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ABSTRACT
Remote rendering systems comprise powerful servers that render
graphics on behalf of low-end client devices and stream the graphics
as compressed video, enabling high end gaming and Virtual Reality
on those devices. One key challenge with them is the amount of
bandwidth required for streaming high quality video. Humans have
spatially non-uniform visual acuity: We have sharp central vision
but our ability to discern details rapidly decreases with angular
distance from the point of gaze. This phenomenon called foveation
can be taken advantage of to reduce the need for bandwidth. In this
paper, we study three different methods to produce a foveated video
stream of real-time rendered graphics in a remote rendered system:
1) foveated shading as part of the rendering pipeline, 2) foveation
as post processing step after rendering and before video encoding,
3) foveated video encoding. We report results from a number of
experiments with these methods. They suggest that foveated ren-
dering alone does not help save bandwidth. Instead, the two other
methods decrease the resulting video bitrate significantly but they
also have different quality per bit and latency profiles, which makes
them desirable solutions in slightly different situations.

CCS CONCEPTS
•Computer systems organization→Real-time system archi-
tecture; • Computing methodologies→ Image compression;
Non-photorealistic rendering; Virtual reality; • Networks→ Cloud
computing.

KEYWORDS
Virtual Reality, Foveated Rendering, Cloud Rendering, Foveated
Streaming
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1 INTRODUCTION
High quality visual experience with real-time graphics requires
powerful hardware for graphics processing. Therefore, AAA video
games and Virtual Reality (VR) applications typically rely on a PC
that has a dedicated graphics card for rendering, which is expensive,
constrains mobility, and can be laborious to setup.

Remote rendering offloads the (heavy) graphics computing work
to a remote server that streams the rendered graphics as encoded
video to the client device in real time. In this way, a high qual-
ity experience can be provided for resource constrained (mobile)
devices [14, 41]. However, this approach has its own challenges.
Besides the need for ultra-low latency, remote rendering requires
substantial amount of bandwidth for high quality video streaming
from server to client. Fortunately, the specifics of human visual
system can be leveraged to mitigate this challenge.

It is well known that human visual system has spatially non-
uniform acuity [45]: sharp vision centered at the point of gaze and
exponentially decreasing acuity with angular eccentricity from the
point of gaze. The phenomenon is also called foveation.

If gaze tracking information is available, remote rendering can
take advantage of foveation to reduce bandwidth requirements.
The idea is to decrease the level of detail within a video frame
from regions that are spatially distant from the point of gaze. In
this way, the overall amount of information per frame is reduced,
which potentially leads to lower bitrate of the encoded video. As
a side effect, the amount of computational work in rendering can
be reduced also by considering foveation already in the graphics
rendering phase.

In this paper, we compare three different methods to stream
foveated video in a remote rendering system.We consider foveation
in graphics rendering (foveated rendering), in post processing right
after the rendering (foveated warping), and in the video encod-
ing phase (foveated video encoding). The foveated warping is,
to the best of our knowledge, original in the context of foveated
streaming of real-time graphics. Interestingly, our results reveal
that foveated rendering alone does not help reduce the resulting
video bitrate, mainly due to its harmful effect on inter-frame com-
pression. Foveated warping effectively reduces the number of pixels
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per frame, whereas foveated encoding reduces the number of bits
per pixel within a frame. Both of these methods lead to substantial
bitrate savings but differ in terms of quality and other benefits.
While foveated warping appears to fall slightly behind foveated
encoding from quality per bit point of view, it can potentially offer
notably lower latency and/or higher resolution visual experience
due to reduced video encoding and decoding workload.

In summary, we make the following contributions:
• We present three different ways to stream foveated real-time
rendered content including a novel approach based on 2d
image warp.

• We implement these techniques in a real system and run a
number of experiments to evaluate their performance, in-
cluding a small scale test with human subjects.

• We show that foveated rendering only is a poor choice and
that among the two other methods, there is no clear winner
because they have different tradeoffs between quality per
bit and video coding latency and resolution limits.

The rest of the paper is organized as follows: We first introduce
the background and related work in Section 2 regarding foveation
both for video encoding and rendering. We then introduce three
different methods to include foveation in a remote rendering system
in Section 3. In Section 4, we present the remote rendering system,
the experiment setup and the metrics used in our evaluation (Sec-
tion 5). Lastly, we discuss the results in the context of choosing the
right method for a foveated remote rendering system in Section 6
before concluding the paper.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the background and related work
related to foveation, both in the context of foveated rendering
and foveated video coding. Before this, we also present how the
foveation phenomenon is an in-built property of the Human Vi-
sual System (HVS) and introduce the concept of streamed remote
rendering.

2.1 Streaming Remote Rendered Graphics
Remote rendering leverages cloud computing in the context of
graphics computing. In a remote rendering system, a server with
sufficient compute and rendering resources executes a typically
complex graphics application to render the graphics, compresses
the rendered frames and transmits the compressed frames to (typ-
ically) a thin client which decompresses and displays the frames.
Interactive remote rendered applications allow the thin client to
send control inputs to the rendering server [42]. The frames ren-
dered in a remote rendering system may be compressed using e.g
geometry compression [12] or video encoding [15].

Streaming remote rendered graphics is an actively researched
area, owing to its use in applications like remote desktop, cloud
gaming, and cloud-rendered VR and XR [42]. Currently, there is
a heightened commercial focus on cloud gaming with the launch
of commercial services like GeForce Now [3] and Google Stadia
[19]. Since mobile devices have limited compute, render and energy
resources, streaming remote rendered graphics is under intense
research focus as an enabling technology to deliver untethered
interactive XR experiences to mobile devices [4].

