Raninen, Elias; Ollila, Esa; Tyler, David E.

On the Variability of the Sample Covariance Matrix Under Complex Elliptical Distributions

Published in:
IEEE Signal Processing Letters

DOI:
10.1109/LSP.2021.3117443

Published: 01/01/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
https://doi.org/10.1109/LSP.2021.3117443

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
On the Variability of the Sample Covariance Matrix Under Complex Elliptical Distributions

Elias Raninen®, Student Member, IEEE, Esa Ollila®, Senior Member, IEEE, and David E. Tyler

Abstract—We derive the form of the variance-covariance matrix for any affine equivariant matrix-valued statistics when sampling from complex elliptical distributions. We then use this result to derive the variance-covariance matrix of the sample covariance matrix (SCM) as well as its theoretical mean squared error (MSE) when finite fourth-order moments exist. Finally, illustrative examples of the formulas are presented.

Index Terms—Sample covariance matrix, sample variation, mean squared error, complex Gaussian distribution, complex elliptically symmetric distribution.

I. INTRODUCTION

Suppose we observe independent and identically distributed (i.i.d.) complex-valued $p$-variate random vectors $x_1,\ldots,x_n \subset \mathbb{C}^p$ with mean $\mu = \mathbb{E}[x_i]$ and positive definite covariance matrix $\Sigma = \mathbb{E}[(x_i - \mu)(x_i - \mu)^H]$. The (unbiased) estimators of $\Sigma$ and $\mu$ are the sample covariance matrix (SCM) and the sample mean defined by

$$ S = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(x_i - \bar{x})^H \quad \text{and} \quad \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i. \quad (1) $$

The SCM is an integral part of many statistical signal processing methods such as adaptive filtering (Wiener and Kalman filters), spectral estimation and array processing (MUSIC algorithm, Capon beamformer) [1], [2], and adaptive radar detectors [3]–[5].

In signal processing applications, a typical assumption would be to assume that the data $x_1,\ldots,x_n$ follow a (circular) complex multivariate normal (MVN) distribution [6], denoted by $\mathcal{CN}(\mu, \Sigma)$. However, a more general assumption would be to assume a Complex Elliptically Symmetric (CES) [7], [8] distribution, which is a family of distributions including the MVN distribution as well as heavier-tailed distributions such as the $t$-, $K$-, and the inverse Gaussian distribution that are commonly used in radar and array signal processing applications as special cases [8]–[11].

In the paper, we study the complex-valued (unbiased) SCM for which we derive the variance-covariance matrix as well as the theoretical mean squared error (MSE) when sampling from CES distributions. We also provide a general expression for the variance-covariance matrix of any affine equivariant matrix-valued statistic (of which the SCM is a particular case). The results regarding the SCM extend the results in [12] to the complex-valued case, where the variance-covariance matrix and MSE of the SCM were derived for real-valued elliptical distributions.

The structure of the paper is as follows. Section II introduces CES distributions. In Section III, we derive the variance-covariance matrix of any affine equivariant matrix-valued statistic when sampling from a CES distribution. In Section IV, we derive the variance-covariance matrix of the SCM and provide an application in shrinkage estimation. Section V concludes. All proofs are kept in the appendix.

