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Electronic flat bands represent a paradigmatic platform to realize strongly correlated matter due to their
associated divergent density of states. In common instances, including electron-electron interactions leads to
magnetic instabilities for repulsive interactions and superconductivity for attractive interactions. Nevertheless,
interactions of a Kondo nature in flat-band systems have remained relatively unexplored. Here we address
the emergence of interacting states mediated by Kondo lattice coupled to a flat-band system. Combining
dynamical mean-field theory and tensor networks methods to solve flat-band Kondo lattice models in one and
two dimensions, we show the emergence of a robust underscreened regime leading to a magnetically ordered
state in the flat band. Our results put forward flat-band Kondo lattice models as a platform to explore the genuine
interplay between flat-band physics and many-body Kondo screening.

DOI: 10.1103/PhysRevResearch.3.043113

I. INTRODUCTION

Flat-band systems represent one of the paradigmatic
systems to engineer correlated matter [1–6]. Quantum en-
gineering has provided a variety of platforms potentially
combining both flat bands and interactions, including atomic
lattices [7–10], cold atoms [11–13], and twisted moire ma-
terials [14–16]. Their potential for correlated physics stems
from the vanishing electronic dispersion, which creates a
greatly enhanced density of states at the Fermi energy [3,17–
19]. While a wide variety of correlated states in flat-band
systems can emerge, minimal attractive or repulsive on-
site interactions are well known to lead to magnetism and
superconductivity, respectively [2,15,20–26]. More complex
interactions in flat bands are also well known to give rise
to other symmetry broken states, including charge-density
waves and bond orders [27–30]. The different interactions
considered are usually written as an effective density-density
interaction. Nevertheless, external couplings such as Kondo
couplings [31,32] in the system can lead to even more sophis-
ticated interaction terms.

Electronic states coupled to magnetic impurities are known
as prototypical many-body states [33,34]. The simplest ex-
ample corresponds to the Kondo problem, in which a single
magnetic impurity forms a many-body ground state with its
electronic bath [33–35]. The lattice version of the problem,
known as the Kondo lattice problem, represents the starting
point for exotic physical phenomena found in heavy-fermion
systems [33,36–43]. Interestingly, the Kondo physics outlined
above is usually addressed in systems with strong electronic
dispersion, while the Kondo problem for flat bands has been
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much less explored [44–48]. In the dispersive limit, the inter-
action between a local magnetic impurity and the conduction
bath is determined by the Kondo temperature, increasing
with the density of states, and therefore divergent in the
flat-band regime. The coupling between magnetic impurities,
known as the Ruderman–Kittel–Kasuya–Yosida (RKKY) in-
teraction [49–51], is determined by the Fermi wavelength of

FIG. 1. (a) Sketch of a Kondo lattice coupled to a flat-band
electron gas. Panels [(b), (c)] show the lattice model realizing a flat-
band Kondo lattice model in two dimension (b) and one dimension
(c). Panels [(d), (e)] show the momentum-resolved spectral function
A(k, ω) of the flat-band electron gas of panels [(b), (c)], respectively.
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the conduction bath. However, in the flat-band limit, the previ-
ous picture breaks down due to the absence of a well-defined
Fermi surface.

Here we address the fate of a flat-band system coupled to a
lattice of magnetic impurities, realizing the so-called flat-band
Kondo lattice model. We observe that the system develops
a robust local magnetic order, overcoming Kondo screening
effects of the flat band. We demonstrate that the full phe-
nomenology can be captured by symmetry broken mean-field
method and compare these results with two genuine many-
body methods, dynamical mean-field theory (DMFT) and
tensor networks states. Our results demonstrate the nontrivial
impact of flat bands in Kondo lattice problems, emphasizing
the complex interplay between exchange and Kondo physics
in flat-band systems.

The paper is organized as follows. In Section II, we intro-
duce the minimal models featuring a flat-band Kondo lattice
physics, both in one dimension and in two dimensions. In
Section III we present the solution of the two-dimensional flat-
band Kondo lattice model as solved by DMFT. In Section IV
we present the solution of the one-dimensional flat-band
Kondo lattice model as solved with tensor networks. Finally,
in Section V we summarize our conclusions.

