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Abstract. As blockchain becomes an essential part of many software
systems in the edge and cloud, the developer starts to treat blockchain
features like commodity software components that can be integrated into
edge and cloud software systems. For the developer it is quite challeng-
ing to determine, customize, and evaluate suitable blockchain features
for software systems in the edge and cloud environments. In this pa-
per, we conceptualize important blockchain interactions in mobile edge
computing software systems (MECSS) and present generic techniques
for evaluating these interactions. We determine different interaction pat-
terns for different deployments of compute resources and networks. We
abstract and represent application-level mobile edge computing (MEC)
features and blockchain features to create MECSS deployment models to
be coupled with testbed deployments for benchmarking application-level
interactions within application contexts. Based on that, we develop a
generic framework for building and executing benchmarks of application-
level blockchain interactions within MECSS. We will demonstrate our
framework for vehicle-to-everything communication scenarios with two
main blockchain technologies, Hyperledger Fabric and Ethereum, using
various types of compute resources in edge and cloud infrastructures.

Keywords: benchmark, testing, blockchain, edge computing, microservices

1 Introduction

To date, blockchain technologies have been widely exploited in different types of
software systems [8, 38]. Applications and systems utilize blockchain as commod-
ity features to support verifiable and open transactions. One of the challenges for
the application developer is the question of which blockchain features should be
integrated in which part of the developer’s complex software systems. Especially,
in our focus, mobile edge computing software systems (MECSS) [21, 31] have in-
creasingly leveraged blockchain potentials due to application requirements [12,
18, 15, 39]. For the developer, combining blockchain features with MEC features
is extremely challenging because the complexity and diversity of software ser-
vices, system configurations and interactions.



The need for development tools for blockchain-based software is high [27] and
we lack tools to support the design and evaluation of combined features from
MEC and blockchain for different realistic deployments. Especially, our work is
concerned with the application-level interactions in MEC that need blockchain
features. Determining such interactions is time-consuming. Furthermore, soft-
ware development knowledge for integrating edge computing with blockchain is
hard to acquire, due to several challenges [6, 35, 14]. Therefore, generic methods
and tools to enable testing of such interactions play an important role. Such tools
and methods are different from current benchmarking and testing for particular
blockchain systems, individual blockchain features, or for individual MEC re-
sources, as we need to develop generic ways to evaluate integration interaction
patterns in which blockchain-based data exchanges are carried within suitable
MEC design models, reflecting application developer needs. Furthermore, key
quality metrics and appropriate deployments, including underlying computing
resources and application topologies, must be considered at the application level.
As we also discuss in the related work (see Section 5), many works provide high-
level recommendations of using blockchain features and blockchain systems, but
they do not treat combined blockchain features with other features within con-
texts of interactions in MECSS.

This paper identifies such interactions and supports methods to evaluate the
interactions in the development of MECSS with blockchain features. A MECSS
includes various components deployed in MEC infrastructures that interact with
each other. Without loss of generality and based on the development trend, we
concentrate on MECSS components developed as microservices [24, 28]: we focus
on interactions in such microservices, not low-level networks or infrastructures
in MEC. We (i) treat blockchain features like software components that can be
taken from existing blockchain libraries/frameworks, (ii) consider common inte-
gration of such features based on different needs, and then (iii) test such features
for MECSS, especially for application-level interactions within MECSS. To help
the developer to perform a systematic way of benchmarking interactions, we
choose a known MECSS application domain – the vehicle-to-everything (V2X)
– to explain our work. We will use scenarios in V2X to present our methods
and software prototype. We first present an abstract view on MECSS and their
blockchain features, key interactions in the interest of testing, and their software
coupling from an application viewpoint (see Section 2). We then contribute a
benchmark framework with features of automatic deployment and execution of
benchmarks (see Section 3).