Previous research on remote rendered XR has shown that the
computing resources can be decoupled from the standalone device
either by a dedicated wireless link [28] or by cloud-enabled render-
ing with a traditional WiFi or mobile network connection [21]. The
stringent latency requirements of remote rendering have been a
particular focus for XR and traditional cloud gaming. Lai et al. [23]
utilized pre-rendered frames to address the latency issues in cloud-
rendered VR. On the other end of the pipe-line, Li et al. [26] pro-
posed the use of 3D image warping to reuse received pixels between
multiple frames on the client side. Both of these techniques can be
used together with the foveated optimization methods introduced
in this paper.

2.2 Foveation in Human Visual System
Foveation, the phenomenon of non-uniform visual acuity of the
human eye, is well known [45]. Fovea centralis, a small region
on the retina directly behind the lens has the highest density of
cone cells and it is responsible for our sharp central vision. The
regions surrounding the fovea centralis have progressively lower
cone density resulting in proportionally lower resolution sampling
of a visual scene. This non-uniformity of cone distribution and
cortical magnification lead to foveation [6, 37]. The highest visual
acuity of the human eye is estimated to be within an spatial angle
of 2o of the human visual field, falling sharply with increasing
eccentricity [6]. This is also reflected in the variation of the so-called
cutoff frequency with eccentricity. Cutoff frequency, at a given
viewing distance, is the maximum spatial frequency perceived by
the human eye and varies with eccentricity from the fovea centralis.
Figure 1 shows the cutoff frequency of the human eye with respect
to eccentricity from the fovea centralis.

Figure 1: Cutoff frequency as a function of eccentricity from
the fovea.

2.3 Foveated Video Encoding
Exploiting foveation in video coding has been explored for a long
time as foveated video coding [20, 46, 47]. The main principle is to
spatially vary the encoding quality of each video frame such that
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the quality is highest at viewers’ gaze location and lower elsewhere.
The viewer gaze is either predicted or reported in real time by an
eye-tracker. However, deployment of foveated video coding into
commercial space has been slow due to gaze tracking or prediction
requirements. More recently, with the availability of consumer
grade eye trackers, it is seeing a renewed interest, especially for
real-time planar and 360o video streaming applications.

Lungaro et al. [29] proposed a tile-based gaze-aware streaming
solution to minimize the bandwidth usage in 360o video. Similarly,
Romero-Rondón et al. [39] demoed a prototype of a system with
foveated video streaming for VR. In this paper, we extend the ap-
proach to real-time rendered graphics and an evaluation of three
different foveation methods. Gaze-based foveation systems have
been also proposed for cloud gaming [16] and traditional video
streaming [40]. In this paper, we evaluate further how foveated
video encoding interplays with foveated rendering.

2.4 Foveated Rendering
Development of consumer grade eye-tracking solutions has stim-
ulated research into foveated rendering, which encompasses those
foveation methods that are applied within the graphics rendering
pipeline. Foveated rendering uses a spatial quality profile that at-
tempts to match the visual acuity of the eye [11, 22, 30, 33, 34, 43].
This entails dividing the scene into multiple regions and rendering
each region according to its angular eccentricity from the point of
gaze: the central region with highest quality, the most peripheral
regions with lowest quality, and the regions in between with a
transitional quality.

The different quality levels with correspondingly reduced com-
puting can be achieved, for instance, with variable rate shading
(VRS) [5, 34]. As the name implies, VRS enables dynamically set-
ting different shading rates for different regions within a frame,
allowing per frame compute resource provisioning. It can be used
to improve render quality where the viewer is focusing, likely to
focus or where details are more visible due to scene geometry and
lighting and lower the render quality in regions of the frame where
the viewer is not focusing or where details are less visible, e.g in
dark corners. This approach improves performance while either not
impacting perceived quality or even improving perceived quality.

2.5 Other Related Work
The third method that we consider, namely Foveated Warping, is
based on variable resolution sampling, which is the underlying
principle for many foveated rendering and foveated video coding
methods discussed in the above sections. For a discussion, we refer
the reader to [24]. A method similar to our approach, except that it
targets video conferencing systems, is presented in [2]. In contrast
to our approach, the resolution scaling is not based on the cutoff
frequency at a pixel location. Furthermore, the method uses lookup
tables to implement the variable resolution scaling and does not
reduce the pixel dimensions of the image. Projections similar to
foveated warping have been used in the context of remote render-
ing, although not for the purpose of foveation and, therefore, also
not based on properties of the HVS, such as the custom wide angle
projection presented in [36]. Fish eye lenses have also been pre-
sented as an approach to implement variable resolution transforms

Figure 2: Frame rendered with three shading rates: one shad-
ing pass per pixel (inside green ellipse), per 2x2 pixels (be-
tween green and yellow ellipses) and per 4x4 pixels (rest).

to better simulate the HVS sampling function for foveated imaging
applications for example in [7]. Fisheye lenses produce an image
with a high resolution in the center and low resolution away from
the center. Fisheye lenses are difficult to model numerically, espe-
cially in real time rendering applications. Our foveated warping
approach could be conceived as a modelling approximation of a
custom fisheye lens with an orthographic mapping function which
produces an undistorted image in a pre-defined central area and
compresses the image in the periphery. This paper develops on
our first look into delivering remote rendered foveated rendered
graphics efficiently [18] where we investigated interplay of naive
(non-anti aliased) foveated rendering and foveated video encoding.