II. FLAT-BAND KONDO LATTICE MODEL

In the following we describe the effective models used to
capture a flat-band Kondo lattice model, as shown in Figs. 1(b)
and 1(c). The full Hamiltonian H = Ht + Hint has both non-
interacting Ht and interacting Hint terms. Let us start with the
noninteracting term, for which we take a first-neighbor spinful
model of the form

Ht = t
∑
〈i j〉,σ

c†
iσ c jσ , (1)

where ciσ is the annihilation operator for site i and spin σ ,
and 〈〉 denotes nearest-neighbor sites. The lattices considered
for Eq. (1) would be a square lattice and a ladder for the two-
dimensional and one-dimensional cases, respectively. In both
cases, the fundamental unit cell of the system consists of four
spinful sites.

Let us now address the interacting term of the Hamiltonian.
In each unit cell of the system, we will include interactions
solely in a single site, which we label by I in the form

Hint = U
∑

I

(
nI↑ − 1

2

)(
nI↓ − 1

2

)
, (2)

where nIσ = c†
Iσ cIσ and U > 0 is the interaction strength. The

interaction acts only at one of every four sites, namely, the
sites labeled as I , which in the following will be referred to as
the impurity site. It is worth noting that by definition, the pre-
vious Hamiltonian leads to a half filled state for arbitrary U .
In the strong coupling limit U � t , the low-energy sector re-
alizes a flat-band electron gas, as shown in Figs. 1(d) and 1(e).
The interacting site develops a local magnetic moment, lead-
ing to a low-energy effective Hamiltonian (Appendix A) for
the full system of the form

Heff =
∑
k,σ

ψ
†
kσ ht (k)ψkσ

+ J
∑
kk′

SI · τσ,σ ′ψ
†
k,σ ψk′,σ ′ , (3)

where ψkσ = (cAσ cBσ cCσ )T and ht (k) is the superlattice
Fourier transform of the hopping matrix of noninteracting
sites. and J = t2/U is the effective Kondo coupling. In the
following we will work with the full fermionic Hamiltonian
H, yet the effective Hamiltonian as shown in Eq. (3) will pro-
vide useful insights to rationalize the full many-body solution.

Finally, it is worth commenting on the emergence of the flat
band in the previous models. In the infinite U limit, one of the
four sites is fully disconnected from the other noninteracting
sites. In this limit, the two-dimensional and one-dimensional
models realize a bipartite lattice with a different number of
sublattice sites per unit cell, automatically leading to a flat
band [52–55]. For a finite U , the system will thus realize a
two-dimensional or one-dimensional electron gas coupled to
a lattice of Kondo impurities. In the following, we explore this
finite U coupling limit, first in two dimensions with DMFT
and later in one dimension with tensor networks.

Originally, the Kondo lattice model [34,56] was proposed
to account for the competition between the Kondo effect
and magnetic order in various heavy fermion alloys. At very
low temperatures, the localized impurity spin is completely
screened by the dispersive conduction electrons via onsite
Kondo exchange interaction, leading to the formation of a
coherent Kondo spin-singlet heavy fermion state. Besides, the
local coupling between impurity spins and conduction elec-
trons may give rise to a magnetic order through the intersite
RKKY interaction [49–51]. Doniach [57] proposed a phase
diagram with a quantum phase transition between two distinct
phases, i.e., a magnetically ordered one and a nonmagnetic
Kondo phase. Here we discuss a different class of heavy
fermion system where the coexistence between the magnetic
order and the Kondo behavior is due to partial screening of
the impurity by conduction electrons, which has been ob-
served [58,59] experimentally.