Our framework is designed for evaluating blockchain features based on a com-
plex dependency of blockchain features, application-related operations, system
topology and resources running blockchain features. Utilizing our framework, we
carry out several experiments to present how our framework could provide in-
sights into realistic deployments of MECSS for the developer (see Section 4). We
illustrate our work with well-known blockchain systems, like Hyperledger Fabric
and Ethereum, using edge and cloud infrastructures.
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2 Aspects in Benchmarking Blockchain Features for
MECSS

2.1 Mobile Edge Computing Software Systems

Several papers have conceptualized mobile edge computing and fog computing
[7] with multiple layers. Practically, we focus on applications atop a common
3-level of MEC infrastructures, shown in Figure 1. In this 3-level abstract infras-
tructure model, a mobile component mc is movable and interacts with other
mobile components, edge units, edge data centers and clouds. The level 1 edge
edgel1 indicates typical edge units/devices/systems which are very close to the
mobile component, serving for a limited number of mobile components. The level
2 edge edgel2 is deployed in edge data centers with reasonable capabilities, e.g.
connected telco base stations. Finally, cloud-based data centers offer cloud ser-
vices for mc, edgel1 and edgel2 components. Such infrastructures are common in
many real deployments and scenarios in smart building, vehicle communication
and smart factory. Mapping to the 5 layers of edge/fog/cloud in [21], our mc is
at layer 5, edgel1 is at layer 2, edgel2 at layer 3 and cloud is at layers 2 and 1.
In this paper, we will use the V2X communication scenarios [12, 17, 13, 23, 2, 16,
25] to demonstrate our work.

Fig. 1. Simplified view of three-level MEC with two layers of edges

Given the above-mentioned view on MEC infrastructures, we consider dis-
tributed, application-required components as microservices residing in different
levels in the above-mentioned view. With the assumption that underlying net-
works and operating systems of MEC have different mechanisms to enable us
to compose and deploy these microservices to build MECSS (e.g., via container-
ization), we will address the service developer concerns in application-level in-
teractions utilizing blockchain features. MECSS have different application-level
software features, covering typical MEC software features at the application
level, such as sending and receiving messages from message brokers, blockchain
features, like read/writing blockchain transactions and consensus/mining exe-
cution, and application-specific features, such as reporting events or performing
data analytics. Such features will be implemented within microservices deployed
in resources in the 3-level MEC infrastructural model. There are many types of
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interactions, shown in Table 1, in existing MEC use cases that one can find in
the literature and real-world applications (e.g., [12, 17, 13, 23, 2, 16, 25]).

For such application-level features working properly, many system services
have to be deployed or available to offer infrastructure- and platform-level fea-
tures, such as message brokers, blockchain nodes, message flow engines, etc.

Table 1. Example of key interactions that should be benchmarked

Interactions: Description Example of metrics V2X data exchange sce-
narios

mc–mc: a service in a mc inter-
acts directly with a service in an-
other mc

transaction acceptance
rate, transaction accep-
tance time

vehicles directly exchange
driving data [36].

mc–edgel1–mc: a service in a
mc interacts with a service in an-
other mc via a service in edgel1

transaction acceptance
rate, transaction accep-
tance time, cost

vehicles send road warnings
via a road side unit (RSU)
[25, 17]

mc–edgel2–mc: a service in a
mc interacts with another service
in another mc via a service in a
edgel2

transaction acceptance
rate and synchroniza-
tion state, transaction
acceptance time, cost

exchanges of data between
vehicles over a data broker
deployed in an edge node in
mobile base stations

mc–edgel1–edgel2–mc: a service
in a mc interacts with another ser-
vice in another mc via a service in
a edgel1 via a service in edgel2

transaction acceptance
rate and synchroniza-
tion state, transaction
acceptance time, cost

exchanges of data between
vehicles via a RSU, which
relays data to an edge data
center

mc–edgel2–cloud: a service in a
mc interacts with a service in a
cloud via a service in a edgel2

infrastructure costs,
transaction acceptance
rate and synchroniza-
tion state

vehicles invoke application
services running in the edge
and the cloud to sell traf-
fic/environmental data

mc–edgel1–edgel2–cloud: a service
in a mc utilizes various services in
cloud via services in edgel1and in
edgel2

infrastructure costs,
transaction acceptance
rate and synchroniza-
tion state

vehicles invoke application
services running in the edge
and the cloud, e.g. payment
for using fast lanes [2]

2.2 Application-required Features for Blockchain-based MECSS

To develop a blockchain-based MECSS, many common IoT, edge and cloud
infrastructure- and platform-level features are needed. Let MECF = {mecf}
represent such features. A feature mecf ∈ MECF is provided by a compo-
nent. Thus, we can have MECF = {mosquitto mqtt broker, v2xpaas, kafka}
as an example where features are provided by the Eclipse Mosquitto MQTT
broker3, Apache Kafka4 or a V2X Platform-as-a-Service [25]. These components
are deployed and run as microservices, leading to the set of service instances
MECS = {s(mecf )i}. With blockchain-based MECSS, such services will be in-
tegrated with blockchain features. From the application viewpoint, blockchain

