.98
1st quartile −0.86 −0.92 −0.78
Med −0.80 −0.84 −0.68
3rd quartile −0.71 −0.72 −0.60
Max −0.36 −0.44 −0.41

Fig. 9   Example of a power spectral density of a station (15  years’ 
data, up component) showing the flattening of the spectrum in low 
frequencies
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other uncertainty factors to get the total uncertainty budget 
for the GNSS station velocities.

Discussion

We achieved high performance rates with our ΔBICC off-
set detection method. A comparison of the results with the 
other methods is not feasible due to the different data sets 
and assumptions for the TPs. However, the existing meth-
ods of Hector and Amiri-Simkoeii et al. (2018) could not 
detect small offsets similar to Fig. 1. We could detect even 
millimeter level true offsets in the high-quality time series. 
However, our method is not sensitive to many small con-
secutive offsets, especially if they cancel out each other’s 
effect on the trend. Furthermore, the offsets at the very end 
of the time series can also remain undetected, as they do not 
significantly affect the trend but should be taken into account 
for the position estimates. To detect these cases as well, a 

similar approach to the STARS methodology by Bruni et al. 
(2014) could be useful, in which offsets are searched with 
sliding segments of the time series.

We allowed a loose search window in the offset detection 
compared to the other methods, in which TPs were assumed 
only when an offset had been detected within a few days of 
the known date. However, several reasons support the use of 
the loose limits for GNSS time series. First, when we lower 
the limit for the smallest detectable offset, the estimation of 
the offset epoch becomes more inaccurate due to the power-
law noise. Second, the GNSS stations may have monument, 
software, or hardware related issues, that show up earlier in 
the time series than the actual documented change. Third, 
the data gaps and the snow-effects in the time series may 
affect the automatically estimated epoch of an offset. We 
also recognize that the small offsets may become detectable 
some years after the offset epoch. Therefore, the analysis 
should be repeated for the full time series when new data 
are added to the time series.

We set the limit for the minimum unknowns based on 
the performance analysis of the method. The test data were 
created using the median spectral indexes of the NKG 
time series. The reasonable number of false positives and 
negatives showed that the limits worked well. However, 
there are variability in the properties of the time series, for 
example, in the spectral indexes. With more simulation, we 
could probably derive the limit as a function of some of the 
parameters.

We could improve the velocity estimates of several sta-
tions with the aid of the developed offset detection method. 
The time series of Iceland would further benefit from a 
more in-depth analysis of post-seismic deformations. We 
only modeled the most significant cases. A thorough analysis 
of the time series also resulted in differences in the offsets 
compared to the reference frame solution, which reduced 
the number of usable stations in the reference frame align-
ment. Therefore, it would be important to improve the offset 
analysis in the reference frame solutions by EPN and IGS. 
Preferably, this would be done in a coordinated and inclusive 
way, utilizing the local knowledge while harmonizing the 
methodology.

Conclusions

We developed an automatic offset detection method for the 
time series analysis to improve the quality of our velocity 
estimates and increase the efficiency of the time series 
analysis. Our study showed that the use of a power-law 
noise model in the offset detection could not detect small 
offsets at a level of 1–2 times the noise amplitude. These 
undetected offsets increase the instability of the time 
series, which leads to spectral indexes closer to flicker 
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Fig. 10   Differences of the estimated uncertainties of the vertical 
velocities compared to the Repro1 solution. A positive value means 
an increase, and a negative value a decrease in the uncertainty esti-
mate. The size of the circle changes with respect to the length of the 
time series

Table 4   Estimated uncertainties 
for the stations (mm/y)

North East Up

Min 0.01 0.01 0.04
1st quartile 0.04 0.04 0.10
Med 0.06 0.07 0.16
3rd quartile 0.10 0.10 0.26
Max 0.35 0.31 1.16
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noise. Therefore, we used the white noise model and 
developed a BIC-based stopping criterion to avoid the 
increase in false alarms. Our ΔBICC method is easy to 
implement on top of the open-source software Hector, and 
only non-heavy scripting is needed. We achieved a 74% 
detection rate compared to the manual analysis, and the 
velocity biases due to the undetected offsets remained at a 
median below 0.1 mm/y.

Our updated position and velocity solution for Nordic 
and Baltic countries now covers up to 23.5 years of data. 
The new solution improves velocity estimates for several 
stations in all countries as a result of more data and the bet-
ter modeling of individual stations. We estimated a median 
uncertainty of 0.06, 0.07, and 0.15 mm/y for north, east 
and up components, respectively, using the power-law plus 
white noise model. The uncertainties increased for some of 
the stations due to the noise model change compared to the 
NKG Repro1 solution by Lahtinen et al. (2019). The uncer-
tainties due to the reference frame realization were approxi-
mately at the same level and should be considered in the 
total uncertainty budget when appropriate. The comparison 
with the EPN densification solution showed large differ-
ences in the station velocities despite the same input LAC 
solutions, demonstrating the importance of this regional 
solution for the maintenance of the Nordic–Baltic reference 
frames affected by the GIA. In the future, we will focus on 
the regular updates of our cumulative solution and the next 
reprocessing effort to strengthen the solution further.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10291-​021-​01194-z.
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