Kondo lattice Hamiltonian has been studied previously
in the context of a partially screened magnetically ordered
state for conventional dispersive conduction electrons us-
ing mean-field theory [60], DMFT [61,62], quantum Monte
Carlo simulation [63], and variational Monte Carlo [64]. Co-
existence of the partially magnetically ordered state along
with the Kondo screened phase has been attributed to frus-
trated lattice geometry [64], long-range electron hopping [65],
site-selective Kondo screening [66], competition of Kondo
screening, and RKKY interaction in the low density of con-
duction electron [60]. The full fermionic Anderson model
displays richer physics than its counterpart Kondo lattice
model, as it allows the charge fluctuation at the impurity site
as well. Here we study the nature of such an underscreened
magnetically ordered phase with the conduction band having
a flat(quasiflat) band. Such an underscreened phase is stable
at finite temperature and local exchange field.

III. DMFT APPROACH OF THE TWO-DIMENSIONAL
FLAT-BAND KONDO LATTICE MODEL

In the following, we will address the fate of the two-
dimensional Kondo lattice problem. We will consider the
mean-field solution as a reference to see how quantum
fluctuations included in the dynamical mean-field approach
renormalize the results. Evaluations of the site-selective
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magnetism have been calculated using the cellular mean-field
theory, cellular DMFT with continuous time quantum Monte
Carlo method, and exact diagonalization (ED) as the impurity
solver [67–69]. Within CDMFT, a lattice problem is mapped
to a finite cluster coupled to a noninteracting bath. In our
case, the cluster is a four-site (2 × 2) plaquette as shown in
Fig. 1 [70–72]. We define the site-dependent absolute magne-
tization for the cluster as mi = 〈ni↑〉 − 〈ni↓〉, where 〈ni,σ 〉 =
Gi,σσ (τ → 0−) is the density of spin-σ particles for a given
site of the cluster calculated from the local Green’s func-
tion. To understand the origin of the site-selective magnetic
order, we calculate the effective hybridization [73] between
the impurity and the sites near it. We can define the nonlocal
effective hybridization order for the given four-site clusters as

�α =
∣∣∣∣∣

∑
α 	=β,σ

〈c†
ασ cβσ 〉

∣∣∣∣∣ =
∑

α 	=β,σ

∣∣Gαβ
i,σσ (τ → 0−)

∣∣, (4)

where α(β ) is the sublattice index. The behavior of effective
hybridization is proportional to the noninteracting local den-
sity of states (LDOS) at the sublattices of the unit cell [35].
In the following, we present the complete magnetic phase
diagram in the presence of a finite two-body interaction U
at finite temperature T at half filling, where the number of
particles per site is one. Simultaneously, we also explore
the nature of effective Kondo hybridization on the emergent
site-selective magnetization. The role of quantum fluctuations,
ignored in mean-field theory, has been addressed by using
DMFT.

A. Zero-temperature calculations

Due to emergent singularity in the LDOS at different sub-
lattices in the presence of the finite local interaction at the
impurity site, the local magnetic order is nonuniform across
different sites. We show the spatially resolved magnetic or-
der mα evaluated using Hartree-Fock mean-field theory in
Fig. 2(a), zero-temperature ED+CDMFT in Fig. 2(b), and
continuous-time quantum Monte Carlo (CTQMC)+CDMFT
at T = 0.01 in Fig. 2(c) for varying interaction strength U/t
at the impurity site. We allow the breaking of the SU (2)
spin-rotation symmetry to capture the magnetically ordered
state. An initial self-energy that is constant in the Matsubara
frequency is added in this way that it breaks SU(2) symmetry
of the Hamiltonian.

For weak to moderate interactions, the local magnetic
order at different sublattices gradually develops such that
sign(mA/B) = −sign(mC ) = −sign(mI ) for any U/t > 0 due
to the antiferromagnetic coupling between the local moments
at a neighboring site of the unit cell. The sizes of the magnetic
moments of the A/B, C, and I sites are very different, as
expected from the nonuniform nature of the model. While
the magnetization of the A/B and I sites saturates with the
strength of the interaction, the same does not occur on site C.
Magnetic order at the C site asymptotically goes to zero after
attaining the peak at a given U/t . The qualitative behavior
obtained from the different approaches is similar for all U/t ;
however, the key aspect is the amplitude of mα calculated
using DMFT that is significantly smaller than the one obtained
from MF approach. This is due to the many-body correc-