3 FOVEATION METHODS FOR REMOTE
RENDERING

The main advantage of foveation in remote rendering systems is the
ability to save network bandwidth. It can also reduce the computing
workload in the rendering phase, hence enabling potentially higher
graphics quality settings for the application or more clients per
GPU. In this section, we introduce three differentmethods to include
foveation into a remote rendering system that we call and abbreviate
as follows: Foveated Rendering (FR), Foveated Video Encoding
(FVE), and Foveated Warping (FW).

3.1 Variable Rate Shading Based Foveated
Rendering

FR is applied in the graphics rendering phase, as the name suggests,
and the output is a sequence of foveated images delivered as such
to an unmodified video encoder. We use the variable rate shad-
ing technique to configure shading rates for predefined circular
regions specified for different distances from the gaze fixation point.
More specifically, we define three regions: a high quality region
corresponding to the foveal area, the transition region as a disc
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(a) Original Frame (b) Foveated Encoded Frame (c) Foveated Warped Frame (d) Foveated Unwarped Frame

Figure 3: Foveation Samples with zoomed-in regions.

surrounding the foveal area, and the rest of the frame as low quality
peripheral region. The high quality region radius is 1/8 of the frame
width while as the transition annular region has an inner radius
of 1/8 of the frame width and an outer radius of 1/6 of the frame
width. Figure 2 shows an overview of a Foveally Rendered scene
with three shading rates with decreasing sample rates moving out
from the center of the image (gaze location).

Figure 4: Samples from frames rendered with different shad-
ing rates and QP values. Shading rates: one pass per pixel,
per 2x2 pixels, per 4x4 pixels (left to right). QPs: 0, 28, 38
(top to bottom).

Figure 4 further illustrates how variable rate shading affects
visual quality compared to and combined with quantization per-
formed by a video encoder.

3.2 Foveated Encoding Using Quantization
Offsets

We implement FVE by varying the quantization parameter per mac-
roblock within each frame according to a predefined function. We
configure the underlying Nvidia hardware h.264 encoder to accept
a quantization offset 𝑄𝑂 for each macroblock of a video frame on
top of the quantization coefficient calculated by the rate control
algorithm. The quantization offsets are based on the distance of
a macroblock from the viewer gaze location. This method allows
us to control the quality profile of encoding with fine grained con-
trol. Consider a macroblock with normalized coordinates 𝑥 ,𝑦 and
let 𝑥𝑔 and 𝑦𝑔 be the normalized coordinates of the gaze fixation.
The normalized pixel distance between the macroblock and gaze
is then 𝑟 =

√
(𝑥 − 𝑥𝑔)2 + (𝑦 − 𝑦𝑔)2. We calculate the 𝑄𝑂 for the

macroblock at 𝑥,𝑦 as :

𝑄𝑂𝑥,𝑦 = 0, 𝑟 <= 0.125

𝑄𝑂𝑥,𝑦 = 𝑄𝑂𝑚𝑎𝑥

(
𝑎 + 𝑏 ∗ 𝑟2

)
, 𝑟 > 0.125

For an input image of size 1088𝑝 × 1088𝑝 , we use 𝑎 = 0.112 and
𝑏 = 2.2063. Figure 5 illustrates𝑄𝑂s in terms of𝑄𝑂𝑚𝑎𝑥 with respect
to normalized distance from gaze fixation. The method is similar to
that presented in [17], however there the 𝑄𝑂 calculation is based
on a Gaussian surface centered around the gaze. We use the above
parameterization to match the resolution variation implemented in
foveated rendering 3.1 and in foveated warping (see Section 3.3)

Figures 3a and 3b show a uniform quality frame and an FVE
frame with gaze at the center of the frame.

3.3 Foveated Warping
The idea of Foveated Warping (FW) is to reduce the number of
pixels within each frame in a foveated manner, which yields a lower
bitrate when encoded to a video. In a sense, we spatially compress
the image in proportion of the distance from the gaze fixation point.
The name comes from the fact that the operation corresponds to a
2d image warp and we perform it as a post processing step after
rendering. Figures 3c and 3d show a sample foveated warped frame
with gaze at the center produced at the server side and the same
frame unwarped at the client side, respectively.
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Figure 5: Visualization of quantization offsets 𝑄𝑂s with re-
spect to pixel distance from the frame center (gaze) in nor-
malized coordinates

We define FW as amapping function 𝐹𝑊 (𝐼 ) which takes an input
image 𝐼 to produce a foveatedwarped image𝑂 such that each pixel 𝑃
in𝑂 is mapped from 𝑛 number of pixels in 𝐼 , 𝑛 being approximately
inversely proportional to the normalized cutoff frequency 𝑓𝑐𝑛 at
pixel 𝑃 , calculated in a gaze centered coordinate system. Cutoff
frequency 𝑓𝑐 is the maximum visible spatial frequency at a given
pixel and depends on the eccentricity of the pixel from the gaze
point and the viewing distance. Cutoff frequency at a pixel can be
calculated using the so-called Contrast Sensitivity Function 𝐶𝑆𝐹

and its inverse Contrast Threshold Function 𝐶𝑇𝐹 . 𝐶𝑆𝐹 quantifies
the sensitivity of the human eye to contrast in a stimulus and
is obtained empirically by pyschophysical experiments [10]. We
calculate cutoff-frequency at a pixel using the 𝐶𝑆𝐹 model provided
in [10] and used commonly in video encoding work [46, 47, 49]
given by:

1
𝐶𝑆 (𝑓 , 𝑒) = 𝐶𝑇 (𝑓 , 𝑒) = 𝐶𝑇0 exp

(
𝛼 𝑓

𝑒 + 𝑒2
𝑒2

)
where 𝑓 is spatial frequency in cycles/degree, 𝑒 is retinal eccen-
tricity in degrees, 𝐶𝑇0 is minimal contrast threshold, 𝛼 is spatial
frequency decay constant, 𝑒2 is half-resolution eccentricity con-
stant, 𝐶𝑆 (𝑓 , 𝑒)and 𝐶𝑇 (𝑓 , 𝑒) are respectively the 𝐶𝑆𝐹 and 𝐶𝑇𝐹 for a
given 𝑓 and 𝑒 . In [10] 𝛼 = 0.106, 𝑒2 = 2.3 and 𝐶𝑇0 = 0.015625 are
reported as the best fitting parameters. The cutoff frequency 𝑓𝑐 is
then calculated as:

𝑓𝑐 = min

(
𝑒2 ln( 1

𝐶𝑇0
)

𝛼 (𝑒 + 𝑒2)
,
𝜋𝑁𝑣

360

)
(1)

The second term in equation 1 is the display Nyquist frequency in
terms of the width of the image 𝑁 and viewing distance 𝑣 . When 𝑁

is measured in pixels and 𝑣 in picture widths, it corresponds to the
maximum spatial frequency that can be displayed by an 𝑁 pixel
wide display without aliasing at a viewing distance of 𝑣 display
widths [49]. Note that the cutoff frequency 𝑓𝑐 depends on the retinal
eccentricity which depends upon the euclidean distance of a pixel

from the gaze fixation and can be calculated as:

𝑒 (𝑣, 𝑥,𝑦) = arctan

√
(𝑥 − 𝑥𝑔)2 + (𝑦 − 𝑦𝑔)2

𝑁𝑣

where 𝑥𝑔 and 𝑦𝑔 are coordinates of the gaze fixation point. To
illustrate FW consider an image 𝐼 and gaze fixation point at 𝑥𝑔 and
𝑦𝑔 . A foveated warped output image𝑂 is obtained by transforming
the input image 𝐼 to a polar coordinate system with the gaze point
𝑥𝑔 and 𝑦𝑔 as the pole, scaling by normalized cutoff frequency 𝑓𝑐
and then transforming back to Cartesian coordinates. A pixel with
coordinates in the output image 𝑂𝑥𝑜 ,𝑦𝑜 is mapped from pixels in
the input image 𝐼𝑥𝑖 ,𝑦𝑖 as follows. The target pixel is represented in
polar coordinates as 𝑟 and 𝜙 given by:

𝑟 =

√
(𝑥𝑜 − 𝑥𝑔)2 + (𝑦𝑜 − 𝑦𝑔)2

𝜙 = arctan
(𝑦𝑜 − 𝑦𝑔)
(𝑥𝑜 − 𝑥𝑔)

(2)

Polar coordinates 𝑟 and 𝜙 can easily be converted back to Cartesian
coordinates as:

𝑥𝑜 = 𝑟 cos(𝜙)
𝑦𝑜 = 𝑟 sin(𝜙)

For FW, we scale the radius 𝑟 according to the normalized cutoff
frequency 𝑓𝑐𝑛 at the output pixel. A pixel in the output image𝑂𝑥𝑜 ,𝑦𝑜

is thus obtained as a pixel 𝐼𝑥𝑖 ,𝑦𝑖 from the input image, where:

𝑥𝑖 =
𝑟

𝑓𝑐𝑛𝑜
cos(𝜙)

𝑦𝑖 =
𝑟

𝑓𝑐𝑛𝑜
sin(𝜙)

(3)

where 𝑓𝑐𝑛𝑜 is the normalized cutoff frequency at a pixel with co-
ordinates 𝑥𝑜 and 𝑦𝑜 . While the mapping above corresponds to the
cutoff frequency and thus matches the spatial pixel resolution to
the acuity of HVS, it is hard to invert i.e obtain 𝐼𝑥𝑖 ,𝑦𝑖 from 𝑂𝑥𝑜 ,𝑦𝑜

because of the 𝑓𝑐𝑛𝑜 term in Equation 3, which makes it impracti-
cal to use in real-time rendering and streaming applications. We
model the scaling term 𝑟/𝑓𝑐𝑛𝑜 in equation 3 as a parabolic function
𝑝 (𝑟 ) = 𝑎 + 𝑏 × 𝑟2 so Equation 3 becomes

𝑥𝑖 = 𝑝 (𝑟 ) cos(𝜙)
𝑦𝑖 = 𝑝 (𝑟 ) sin(𝜙) (4)

For the setup described in Section 4.1, we parameterize 𝑝 (𝑟 ) so
that it roughly matches the quality profile of the FR (see Section 4
4.2. This translates to pixels within the foveal region (i,e 𝑟 <= 1/8
of frame width) in the input image being mapped one to one to the
foveal region in the warped image while the rest of the pixels in
the input image are scaled. For a frame size of 1088𝑝 × 1088𝑝 , and
a viewing distance 𝑣 of 3.5, we use 𝑎 = 0.112 and 𝑏 = 2.2063, for
𝑟 > 1/8 of the frame width. Figure 6 visualizes how the distance
of a pixel from the gaze fixation point decreases as a result of the
warp (red curve). We next present the experiment setup used in our
measurements in more detail.