3 https://mosquitto.org/
4 https://kafka.apache.org/
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can be used as composite or individual features based on primitive operations,
like creating, signing, validating, mining, and verifying [10]. We work at
the blockchain features level for different interactions of MECSS. Generally,
we consider BCF = {bcfi} as a set of application-specific blockchain features
that should be benchmarked. For example, in the experiments of this paper
we focus on BCF = {creator, consensus, all} where creator is a composite
feature including operations creating, signing and submitting a transaction,
consensus is atomic feature reflecting the mining process, and all means all
needed blockchain operators. To use blockchain we will need several blockchain
nodes, BCN = {bcn}, offering bcfi. For testing purposes, BCF and concrete
BCN will be mapped into concrete blockchain implementations. For example,
let BCN = {standardn,minern}, we can have standardn ∈ {Clienthyperledger,
P eerNodeshyperledger, ETHNodeeth} whereas minern ∈ {OrdererNodehyperledger,
MinerNodeeth}; these roles/nodes specified in Ethereum5 and Hyperledger Fab-
ric [5].

We define MECSS = {MECS , BCN}. For a benchmark, we have a MECSS
deployment including MECS and BCN executed in a testbed deployment of a
set of containers or VMs across edge and cloud infrastructures. Given blockchain
features and interactions, we need to consider main couplings between blockchain
features and interactions. Such couplings are based on the design of blockchain-
based software systems. For example, let CMEC={mc,edgel1,edgel2,cloud} be
the nodes in the previous discussed MEC model and let a set BCF = {creator,
consensus} be the blockchain features. In order to perform benchmark, we will
need to have a specification of couplings (c,f), whereas c ∈ CMEC and f ∈ BCF .

2.3 Benchmarked metrics

When developing blockchain features for MECSS, there are many metrics that
the developer wants to consider [40, 37, 11, 32, 1]; such metrics are important
and they have been well-documented in the literature. Table 2 shows examples
of important metrics, which should be assessed. Besides these common metrics,
the developer usually needs different types of metrics for different requirements.
Thus, the developer should be able to customize possible metrics to be test-
ed/measured. In our framework, we do not define such metrics but assume that
benchmark functions (see Section 3) will implement suitable metrics defined
in the literature. This way allows us to extend benchmark functions even for
evaluating application-specific metrics, instead of evaluating features of specific
blockchain frameworks without application interaction patterns.

2.4 MECSS under test and infrastructures

A benchmark for interactions in MECSS needs a suitable MEC infrastructure.
Resources for a MECSS and their dependencies are also considered based on
application requirements. Realistically, all components should be deployed in

5 https://docs.ethhub.io/using-ethereum/running-an-ethereum-node
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Table 2. Examples of importance metrics for interactions

Metrics Description

Transaction (Tx)
Acceptance Time

the ratio of accepted transactions to the total transactions sub-
mitted.

Synchronization
State

the number of nodes, which lost their synchronization.

Transaction (Tx)
Acceptance Rate

the number of the submitted transactions accepted by
blockchain

Infrastructure Re-
source Utilization

typical CPU, memory, bandwidth of infrastructures

Cost Cost for blockchain operations and for other related operations
and infrastructures

the real systems suitable for different scenarios. However, practically, currently
it is impossible to have the realistic infrastructure for MEC, especially for large-
scale and complex topologies of MEC resources. Therefore, we apply symbiotic
engineering principles for IoT Cloud systems by having real resources combined
with emulation components:

– mc: emulated with multiple configurations using container with resource
constraints or powerful machines.

– edgel1: emulated by VMs/containers with reasonable capabilities, as it is
resource-constrained in real deployments.

– edgel2 and cloud: based on real systems using micro data centers or cloud
resources.

The developer can use existing cloud and edge providers, e.g., Google Compute
Engine6, for running benchmarks.