(a)

(b)

(c)

FIG. 2. Magnetic order parameter at impurity site, I (black), at
sites next to the impurity, A/B (red), and at the second-neighbor
site of the impurity site, C (blue), evaluated using (a) mean-field
theory [74]. (b) DMFT + ED and (c) DMFT + CTQMC for varying
interaction strength U . Note that the magnitude of the magnetic order
at C site has been scaled by a factor of four for the purpose of visual
clarity.

tions included in DMFT not accounted for by the mean-field
calculations. Interestingly, and despite such differences, it is
observed that the flat-band electron gas does not fully screen
the local moment. The hybridization between the electrons at
the noninteracting sites and the impurity site leads to the for-
mation of the singlet between the spins of electrons at different
sites. In contrast, the RKKY interaction makes the impurity
spins interacting with each other via conduction electrons and
thus tends to stabilize the magnetic ordering. This can be
shown by the finite hybridization along with the local mag-
netic order at U/t (Fig. 3). Effective hybridization decreases
monotonically both at the impurity sites and the site next to the
impurity such that �I < �A/B for all U/t , consistent with the
observed magnetic order at the corresponding site. Effective
hybridization at the second-neighbor site decreases initially
and then increases further, congruous with magnetic order.

To understand the interplay of the Kondo screening and the
RKKY interaction, we show the evolution of the mean-field
LDOS at the impurity site and its vicinity in Fig. 4 for varying
U . For U � 1, the local DOS at the second-neighbor site van-
ishes at the Fermi energy like the Dirac electron pseudogap,
whereas the nearest neighbor to the impurity site exhibits a
flat band. In particular, in the infinite U limit, the impurity
sites are fully disconnected from the other noninteracting
sites. In such case, the system becomes an array of Kondo
impurities in a bath of noninteracting electrons. The resultant
geometry is analogous to the array of Kondo impurity on the
Lieb lattice. The impurity hybridizes with the noninteracting
bath via A and B sites. The Lieb lattice is known to give rise to
spatially localized electronic flat bands [55,75]. The origin of
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FIG. 3. Effective hybridization of a given sublattice with the rest
of the sites in the unit cell as Eq. (4).

the flat band is due to the destructive interference of the wave
functions [55,76].

In general, the Kondo effect describes the screening of
the spatially localized impurity by the delocalized bath of
noninteracting electrons [35]. The nature of the screening is
antiferromagnetic in nature. Localization of the bath electrons
makes them less available for screening the localized impuri-
ties and thus making the impurities underscreened. As evident
from the local DOS (Fig. 4), noninteracting conduction elec-
trons get localized at the site A(B) for U � t and thus partially
screening the impurity at the I site. The Kondo effect does

(a)

(b)

(c)

FIG. 4. Evolution of the mean-field LDOS at (a) the impurity
site, (b) at sites next to the impurity, and (c) at a second-neighbor
site on the impurity site.

FIG. 5. Temperature vs interaction strength phase diagram of
the inhomogeneous Hubbard model showing local magnetization
at (a) impurity site, mI; (b) at site next to the impurity, mA/B; and
(c) second-neighbor site to the impurity site, mC.

not lead to a complete screening of the localized spins, and
the exchange between the (underscreened) spins leads to the
formation of the magnetic order. The coexistence between
magnetic order and the Kondo effect can be attributed to the
presence of the flat bands.

B. Finite temperature calculations

We now move on to consider the effects of finite temper-
ature in the DMF calculations. First, it is worth noting that
the current model will not show long-range magnetic order
due to its two-dimensional nature. DMFT, however, does not
capture long-range fluctuations and therefore does not ac-
count for the Mermin-Wagner theorem [77,78]. Within this
framework, the existence of a finite magnetization in a DMFT
calculation must be rationalized as a signature of strong mag-
netic correlation, as addressed in other systems [79]. In this
context, while the true long-range ordering temperature is at
T = 0, correlation lengths start to grow at a specific temper-
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Local magnetic order [(a)–(c)] and the corresponding
effective hybridization [(d)–(f)] for the impurity site I, site next to
impurity site A/B, and second-neighbor site C of the impurity with
varying temperature.

ature scale T ∗ > 0 and is the temperature scale captured by
DMFT [79].