4 EXPERIMENT SETUP
In this section we describe the the remote rendering system we use
to evaluate the different foveation methods, the experiment setup,
and metrics used in the evaluation.
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Figure 6: The distance of pixel from gaze fixation point
changes with foveated warping (red curve).

4.1 System
We use a Unity game engine -based remote rendering system in our
experiments which utilizes gaze data captured from the client. We
have developed a server application that is configurable to enable FR
and/or FVE with user set parameters at launch time. Although, we
used a particular Unity scene with photo-realistic assets to provide
a user explorable 3D virtual house, any Unity scene can be deployed
in the application without affecting the operation of FR or FVE. An
overview of the developed system is presented in Figure 7.

Figure 7: System overview.

The FR module, which performs the foveation is implemented by
using the variable rate shading feature of Nvidia VRworks suite of
APIs [31] using the Vive Foveated Rendering Plugin for Unity [13].
The Vive Foveated Rendering Plugin allows use of Variable rate
shading within Unity as well as provides integration with eye-
tracking features of the HTC Vive Pro Eye1 HMDs. Table 1 lists
the shading rate options available. Samples with different shading
rates are shown in Figures 2 and 4.

To capture and encode the rendered frames, we use a modified
version of the 360 Capture SDK [8]. FVE is implemented by con-
figuring the underlying h.264 hardware encoder by Nvidia with
so called QP delta map that specifies the quantization offset 𝑄𝑂
for each macroblock of a video frame. In the experiments, we use
1https://www.vive.com/eu/product/vive-pro-eye/overview/

Table 1: Shading Rate Options

Shading Option Explanation
CULL no shading

X16 PER PIXEL 16x supersampling
X8 PER PIXEL 8x supersampling
X4 PER PIXEL 4x supersampling
X2 PER PIXEL 2x supersampling
X1 PER PIXEL 1 shading pass / 1 pixel

X1 PER 2X1 PIXELS 1 shading pass / 2 pixels
X1 PER 1X2 PIXELS 1 shading pass / 2 pixels
X1 PER 2X2 PIXELS 1 shading pass / 4 pixels
X1 PER 4X2 PIXELS 1 shading pass / 8 pixels
X1 PER 2X4 PIXELS 1 shading pass / 8 pixels
X1 PER 4X4 PIXELS 1 shading pass / 16 pixels

constant QP rate control and these offsets are applied on top of this
QP value.

FW is implemented as a post-processing step for the rendered
frame at the server according to the discussion in 3.3. It consists
of a blit operation with a single pass fragment shader. The warped
frame is then passed on to the video encoder. At the client side,
after a warped frame is decoded, we do an inverse transformation
with the shader that samples the incoming frame for displaying.
Since FW is modelled as a pixel wise invertible function, it can
take advantage of parallel processing capacity of GPU of the device.
Hence, at server side, the warp operation adds one blit with a
fragment shader, which is extremely fast, and at client side it does
not result in any additional operations because the input frames
need to be sampled anyway in order to be drawn on display. We
used both a Windows-build and an Android-build client for our
experiments.

For the client-side delay measurements, we utilized an Android-
based client and timestamped it to report the decoder delays using
two mobile devices: a Pixel 5 mobile phone and an Oculus Quest 2
standalone VR headset.

4.2 Experiments
We simulated client controls programmatically and measured the
resulting frame sizes. Unless otherwise stated, the scene camera
followed a pre-defined one-minute-long trajectory, simulating a
player exploring the scene, in each experiment. As for the point
of gaze, it was fixed to the center of the rendered frame in the
above described experiments. We used a high-quality architectural
visualization scene fromOneiros [32] called The Scandinavian House
demo (AVP Vol.6) available in the Unity Asset Store [44]. The scene
is a fully navigable interior of a scandinavian house that includes
more than 200 objects and 4K textures. The target framerate was
set to 30 fps in each experiment.

For FR we fix the high quality region to a radius of 1/8th of
frame width, the transition region a radius of 1/6th of frame width
and the rest as low quality peripheral region. The shading rates for
the high, transition and the low quality regions was set to x1 per
pixel, x1 per 2x2 pixels and x1 per 4x4 pixels, respectively. Further,
we use Multi-Sample Anti Aliasing to ameliorate possible aliasing
caused by FR.
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For FVE we varied the maximum possible𝑄𝑂 (𝑄𝑂𝑚𝑎𝑥 ) between
0 to 30 and calculated 𝑄𝑂 offsets for each macroblock as discussed
in Section 3.2: a central circular region region of width 0.25× of
frame width is applied with no 𝑄𝑂 offsets while the macroblocks
outside the region are applied with increasing 𝑄𝑂 offsets, the rate
of increase being parabolic with respect to the distance of the mac-
roblock from the frame center, mimicking the variable resolution
applied in Foveated Warping. In all experiments, the encoding
scheme used was Nvidia’s low latency preset2 and the rate control
mode was constant 𝑄𝑃 .

For FW, we parametrize the warping function as discussed in
Section 3.3: pixels within a circular region of width 0.25× of frame
width are mapped one to one from the rendered frame to the warped
framewhile the rest of the pixels aremapped according proportional
to the cutoff frequency at the pixel location in the output.

It should be noted that while there is no direct way of making
the parameterization of FVE and FW equal, we use the same func-
tion to calculate the 𝑄𝑂 offsets in FVE and strength of warping
in FW in order to make the experiments comparable. Further, it
should be noted that when we discuss FR or FW in the context of
video characteristics and metrics, normal spatially uniform video
encoding is implied.