2.5 Coupling software and infrastructure artefacts

Figure 2 presents a deployment topology model of artefacts and their config-
urations for benchmarks. The deployment model is used to define suitable de-
ployments for specific application needs w.r.t. MECSS and blockchain-based
interaction evaluation. Resources are defined by ContainerConfiguration and
NetworkConfiguration. BlockchainArtefact and ApplicationArtefact are
used to describe blockchain and application-specific features, respectively. The
deployment topology model is crucial for understanding required software arte-
facts and corresponding configurations that will be deployed into a suitable
testbed for evaluating interactions. For example, a Node will specify software
artefacts to be deployed in a specific mc, edgel1, edgel2 or cloud, including
blockchain software and other services, whereas ContainerConfiguration speci-
fies information about the container environment hosting such software artefacts.
Nodes are connected to create a topology of machines (a test infrastructure)
through suitable network configuration (specified by NetworkConfiguration).

6 https://cloud.google.com/compute/docs/instances/
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Fig. 2. Relationships between software and infrastructural artefacts

Based on this deployment model, we will define deployment configurations, ex-
plained in Section 3.3.

3 Framework for Benchmarks

3.1 Overview

Fig. 3. Main components of the benchmark framework

Figure 3 outlines the architecture of our framework for developing and ex-
ecuting benchmarks for MECSS. Inputs for benchmarks are specified via (i)
topology (see Section 2.5) and (ii) experiment specification. BenchmarksExecu-
tor performs the deployment and execution of emulator containers in suitable
infrastructures.

– deployment and configuration: BenchmarkExecutor uses Infrastructure-
Builder to invoke ResourceProviderConnector to acquire virtual machines
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(VMs). After acquiring VMs, ArtefactDeployer deploys application and blockchain
artefacts according to the topology specification. Depending on the topol-
ogy, a VM can host multiple container-based services running artefacts. In-
frastructureBuilder utilizes NetworkConfigurator to set the configuration of
network connections between nodes in the deployed infrastructure.

– benchmark execution: BenchmarkExecutor invokes Runner to start the
dockerized component InteractionEmulator in each node in the deployed
topology. InteractionEmulator is responsible for running the benchmark,
which carries out blockchain operations. When all InteractionEmulator fin-
ish their running experiments, the framework will download the logs and
results of the experiment from all nodes across the deployed topology. Fi-
nally, Runner will stop docker containers hosting InteractionEmulator and
stop blockchain nodes and virtual machines.

InteractionEmulator includes all necessary features for emulating application-
level blockchain interactions. This component basically emulates or implements
interactions of exchanging data over blockchain. Thus, it emulates both data
source and receiver in MECSS by connecting blockchain nodes and performing
blockchain operations. The developer can select, customize and utilize suitable
InteractionEmulator for application designs. During the benchmarks operations
are monitored to collect data for analyzing metrics. InteractionEmulator is a cus-
tomized component, in which the developer would emulate/test blockchain-based
operations for suitable interactions using benchmark functions (see Section 3.2).
Several InteractionEmulator can be managed in EmulatorContainersRepository.
For example, in our experiment, a V2XCommunicatorEmulator is used (see Sec-
tion 4) for benchmarking interactions in V2X. The use of InteractionEmulator
allows us to add new functions for testing a different, new type of interactions.

Figure 4 shows some internal details to describe how the framework can
be integrated with different blockchain implementations and underlying edge/-
cloud infrastructures through a plugin architecture. For InfrastructuralBuilder,
three different classes of plugins are used to deal with artefact deployment/unde-
ployment, virtual machines provisioning and network configuration. For specific
blockchain implementations, we will have to build suitable deployment/unde-
ployment components, such as HypFabTopologyDeployer and EthereumTopologyDeployer

for Hyperledger Fabric and Ethereum, respectively. This way will allow us to
eventually extend the work to support other blockchain systems. For infrastruc-
tures, based on ICloudVMService we could build connectors to suitable infras-
tructure providers, enabling benchmarking and testing using different edge and
cloud resources. Similar to artefacts and infrastructures deployment/undeploy-
ment, different plugins for running emulators performing benchmarks have to
be developed for suitable blockchain features. For example, RunnerHypFab and
RunnerEthereum are used for suitable emulators running in Hyperledger Fabric
and in Ethereum, respectively. Using common interfaces and plugins design, we
could extend and include new benchmark functions for other blockchain tech-
nologies.
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Fig. 4. Main classes for plugins in the framework

3.2 Benchmark Functions

One of the key features is to support the development of benchmark functions
based on end-to-end interactions in the design of the developer. As discussed in
the previous subsection, such benchmark functions are encapsulated into emu-
lators which are executed as container-based microservices. In our approach we
enable the developer to develop them via InteractionEmulator containers.