In Fig. 5, we show the region in the T-U plane where
the magnetic order, mα , is finite. The amplitude of mα , at
a given U/t , is site dependent. Local magnetization at the
impurity site and at the site next to the impurity monotoni-
cally increases and then saturates with increasing interaction
strength with a nonmagnetic to magnetic transition at Tc.
However, the magnetic behavior at the second-neighbor site
gets peaked at Up/t for a given T . Up increases monotonically
with the T . We show the spatially resolved magnetic order
mα the corresponding effective hybridization evaluated using
CTQMC+CDMFT with varying temperatures at different in-
teraction strength U/t in the upper panels and lower panels
in Fig. 6, respectively. As the temperature is increased, the
magnetic order for all sublattices sharply disappears at Tc.
The evaluation of the magnetic order at the second-neighbor
site decreases with increasing value of U for a given T , op-
posite to the impurity site and the site next to the impurity.
Effective hybridization changes with the transition temper-
ature, with a cusp at Tc. It is important to note that the
effective hybridization is finite in both magnetic and nonmag-
netic regions, and the behavior of � is consistent with the
corresponding local magnetic order.

IV. TENSOR NETWORK APPROACH TO THE
ONE-DIMENSIONAL FLAT-BAND KONDO LATTICE

MODEL

We now move on to consider a one-dimensional flat-band
Kondo lattice model, which can be rationalized as a one-
dimensional version of the model outlined above. First, it is
worth emphasizing that for a one-dimensional quantum many-

FIG. 7. Local magnetic order on (a) impurity site I, (b) flat-band
sites A and B, and (c) site C vs Hubbard U and local exchange field
J /t for the generalized one-dimensional model Eq. (5).

body problem, the existence of strong quantum many-body
fluctuations would prevent the system to order even in the
presence of strong magnetic correlations. To accommodate
this restriction, we will generalize the flat-band Kondo lattice
model, including local symmetry-breaking terms, allowing
for a selective quench of the quantum fluctuations of the
system.

Let us now comment on the specific model we will address.
On the computational side, the interacting model can be ef-
fectively solved using tensor network methods [80–83] due to
its one-dimensional nature. We will include a noninteracting
hopping term in the geometry shown in Fig. 1(c) and whose
flat-band structure is shown in Fig. 1(f). Local Hubbard inter-
actions are included in site I as depicted in Fig. 1(d). On top
of the interacting term, we will also include a local exchange
field on the impurity site, leading to a full Hamiltonian of the
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FIG. 8. Effective hybridization at different sublattice sites in the
one-dimensional flat-band Kondo lattice model with J = 5t for
varying U/t .

form

H = t
∑
〈i, j〉

c†
i c j + U

∑
i∈I

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
+ J

∑
I

Sz
i .

(5)
Increasing the local exchange J can lead to the emergence

of the quasiflat band at the site next to the impurity site, even
at U = 0. In a mean-field language, J could be rationalized
as an effective local magnetization, and therefore J allows to
effectively interpolate between a mean-field and purely many-
body limit. In particular, when J → ∞, the impurity site is
fully magnetized, and we are in pure mean-field limit, whereas
when J = 0, the magnetic instability solely originates from
U and we are in a pure many-body limit. To be concrete, we
consider a chain (Fig. 7) of 40 sites (i.e., 20 lattice constants
long) and compute averaged magnetization on the impurity
sites I , the flat-band sites A and B, and the next-nearest site C
with varying Hubbard U and the field J of impurity sites. We
find that the local exchange J destroys quantum fluctuations
and promotes a quasi-long-range order at the impurity site
and sites A/B. As J becomes smaller, larger U is required
to produce the magnetic order.