4.3 Metrics
Image and video quality is very subjective and is hence best mea-
sured subjectively. Subjective testing, however, is time consum-
ing, expensive and not always feasible. Objective image and video
quality metrics attempt to measure quality algorithmically, by e.g
finding the difference between an encoded image or video and its
original version or by using statistical or other information with-
out using the original version. However, commonly used objective
quality metrics like PSNR and MSE do not account for the HVS
in general and foveation in particular. While metrics like MSSIM,
VMAF [27] try to incorporate properties of the HVS in quality eval-
uation, they do not account for foveation and hence are not directly
usable to evaluate foveated images or video. Various metrics for
evaluation of foveated have been developed [25, 38, 46] with vary-
ing successes reported by the authors. To evaluate the impact of the
studied foveation methods, we use Foveated Structural Similarity
Index (FSSIM) [9] based on Multi Scale Structural Similarity Index
(MSSIM) [48]. FSSIM attempts to take foveation into account, in
addition to being perceptually motivated. We compute FSSIM using
only the luminance component (FSSIM-Y) of the encoded images
because it is defined over luminance originally and because HVS is
more sensitive luminance than color [45]. To complement the re-
sults with FSSIM, we also used another objective quality evaluation
metric for foveated images based on PSNR, namely FPSNR [9]

Further, to validate the results of our objective evaluation we
perform a limited user study to evaluate the quality with FVE
and FW. The pilot study is an "Absolute Category Rating: Hidden
Reference" study, which provides a Differential Mean Opinion Score
(DMOS) of the sequences shown to the subject. In the next section,
we utilize the metrics presented here and the experiment setup
introduced earlier to measure the impact of the different foveation
methods on bitrate, quality and latency.

2http://developer.download.nvidia.com/compute/nvenc/v4.0/NVENC_AppNote.pdf

5 RESULTS
In this section, we study the impact of the different foveation meth-
ods on video bitrate, objective quality and finally on the latency of
the remote rendering system. We also validate the objective quality
measurements with a small scale study on subjective quality.

5.1 Impact of Foveated Rendering on Video
Bitrate

To investigate how FR impacts video bitrate we ran experiments
where we produced foveated frames using FR and the same exper-
iments without foveation, i.e. using normal rendering (NR) with
one shading pass per pixel throughout the frame, and encoded the
frames to video using different 𝑄𝑃s (10,20,25,30).

Figure 8: Comparison of frame sizeswith foveated rendering
(FR) and normal rendering (NR) with different QP values.

The results are plotted in Figure 8. In each case, the average
frame size with FR is either larger or equal to the average frame
size without foveation. The result is counter-intuitive given that the
amount of visual information carried by FR frames is smaller than
that carried by NR frames. The reason is that, even though there
is less visual information in a frame available with FR, the content
of the high quality region changes between successive frames, for
example due to camera motion. This increases the dissimilarity
between two successive frames rendered with FR when compared
to two successive frames rendered with NR. Increase in dissimilarity
means that inter-frame compression is less effective and the size of
the predicted frames increases, which leads to larger than expected
frame sizes with FR. We verify this by redoing some experiments
with compressed using only Intra-coding (I-frames). The results
reveal the resulting NR frames to be clearly larger than FR frames on
average, which confirms our suspicion that the predicted frames are
to blame for the larger than expected frames with FR. These results
strongly suggest that FR alone is not a good choice to implement
foveation when bandwidth is scarce.
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Figure 9: FSSIM-Y and Average Frame Sizes for different En-
coding schemes. Note that the condition FVE with 𝑄𝑂𝑚𝑎𝑥 =

0 is equivalent to normal encoding.

5.2 Bitrate vs. Quality
To explore the effect of FVE and FW on video bitrate as well as
the objective quality, we conducted multiple experiments to record
frame-sizes with different encoding parameters shown in Table 2.
For FVE we set the 𝑄𝑃 values shown in the table permuted with
the listed 𝑄𝑂𝑚𝑎𝑥 values, while for FW we set the listed 𝑄𝑃 values.
A rendered frame and its corresponding encoded version were
periodically saved to disk for objective quality measurements. Note
that the case with 𝑄𝑂𝑚𝑎𝑥 = 0 corresponds to normal non-foveated
video encoding.

Table 2: FVE and FW evaluation

Foveation method FVE,FW
𝑄𝑃 10,20,25,30

𝑄𝑂𝑚𝑎𝑥 10,15,20,25,30

The results are plotted in Figure 9. Unsurprisingly, the less quan-
tization is applied, the better the quality with both methods. Fur-
thermore, all the configurations of these two foveation methods
reduce the resulting bitrate compared to no foveation. However,
the main takeaway from these experiments is that, except for the
setup having most aggressive quantization, the quality per bit is
slightly higher with FVE than with FW across the board. In other
words, FVE appears to deliver higher quality with the same bitrate
compared to FW. We also calculated FPSNR for these experiments
but the results are somewhat mixed. Nevertheless, they also suggest
that the quality-per-bit ratio is higher with FVE than with FW.

5.3 Subjective Quality
To supplement the objective evaluation results, we also conducted
a limited user study to gain further understanding of the impact of
the two methods, FW and FVE, on perceived video quality. Five par-
ticipants with 20/20 vision or corrected to 20/20 vision participated
in the study.

Figure 10: DMOS and frame sizes for different Encoding
schemes. Note that the condition FVE with 𝑄𝑂𝑚𝑎𝑥 = 0 is
equivalent to normal encoding.