Notation: We let $I$, $1$, and $e_i$ denote the identity matrix, a vector of ones, and a vector whose $i$th coordinate is one and other coordinates are zero, respectively. The notations $\cdot^*$, $\cdot^H$, and $(\cdot)^\dagger$ denote the complex conjugate, the transpose, and the conjugate transpose, respectively. The notations $\mathcal{H}^p$, $\mathcal{H}^p_+$, and $\mathcal{H}^p_{++}$ denote the sets of Hermitian, Hermitian positive semidefinite, and Hermitian positive definite $p \times p$ dimensional matrices, respectively. We use the shorthand notation $\text{var}(A) = \text{var}(\text{vec}(A))$ and $\text{pvar}(A) = \text{pvar}(\text{vec}(A))$ (see Section III for the definition of pvar), where $\text{vec}(A) = (a_1^\top \ldots a_p^\top)^\top$ is a vectorization of $A = (a_1 \ldots a_p)$. When there is a possibility for confusion, we denote by $\text{cov}_\mu,\Sigma(\cdot,\cdot)$ or $\mathbb{E}_\mu,\Sigma[\cdot]$ the covariance and expectation of a sample from an elliptical distribution with mean vector $\mu$ and covariance matrix $\Sigma$. The $p^2 \times p^2$ commutation matrix [13] is defined by $K_{p,p} = \sum_{i,j} e_i e_j^\top \otimes e_i e_i^\top$, where $\otimes$ is the Kronecker product. The notation $\widetilde{\cdot}$ reads “has the same distribution as”, $\mathcal{U}(\mathbb{C}^p)$ denotes the uniform distribution on the complex unit sphere $\mathbb{C}^p$ and $\mathbb{R}_{\geq 0} = \{a \in \mathbb{R} : a \geq 0\}$.

II. COMPLEX ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

A random vector $x \in \mathbb{C}^p$ is said to have a circular CES distribution if and only if it admits the stochastic representation

$$ x \overset{d}{=} \mu + r\Sigma^{1/2}u, \quad (2) $$

where $\mu = \mathbb{E}[x]$ is the mean vector, $\Sigma^{1/2} \in \mathcal{H}^p_+$ is the unique Hermitian positive definite square-root of $\Sigma$, $u \sim \mathcal{U}(\mathbb{C}^p)$, and $r > 0$ is a positive random variable called the modular variate. Furthermore $r$ and $u$ are independent. If the cumulative distribution function of $x$ is absolutely continuous, the probability density function exists and is up to a constant of the form

$$ |\Sigma|^{-1/2}g((x - \mu)^H\Sigma^{-1}(x - \mu)), \quad (3) $$

Manuscript received August 19, 2021; revised September 28, 2021; accepted September 29, 2021. Date of publication October 4, 2021; date of current version November 2, 2021. The work of David E. Tyler was supported in part by the National Science Foundation under Grant DMS-1812198. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Wei Li. (Corresponding author: Elias Raninen.)

Elias Raninen and Esa Ollila are with the Department of Signal Processing and Acoustics, Aalto University, FI-00076 Aalto, Finland (e-mail: elias.raninen@aalto.fi; esa.ollila@aalto.fi).

David E. Tyler is with the Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA (e-mail: dttyler@stat.rutgers.edu).

Digital Object Identifier 10.1109/LSP.2021.3117443

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
where \( g : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \) is the density generator. We denote this case by \( x \sim CES_p(\mu, \Sigma, g) \). We assume that \( x \) has finite fourth-order moments, and thus we can assume without any loss of generality that \( \Sigma \) is equal to the covariance matrix \( \text{var}(x) \) [8] (implying \( E[x^2] = p \)). We refer the reader to [8] for a comprehensive account on CES distributions.

The elliptical kurtosis of a CES distribution is defined as

\[
\kappa = \frac{E[x^4]}{p(p+1)} - 1. \tag{4}
\]

Elliptical kurtosis shares properties similar to the kurtosis of a circular complex random variable. Specifically, if \( x \sim \mathcal{CN}_p(\mu, \Sigma) \), then \( \kappa = 0 \). This follows by noticing that \( 2 \cdot r^2 \sim \chi^2_p \), and hence \( E[x^4] = p(p+1) \) and consequently \( \kappa = 0 \) in the Gaussian case. The kurtosis of a complex circularly symmetric random variable \( x \in \mathbb{C} \) is defined as

\[
\text{kurt}(x) = \frac{E[|x-\mu|^4]}{E[|x-\mu|^2]^2} - 2, \tag{5}
\]

where \( \mu = E[x] \). Similar to the real-valued case, \( \kappa \) has a simple relationship with the (excess) kurtosis [14, Lemma 3]: \( \kappa = \frac{1}{2} \cdot \text{kurt}(x_i) \), for any \( i \in \{1, \ldots, p\} \). We note that the lower bound for the kurtosis is \( \geq -1/(p+1) \) [8].