The above behavior is consistent with the hybridization
effects in the two-dimensional flat-band Kondo lattice ad-
dressed previously with DMFT. In particular, we show the
effective hybridization varying with U at fixed field J = 5t
in Fig. 8. We find that the effective hybridization at all sub-
lattice sites has the same behavior as in the two-dimensional
case in Fig. 3. Due to the finite exchange field J , the hy-
bridization at all sites is suppressed, with the impurity site
having the largest suppression. The previous results show that,
while the one-dimensional model is formally different from its
two-dimensional counterpart, magnetic correlations between
Kondo sites and flat-band sites show a similar phenomenol-
ogy.

V. CONCLUSION

Kondo lattice problems represent one of the paradigmatic
many-body problems, hosting a variety of intricate phenom-
ena due to the competition of Kondo screening and magnetic
ordering. Here we have addressed the physics of a Kondo
lattice problem, in which a conventional dispersive electron
gas is replaced by a flat-band electronic state. In particu-
lar, we considered flat-band Kondo lattice models in both
two and one dimensions, which we solved using many-body
DMFT and tensor networks, respectively. We have demon-
strated the emergence of a locally ordered state, showing
how the formation of the Kondo cloud is overcome by the
magnetic correlation between impurities. Interestingly, the
underscreened phase observed in our many-body results can
be captured via a conventional symmetry-broken mean-field
method, highlighting how the main features of the system are
qualitatively reproduced. Our treatment focused purely on the
half-filled case, yet doping of the Kondo lattice is expected to
lead to a more complex interplay of the exchange and Kondo
coupling scales, therefore leading to substantially more com-
plex phase diagrams. Our results exemplify the fine interplay
between magnetic ordering and many-body screening, putting
forward flat-band Kondo lattice models as a powerful platform
to explore exotic emergent quantum many-body states.
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APPENDIX: LOW-ENERGY EFFECTIVE KONDO
LATTICE MODEL

The tight-binding full fermionic Hamiltonian in momen-
tum space can be written as H = H0 + HV such that

H0 =
∑
kσ

ψ
†
kσ

ht (k)ψkσ
+ Hint (A1)

HV =
∑
kσ

(ψ†
kσVt (k)ψIσ + H.c.), (A2)

where ψIσ = (cIσ , 0, 0)T . Schrieffer-Wolff (SW) transforma-
tion can be used to get the low-energy effective Kondo
lattice model. SW transformation Anderson Hamiltonian with
empty, singly and doubly occupied impurity states to Kondo
lattice Hamiltonian with singly occupied state. SW transfor-
mation in general can be written as

Heff = e−SHeS = H + 1
2 [S,H] + 1

3 [S, [S,H]] + . (A3)

S is chosen in such a way that it cancels the off-diagonal part,
i.e., hybridization of the impurity with noninteracting bath to
the first order, so that

HV + [S,HV ] = 0 (A4)

and the low-energy effective Hamiltonian become

He f f = H0 + 1
2 [S,HV ]. (A5)
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An explicit form of S for can be constructed as

S =
∑
k jσ

{Ak + BknI σ̄ }Vt (k)(ψ†
kσψIσ − H.c.), (A6)

where

A = 1

ht (k)
B = 1

ht (k) − U
− 1

ht (k)
.

Using Eq. (A6) in the Eq. (A5), we write effective Kondo
lattice Hamiltonian given as

Heff =
∑
k,σ

ψ
†
kσ ht (k)ψkσ

+
∑

kk′σσ ′
Jk,k′SI · τσ,σ ′ψ

†
k,σψk′,σ ′ ,

(A7)

with the exchange coupling as

Jkk′ = Vt (k)V ∗
t (k′){−(ht (k) − U )−1

− (ht (k′) − U )−1 + ht (k)−1 + ht (k′)−1}, (A8)

where Vt (k) is the super lattice Fourier transform of the
hopping matrix of noninteracting sites and the impurity. For
strong coupling, We can consider V (k) = V (k) = t and and
conduction band energies close to the Fermi energy can be
neglected. Thus, the simplified form of the exchange coupling
can be written as t2/U .
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