5.3.1 Setup. We installed the server and client described in Section
4.1 on a powerful workstation equipped with Intel Xeon W-2133
(3.2Ghz) CPU, Nvidia GeForce RTX 2060 GPU, 32 GB of Memory
and a solid state drive. This allowed us to eliminate impact of any
network related distortions. The server rendered the same scene as
in the other experiments with foveated rendering enabled. Multi-
sample Anti-aliasing (8x Multisampling) was used on the server to
ameliorate possible aliasing artefacts introduced by FR. The client
was configured to receive video frames without buffering from the
server. Video was encoded at 30fps at the server and displayed on
a Dell U2715H display.

5.3.2 Procedure. We followed the ITU-T recommendations [35]
in the user study design. Specifically, we used Absolute Category
Rating-Hidden Reference (ACR-HR) as the rating method because
our goal was to compare the impact of FW and FVE on subjective
video quality. The test sequence was a 30 second exploration of
the scene along a fixed trajectory. An encoding profile of 𝑄𝑃 = 10,
𝑄𝑂𝑚𝑎𝑥 = 0 was used as the reference condition. At 𝑄𝑃 = 10
encoding is generally considered to be visually lossless. The various
test conditions, shown in table 3 were presented in random order to
each subject to minimize carryover effects. The subjects were placed
at a distance of 3.5 times the frame width and the test sequence
ran for 30 seconds. They were instructed to focus their gaze on the
center of the frame while viewing the test sequences. To help them
do this, a grey frame with a red dot in the center was displayed for
5 seconds before displaying a test sequence. At the end of each test,
the subject was asked to the rate the quality of the video on a scale
of 1 to 5, with a slider on the screen.

5.3.3 Results. The results of the user study are shown in Table
3 and plotted with frame sizes of the respective test cases Figure
10. The DMOS broadly agrees with FSSIMY for the respective con-
ditions. The DMOS values at a particular 𝑄𝑃 for FVE are higher
than the corresponding case of FW when 𝑄𝑂𝑚𝑎𝑥 <= 15. Surpris-
ingly, the FVE case having 𝑄𝑃 = 20 yields higher DMOS with
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Table 3: User Study

Condition DMOSFoveation 𝑄𝑃 𝑄𝑂𝑚𝑎𝑥

FW 10 0 3.8
FW 20 0 4
FW 25 0 3.8
FW 30 0 3.2

FVE (Reference) 10 0 5
FVE 10 15 4.6
FVE 10 30 4.2
FVE 20 0 4
FVE 20 15 4.8
FVE 20 30 3
FVE 25 0 4.6
FVE 25 15 4.2
FVE 25 30 2.4
FVE 30 0 3.6
FVE 30 15 2.8

Table 4: Parameters varied in the encoding / decoding mea-
surements.

Foveation method Foveated Encoding / Foveated Warping
Client device Google Pixel 5 / Oculus Quest 2
Render resolution 1088x1088 / 2176x2176 / 3264x3264
Server GPU Nvidia RTX 2060 / RTX 2080 Ti / Titan V

𝑄𝑂𝑚𝑎𝑥 = 15 than with 𝑄𝑂𝑚𝑎𝑥 = 0. The same applies for FW
with 𝑄𝑃 = 10 vs. 𝑄𝑃 = 20. These discrepancies are likely to be
caused by temporal distortions which are not captured by image
quality metrics, such as FSSIMY. Looking at Figure 10, the FVE
condition 𝑄𝑃 = 20, 𝑄𝑂𝑚𝑎𝑥 = 15 is the best performing condition
when considering both quality and bitrate.

5.4 Latency
FW allows the system to pack the rendered frames into a smaller
resolution video size compared to FVE without compromising the
quality perceived by the client too much as observed in the previous
sections. This has the potential to reduce the end-to-end latency
of a remote rendering system by offering lower delay on both the
server during video encoding and the client during video decoding.
We utilized the same ArchVizPro Vol 6 scene in our latency mea-
surements as we did for the quality measurements and averaged
the results over three runs for each test case both in video encoding
and decoding.

We tested the encoding speeds of three GPUs (Nvidia RTX 2060,
Nvidia RTX 2080 Ti and Nvidia Titan V) with three render reso-
lution scenarios (1088x1088, 2176x2176 and 3264x3264) both with
foveatedwarping and foveated encoding. For foveated encoding, the
sent video resolution matches the render resolution. However, for
foveated warping the resulting video sizes are 704x704, 1408x1408
and 2112x2112. The encoding delay results are presented in Fig-
ure 11 and the parameters varied for the encoding and decoding
experiments are summarized in Table 4.

All the three GPUs show a similar growth in delay when the
render resolution is increased. The results show that the encoding
delay can quickly double with each resolution tier with foveated
encoding. The foveated warping method has the advantage of re-
sulting in lower video resolutions which translates to lower video
encoding times. Overall, the foveated warping method introduces
31-67% lower encoding times than foveated encodingwithmatching
render resolutions.
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Figure 11: Encoder delay using Foveated Encoding or
Foveated Warping with different server render resolutions
and GPUs.