Lastly, we define the scale and sphericity parameters

\[
\eta = \frac{\text{tr}(\Sigma)}{p} \quad \text{and} \quad \gamma = \frac{\text{tr}(\Sigma^2)}{\text{tr}(\Sigma)^2}. \tag{6}
\]

The scale is equal to the mean of the eigenvalues. The sphericity measures how close the covariance matrix is to a scaled identity matrix. The sphericity parameter gets the value 1 for the scaled identity matrix and \( p \) for a rank one matrix.

### III. Radial Distributions and Covariance Matrix Estimates

In this section, we derive the variance-covariance matrix of any affine equivariant matrix-valued statistic. We begin with some definitions.

The covariance and pseudo-covariance [15] of complex random vectors \( x_1 \) and \( x_2 \) are defined as

\[
\text{cov}(x_1, x_2) = E[(x_1 - E[x_1])(x_2 - E[x_2])^H]
\]

and

\[
\text{pcov}(x_1, x_2) = E[(x_1 - E[x_1])(x_2 - E[x_2])^\top],
\]

and together they provide a complete second-order description of associations between \( x_1 \) and \( x_2 \). Then \( \text{var}(x) = \text{cov}(x, x) \) and \( \text{pvar}(x) = \text{pcov}(x, x) \) are called the covariance matrix and the pseudo-covariance matrix [15] of \( x \).

A random Hermitian \((A^H = A)\) matrix \( A \in \mathcal{H}^p \) is said to have a radial distribution if \( A \overset{d}{=} QAQ^H \) for all unitary matrices \( Q \) (so \( Q^HQ = I \)). The following result extends the result of [16] to the complex-valued case.

**Theorem 1:** Let a random matrix \( A = (a_{ij}) \in \mathcal{H}^p \) have a radial distribution with finite second-order moments. Then, there exist real-valued constants \( \tau_1 \) and \( \tau_2 \) with \( \tau_1 \geq 0 \) and \( \tau_2 \geq -\tau_1/p \) such that \( E[A] = \sigma I \) with \( \sigma = E[a_{ii}] \) and

\[
\text{var}(A) = \tau_1 I + \tau_2 \text{vec}(I)\text{vec}(I)^\top, \tag{7}
\]

\[
\text{pvar}(A) = \tau_1 K_{p,p} + \tau_2 \text{vec}(I)\text{vec}(I)^\top, \tag{8}
\]

where \( \tau_1 = \text{var}(a_{ij}) = \text{pcov}(a_{ij}, a_{ij}) \) and \( \tau_2 = \text{cov}(a_{ii}, a_{jj}) = \text{p cov}(a_{ii}, a_{jj}) \) for all \( 1 \leq i \neq j \leq p \).

A statistic \( \Sigma = \hat{\Sigma}(X) \in \mathcal{H}^p \) based on an \( n \times p \) data matrix \( X = (x_1, \ldots, x_n)^\top \) of \( n \geq 1 \) observations on \( p \) complex-valued variables is said to be affine equivariant if

\[
\Sigma(XA^\top + 1a^\top) = A\Sigma(X)A^H \tag{9}
\]

where \( \Sigma(Z) \) denotes the value of \( \Sigma \) based on a random sample \( z_1, \ldots, z_n \subset \mathbb{C}^p \) from a CES distribution \( \mathcal{CE}_p(\mu, \Sigma, g) \) and that \( \Sigma = (\delta_{ij}) \in \mathcal{H}^p \) is an affine equivariant statistic. Then \( \Sigma \) has a stochastic decomposition

\[
\Sigma(X) \overset{d}{=} \Sigma_1^{1/2} \cdot \hat{\Sigma}(\cdot) \cdot \Sigma_1^{1/2}, \tag{10}
\]

where \( \Sigma(Z) \) is the elliptical kurtosis in (4). The MSE is given by

\[
\text{var}(\Sigma) = \text{tr}(\Sigma^2) + \frac{1}{n} \text{tr}(\Sigma)^2 \tag{11}
\]

\[
\text{pvar}(\Sigma) = \tau_1 K_{p,p} + \tau_2 \text{vec}(\Sigma)\text{vec}(\Sigma)^H, \tag{12}
\]

where \( \text{var}(\Sigma) \overset{d}{=} \text{pcov}(\Sigma, \Sigma) \) and \( \tau_2 = \text{cov}(\Sigma_1, \Sigma_2) \geq -\tau_1/p \).