In our framework, the developer writes required functions based on Interac-
tionEmulator templates, then the framework will take InteractionEmulator to
run it. Key functions that the developer has to develop:

– emulated data and parameters for using data: data can be loaded, e.g., from
files. Examples of parameters are sending/reading frequencies and number
of records to be used.

– key benchmark functions: perform end-to-end test operations and report
metrics

These functions are configured with existing features of the framework to build
container-based emulators.
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3.3 Benchmark Experiment Configuration

To allow the benchmarks of various types of interactions in different configu-
rations, we enable the developer to define experiment specifications in YAML.
The experiment specification includes information about the topology of infras-
tructural resources where blockchain artefacts will be deployed. Node to indicate
infrastructural resources and blockchain artefacts. The experiment specification
will also include other types of information, such as different possible deploy-
ments and blockchain features.

3.4 Prototype

In our current prototype, we use Google Cloud for infrastructural compute re-
sources. We have used geth image7 for Ethereum, and official images for peer,
orderer, tools, certificate authority, Kafka and Zookeeper provided by Hyper-
ledger Fabric8. NetworkConfigurator uses tc9 to manipulate the traffic control.
Concrete InteractionEmulator are implemented in typescript and nodejs, run-
ning in a docker container. In general, most of the components, like Interac-
tionEmulator and testbed connectors can be extended to implement different
types of interactions and use different types of resources. Our prototype is an
open source available in GitHub at https://github.com/rdsea/kalbi/tree/

master/benchmark_framework.

4 Experiments

4.1 Flexibility in Benchmark Configurations

One of the key requirements is the flexibility in configuring benchmarks that we
illustrate in this section through examples of creating experiments through the
parameterization of experiment configurations. For experiments, we use the V2X
Communication scenarios whereas mc is a vehicle, edgel1 is a RSU, edgel2 is a
resource in an edge data center, and cloud is a public cloud resource. We imple-
ment V2XCommunicatorEmulator for experiments. There are many combinations
of MEC and blockchain features and deployment topologies, thus we have many
MECSS deployments that we cannot present here all10. Table 3 shows examples
of deployments; note that each types of interaction has different deployments
of features. Table 4 gives dynamic configuration for testbed deployment. All
machines are with Intel Xeon E5, Sandy Bridge 2.6GHz and Ubuntu 18.04. Net-
work configurations for the experiments are varied, shown in Table 5. For each
of deployments, we can select suitable configurations for emulating mc, edgel1,

7 https://github.com/ethereum/go-ethereum
8 https://github.com/hyperledger/fabric
9 http://manpages.ubuntu.com/manpages/bionic/man8/tc.8.html

10 Detailed deployment configurations and logs as well as benchmark results can be
found at: https://github.com/rdsea/kalbi/tree/master/experiments
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edgel2 or cloud. Furthermore, experiments are also configured with different
blockchain implementations. Due to the flexibility of our framework, it is easy
to create several experiments. For example, when focusing on a topology called
large scale where we have max 48 mc and (i) for interaction mc–edgel1–mc: one
edgel1 , (ii) for interaction mc–edgel2–mc: one edgel2, and (iii)for interaction
mc–edgel1–edgel2–mc: one edgel2, two edgel1, we carried out 180 experiments
for Ethereum and 144 experiments for Hyperledger Fabric.

Table 3. Example of the deployment of blockchain features for interaction 4 – mc–
edgel1–edgel2–mc

Blockchain features deployment

Deployment ID mc edgel1 edgel2 cloud

0 creator consensus creator -

1 creator all creator -

2 creator creator all -

3 creator creator consensus -

4 creator consensus consensus -

5 creator all consensus -

6 creator consensus all -

7 creator all all -

8 all all all -

9 all consensus all -

10 all creator all -

11 all creator creator -

12 all consensus creator -

13 all all creator -

14 all creator consensus -

15 all consensus consensus -

16 all all consensus -

Table 4. Example of VM configurations for running
containers

Component CPU RAM Storage (GB)

cloud 4vCPU 16 GB 60 SSD

edgel2 4vCPU 16 GB 60 SSD

edgel1 1vCPU 2 GB 16 SSD

mc (light) 1vCPU 2 GB 20 SSD

mc (medium) 2vCPU 4 GB 20 SSD

mc (big) 4vCPU 8 GB 20 SSD

Table 5. Example of used network
configurations

Type Latency Bandwidth

3G 200ms 1000kbps

4G 100ms 10000kbps

5G 5ms 54mbps

4.2 Insights from Benchmarks for Developers

Table 6 presented a small set of results to illustrate the richness of our frame-
work. Several results can be obtained through the framework by parameterizing
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experiment specifications. Our goal is to illustrate the framework. In the follow-
ing we will only focus on few aspects of how the developer could benefit from
our methods and framework.