Higher resolution video frames also increase the decode time on
the client. We verified this presumption by measuring the decode
times on two different resource-constrained client devices using
both the FW method and FVE. The results using matching video
resolutions for both methods on a Pixel 5 mobile phone and an
Oculus Quest 2 standalone VR headset are presented in Figure 12.
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Figure 12: Decoder delay when increasing pixel count using
Foveated Encoding or Foveated Warping.
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The results show that bothmethods follow a fairly linear increase
in decoding delay when the resolution (pixel count) increases. The
more powerful SoC (Qualcomm Snapdragon XR2) of the Oculus
Quest 2 shows a less steep curve when the resolution increases
compared to the Qualcomm Snapdragon 765G in the Pixel 5. The
difference in decoding delay comparing the two methods is within
a few milliseconds. However, FW can pack the video frames in
lower overall resolution. This results to lower decoding speeds
on the client-side for a given render resolution. Figure 13 shows
the decoding delay benefits with three different render resolution
scenarios.
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Figure 13: Decoder delay using Foveated Encoding or
Foveated Warping with different server render resolutions.

The results show that the end device can have a big impact on the
client-side latency in remote rendering systems. The standalone VR
headset Oculus Quest 2 yields latencies that are 25-44% shorter than
with the Google Pixel 5. In addition, foveated warping leads to up to
35% decrease in latency thanks to the lowered frame resolution. In
the next section, we discuss the results in the context of choosing the
right method for foveated remote rendering in distributed systems.

6 DISCUSSION
It is clear that FR alone is not a solution to the bandwidth consump-
tion problem in remote rendering. While the two other methods,
FW and FVE, do mitigate this problem, it is not straightforward
to decide which of them is better. The results shown in previous
sections suggest that FVE provides higher quality per bit than FW.
Therefore, it would seem that FVE should be favoured. However,
FW provides significantly lower end-to-end latency by reducing
the video encoding and decoding delay, which is also a critical
performance metric in remote rendering. Furthermore, FW enables
delivering foveated frames with higher target resolution than FVE
because of the limitations of video codecs. The benefits for both
foveated encoding and warping are roughly visualized in Figure 14.

Balancing between different constraints in remote rendering
systems is difficult as the service provider needs to be aware of the
entire pipeline from the server to the client. The encoding scheme

Low computational load

Low latency

High
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Figure 14: Comparison of the benefits of Foveated Encoding
and Foveated Warping.

is one of the many decisions needed to be made in such systems.
The targeted end-user device might have computational limitations
regarding for example the resolutions that its decoder can handle.
On the other hand, the end-user device could be for example a stan-
dalone VR headset with a large native eye resolution requiring high
target resolution also from the remote rendering system. These two
scenarios favor the FW method for its capability to target high ren-
der resolutions with low latency as seen in our delay measurements.
However, a remote rendering system provider might also have to
optimize the quality / bit ratio to minimize the costs both for the
provider and the end-user. An optimization decision favoring FVE
over FW would be also to minimize the computational load on the
server by not targeting as high resolutions as would be possible
with FW.

In this paper, we analyzed the objective quality of different meth-
ods of foveation in remote rendering. We also conducted a small-
scale user study to confirm the objective measurements as the
metrics can often be different in user studies. Although the ini-
tial user study seems to confirm the objective measurements, deep
understanding of how the different factors affect user perceived
quality with foveated video requires additional experiments. Some
factors that we did not yet consider in this work include the impact
of resolution vs. encoding quality (quantization) on perceived qual-
ity, which needs to be fully understood before anything conclusive
can be stated on which scheme is better in a particular situation. We
also need to examine how effective different anti-aliasing methods
are with both methods, particularly temporal vs. spatial AA. An
extensive user study is planned as part of our follow-up work.

Another dimension that we did not touch in this paper is the
type of user interface, especially VR vs. "normal" display. Foveation
is potentially more beneficial with VR because of the relatively
short viewing distance, which allows more aggressive foveation.
However, adapting the presented methods for VR needs to take
the VR display specifics into account, such as the impact of lens
distortion and its compensation, virtual image distance and pixel
density. This is also part of our future work.

The impact of delay in foveated rendering/streaming is a topic
that will need to be studied separately, as e.g. done in [1]. We did
not evaluate rendering delay at all because that is affected by so
many different factors. There decoding and encoding delays have
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a baseline value purely dependant on the underlying hardware as
we use hardware encoder and decoder on server and client devices,
respectively. The client is a mobile device (Pixel 5 and Oculus Quest)
and we apply nontrivial video resolutions in these tests, which
explains why the decoder may struggle with high resolutions. It
is possible to somewhat reduce the encoding delay by splitting
frames and running several parallel encoders [28]. However, with
consumer grade Nvidia cards, the number of parallel streams is
limited, and it may not help the decoding operation that is run by
the much more constrained client device.

The current implementation of the Foveated Warping method
is a post processing step. Although this step only incurs a small
additional computation cost on the server after rendering, it is most
likely possible to implement it also within the rendering pipeline
in the similar fashion than the authors propose to do their custom
projection in [36]. This would further optimize the rendering part of
the pipeline at the server, which would make the Foveated Warping
method even more attractive for foveated streaming of real-time
graphics.

7 CONCLUSION
This paper reports results from a study of different methods to
stream foveated real-time remote rendered graphics. The results
suggest that foveated rendering alone does not decrease bandwidth
consumption when encoded to a video, it even increases the video
bitrate in certain cases. However, foveated video encoding (FVE)
as well as a novel method we call foveated warping (FW) do. Their
comparison suggests that FVE delivers higher quality per bit con-
sumed, whereas FW may be a more attractive solution for resource
constrained clients because it foveates frames by reducing the num-
ber of pixels, instead of bits encoded per pixel as FVE does, which
yields lower video coding resolution and latency for a particular
target render resolution and enables higher target resolution when
the supported video encoding/decoding resolution on device hard-
ware is limited. For future work, we intend to study alternative
methods of warping and conduct an extensive user study including
VR setup with real time gaze tracking based foveation.
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