There are many statistics for which this theorem applies. Naturally, a prominent example is the SCM, which we examine in detail in the next section. Other examples are the complex \( M \)-estimates of scatter discussed in [8] or the weighted sample covariance matrices \( R = \frac{1}{n} \sum_{i=1}^n u(d_i)(x_i - \bar{x})(x_i - \bar{x})^H \), where \( d_i = (x_i - \bar{x})^H S^{-1}(x_i - \bar{x}) \) and \( u : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \). In the special case, when \( u(s) = s \), we obtain the fourth moment matrix used in FOBI [17] for blind source separation and in Invariant Coordinate Selection (ICS) [18].

### IV. Variance-Covariance of the SCM and an Example in Shrinkage Estimation

We now use Theorem 2 to derive the covariance matrix and the pseudo-covariance matrix of the SCM when sampling from a CES distribution. This result extends [12, Theorem 2 and Lemma 1] to the complex case.

**Theorem 3:** Let the SCM \( S = (s_{ij}) \) be computed on an i.i.d. random sample \( x_1, \ldots, x_n \subset \mathbb{C}^p \) from a CES distribution \( \mathcal{CE}_p(\mu, \Sigma, g) \) with finite fourth-order moments and covariance matrix \( \Sigma = \text{var}(x) \). Then, the covariance matrix and pseudo-covariance matrix of \( S \) are as stated in (11) and (12) with

\[
\tau_1 = \text{var}_{0,1}(s_{12}) = \frac{1}{n-1} + \frac{\kappa}{n},
\]

\[
\tau_2 = \text{cov}_{0,1}(s_{11}, s_{22}) = \frac{\kappa}{n},
\]

where \( \kappa \) is the elliptical kurtosis in (4). The MSE is given by

\[
\text{MSE}(S) = E\left[\frac{1}{n}\|S - \Sigma\|^2_F\right] = \left(\frac{1}{n-1} + \frac{\kappa}{n}\right) \text{tr}(\Sigma)^2 + \frac{\kappa}{n} \text{tr}(\Sigma^2),
\]

and the normalized MSE is

\[
\text{NMSE}(S) = \frac{\text{MSE}(S)}{\|\Sigma\|^2_F} = p \left(\frac{1}{n-1} + \frac{\kappa}{n}\right) + \frac{\kappa}{n}. \tag{13}
\]
where \( \gamma \) is the sphericity parameter defined in (6).

The finite sample performance of the SCM can often be improved by using shrinkage covariance matrix estimators, which is an active area of research, see e.g., [12], [19]–[24]. Consider the simple shrinkage covariance matrix estimation problem,

\[
\beta_o = \arg \min_{\beta \in \mathbb{R}} \mathbb{E}[\|\beta S - \Sigma\|^2_F].
\]

Since the problem is convex, we can find \( \beta_o \) as solution of

\[
\frac{\partial}{\partial \beta} \mathbb{E}[\|\beta S - \Sigma\|^2_F] = 2\beta \mathbb{E}[\text{tr}(S^3)] - 2\|\Sigma\|^2_F = 0
\]

which yields

\[
\beta_o = \frac{\|\Sigma\|^2_F}{\text{MSE}(S) + \|\Sigma\|^2_F} = \frac{1}{\text{NMSE}(S) + 1},
\]

where we used \( \text{MSE}(S) = \mathbb{E}[\|S - \Sigma\|^2_F] = \mathbb{E}[\text{tr}(S^2)] - \|\Sigma\|^2_F \).