Table 6. Examples of best benchmarks results

Input Result Performance Reliability

Transaction
Acceptance Time

Transaction
Acceptance Rate

Interaction
Id

Blockchain
framework

Scale
Experiment

ID
Minimum
Time

Maximum
Time

Median
Time

Average
Time

Accepted
count

Failed
count

Not-sync
nodes
count

2 Ethereum small 24 240 6510 2316.5 2507.7 200 0 0

2 Ethereum large 94 979 23013 5691.5 6617.78 4800 0 0

2 Hyperledger Fabric small 188 2044 2072 2054 2054.45 200 0 0

2 Hyperledger Fabric large 272 50 6956 124 487.18 4800 0 0

3 Ethereum small 53 474 5120 1862 2153.24 200 0 0

3 Ethereum large 125 429 16774 3698.5 4444.62 4800 0 0

3 Hyperledger Fabric small 233 2038 2064 2049 2049.55 200 0 0

3 Hyperledger Fabric large 302 49 5708 154 494.91 4800 0 0

4 Ethereum small 61 199 4914 2151.5 2188.34 200 0 0

4 Ethereum large 149 306 47711 5218.5 6529.1 4618 182 0

4 Hyperledger Fabric small 260 2041 2063 2048.5 2050.21 200 0 0

Fig. 5. Medians of transaction acceptance times for interaction 2 (mc–edgel1–mc)

Fig. 6. Number of rejected transactions for interaction 2 (mc–edgel1–mc)

Interaction 2 (mc–edgel1–mc) Figures 5 and 6 depict a dependency be-
tween the infrastructure and performance and reliability respectively, among all
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blockchain deployments for this interaction. For a large scale topology, the exper-
iments didn’t achieve 100% reliability, except deployment 0 (where mc is config-
ured with creator and edgel1with all blockchain features). However, the deploy-
ment 0 is centralized (consensus algorithm is running only in edgel1(RSU)). For
deployment 2 (mc with all and edgel1 with creator blockchain features) and
deployment 4 (mc and edgel1 with all blockchain features) results is strongly
dependent on the used infrastructure. However, for a better resource configu-
ration for mc, we obtained a worse performance. It is possible that mc created
more transactions when utilizing more powerful configuration, leading to longer
synchronization time. Hyperledger Fabric has shown better results for the large
scale (the best deployment is for experiment 272, not shown in the paper).

Considering that the goal of a developer is to find a single deployment and
infrastructure configuration. Deriving from several benchmark results and the
above observations, the developer might choose Hyperledger Fabric, deployment
0, small VM type for mc and 5G network, as the best results concerning reli-
ability and performance. However, deployment 0 makes the network partially
centralized, which violates the principles of blockchain.

Fig. 7. Medians of transaction acceptance times for interaction 3 (mc–edgel2–mc)

Interaction 3 (mc–edgel2–mc) The performance depicted in Figure 7 fol-
lows similar patterns as in the previous interaction for both blockchain imple-
mentations and topology scales. In deployment 2 (mc with all and edgel2 with
creator blockchain features) we observed an increasing number of rejected trans-
actions for the big machine types for mc (vehicles). For all other deployments in
the large scale, we have similar patterns as in previous interactions.

From the benchmark, the developer can use deployment 4 (both mc and
edgel2 with all blockchain features) with big machine type for mc and 5G
network. With deployment 0 (mc with creator and edgel2 with all blockchain
features), medium machine types for mc and 5G network we got the best results.
From all benchmarks for this interaction, our framework could provide a hint
to the developer that Hyperledger Fabric, deployment 0, medium machine type
and 5G network is considered as the best deployment and configuration.
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Fig. 8. Median of transaction acceptance
times for interaction 4 (mc–edgel1–edgel2–
mc)

Fig. 9. Number of rejected transactions for
interaction 4 (mc–edgel1–edgel2–mc)

Interaction 4 (mc–edgel1–edgel2–mc) Figure 8 and Figure 9 showed per-
formance and reliability results, respectively, for this interaction with Ethereum
(no Hyperledger Fabric experiments for this scale). Concerning the reliability,
the results showed a dependency between infrastructure and number of rejected
transactions. In this interaction we achieved the best results for experiment 149
(deployment 8, medium machine types for mc and 5G network).

Additional discussion We notice that experiments with different underlying
blockchain systems show different performance. In our work, we did not inves-
tigate the underlying reasons for the difference. The reason is that it is not our
goal to compare different blockchain internal structures and this comparison in
MEC will also require intensive work on analyzing blockchain internals and their
relationships with MEC middleware and applications. Some related works have
studied intensively internal properties of Ethereum and Hyperledger Fabric [11,
20, 9]. Nevertheless, from the list of experiments, the best configuration from
our experiments is based on parameters set in the experiment configuration and
might not be the best for the requirements of MECSS designed by the developer
(e.g., in V2X, requirements from safety regulation). This raises the importance
of having benchmarks with different customization capabilities for the developer.

5 Related Work

There is no lack of survey papers about blockchain, edge computing and IoT,
such as [4, 14, 26, 3, 33]. In MEC various papers have addressed different issues
of blockchain and presented various scenarios [29, 35]. Unlike these works, we
focus on benchmarking blockchain features with MECSS from software devel-
opment viewpoint, especially we focus on application-level interactions in an
end-to-end view. There are general blockchain benchmark tools11 but they are

11 e.g., https://github.com/dsx-tech/blockchain-benchmarking and https://

github.com/hyperledger/caliper
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focused on understanding specific blockchain systems in general view - not in
application-level interactions and generic frameworks for blockchain-based in-
teractions in connection with other relevant software services. Several papers
have performed benchmarks and testing of blockchain and blockchain networks
[11, 32, 34, 19]. Generally, they share key issues with our paper w.r.t. metrics
and software components. However, our paper focuses on generic benchmarks of
blockchain features within MECSS so we can provide a distinguished feature for
the need of the developer. Note that in our work, we do not focus on definition
of metrics to be benchmarked, like [1, 11, 32]. Instead, we provide utilities for
developers to write core benchmark functions and we enable the execution and
deployment of benchmarks. Another difference of our framework is the design of
InteractionEmulator and connectors to allow the developer to create new con-
figurations and benchmark functions to support new types of application-level
interactions, which might exist in specific application designs.

The work [22] specifically develops blockchain for V2X and has also performed
simulation and benchmark. However, it is a typical benchmark for systems devel-
oped for V2X. In our work, we abstract the MECSS to focus on application-level
interactions carried out through different services, creating a generic framework
for benchmarking blockchain interactions in MEC; we leverage V2X scenarios
only for testing our framework.

6 Conclusions and Future Work

In this paper we present a framework for developing and executing benchmarks
for blockchain-based mobile edge computing software systems. We have focused
on important application-level interactions and metrics for realistic deployment
of MECSS. Our framework is generic enough to cover various aspects of deploy-
ments and software features. Benchmarking functions for interactions can be
defined in InteractionEmulator that can be extended, whereas the design of con-
nectors for blockchain, common and infrastructural services allows us to deploy
and integrate with different software systems and resources. The contribution
is not about specific benchmark values for blockchain but the capabilities to
perform benchmarks in a generic way for application specific interactions.

In our current work, we focus on improving the prototype and extending
metrics as plugins as well as to support fine-grained couplings of MEC features
and blockchain features for MECSS. We are also integrating the benchmark
framework and benchmark data with a service for managing knowledge from
benchmarks [30] to enable the reuse of knowledge from benchmarks for MECSS
design and implementation.
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sis. We thank Google Cloud Platform Research Credits Program for supporting
computing resources.

15



References

1. Hyperledger blockchain performance metrics, https://www.hyperledger.org/

wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf, last ac-
cess: 26 May 2019

2. Vehicle-to-vehicle cooperation to marshal traffic, https://patents.google.com/
patent/US9928746B1/en

3. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 14(4),
352–375 (Jan 2018), http://dl.acm.org/citation.cfm?id=3292946.3292948

4. Ali, M.S., Vecchio, M., Pincheira, M., Dolui, K., Antonelli, F., Rehmani,
M.H.: Applications of blockchains in the internet of things: A compre-
hensive survey. IEEE Communications Surveys Tutorials pp. 1–1 (2018).
https://doi.org/10.1109/COMST.2018.2886932

5. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy,
C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C.,
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