From (14), (15), it follows that the optimal scaling term \( \beta_o \) is always smaller than 1 since \( \text{MSE}(S) > 0 \). Furthermore, \( \beta_o \) is a function of \( \gamma \) and \( \kappa \) via (13). In the Gaussian case (\( \kappa = 0 \)), we obtain \( \beta_o = (n - 1)/(n + 1) + p/\gamma \). Fig. 1 illustrates the effect of \( \kappa \) on \( \beta_o \) when \( \gamma = 2 \), and \( n = p = 10 \). Next we show that the oracle estimator \( S_o = \beta_o S \) is uniformly more efficient than \( S \), i.e., \( \text{MSE}(S_o) < \text{MSE}(S) \) for any \( \Sigma \in \mathcal{H}_{++} \). First write

\[
\mathbb{E}[\|\beta_o S - \Sigma\|^2_F] = \beta_o^2 \text{MSE}(S) + (1 - \beta_o)^2 \|\Sigma\|^2_F.
\]

Then from (14) we notice that \( 1 - \beta_o = \beta_o \text{NMSE}(S) \). Substituting this into (15) we get

\[
\text{MSE}(S_o) = \beta_o^2 \text{MSE}(S) + \beta_o^2 \text{NMSE}(S) \|\Sigma\|^2_F
\]

\[
= \beta_o^2 \text{MSE}(S) (1 + \text{NMSE}(S)) = \beta_o^2 \text{MSE}(S),
\]

where the last identity follows from fact that \( 1/\beta_o = 1 + \text{NMSE}(S) \) due to (14). Since \( \beta_o < 1 \) for all \( \Sigma \in \mathcal{H}_{++} \), it follows that \( \text{MSE}(S_o) \) is more efficient than \( S \). Efficiency in the case when \( \gamma \) and \( \kappa \), and hence \( \beta_o \), need to be estimated, remains (to the best of our knowledge) an open problem. However, for certain related shrinkage estimators the shrinkage intensity can be consistently estimated, e.g., [19], [20].

In the univariate case (\( p = 1 \)), \( \Sigma \) is equal to the variance \( \sigma^2 = \text{var}(x) > 0 \) of the random variable \( x \in \mathbb{C} \) and the SCM reduces to the sample variance defined by \( s^2 = \frac{1}{n-1} \sum_{i=1}^n [x_i - \bar{x}]^2 \). In this case, \( \gamma = 1 \), and \( \beta_o \) in (14) is

\[
\beta_o = \frac{n(n-1)}{\kurt(x)(n-1) + n^2}.
\]

A similar result was noticed in [25] for the real-valued case. If the data is from a complex normal distribution \( \mathbb{C} \mathcal{N}(\mu, \sigma^2) \), then \( \kurt(x) = 0 \), and \( \beta_o = (n - 1)/n \), and hence \( s^2 = \beta_o s^2 = \frac{1}{n} \sum_{i=1}^n [x_i - \bar{x}]^2 \), which equals the Maximum Likelihood Estimate (MLE) of \( \sigma^2 \). In the real case, the optimal scaling constant is \( \beta_o = (n - 1)/(n + 1) \) for Gaussian samples [26]. Note that when the kurtosis is large and positive and \( \kappa \) is small, then \( \beta_o \) can be substantially less than one and the gain of using \( s_o \) can be significant.

V. Conclusion

We derived the form of the variance-covariance matrix for any affine equivariant matrix-valued statistics under sampling from CES distributions. We used this result to derive the variance-covariance matrix and the MSE of the SCM when finite fourth-order moments exist. An illustrative example in the context of shrinkage covariance matrix estimation was presented.

APPENDIX

A. Proof of Theorem 1

The proof follows the same lines as the proof in [16] for the real-valued case. Since \( A \) has a radial distribution \( \mathbb{E}[A] = \mathbb{E}[a_{ij}]I = \sigma I \) is obvious. For any unitary matrix \( Q = (q_1 \cdots q_p) \), we have

\[
\text{var}(A) = \sigma^2 \mathbb{E}[\text{vec}(A)] = \sigma^2 \mathbb{E}[\text{vec}(QAQ^H)]
\]

\[
= \sigma^2 \mathbb{E}[Q^*Q \text{vec}(A)]
\]

\[
= (Q^*Q) \mathbb{E}[\text{vec}(A)](Q^TQ^H).
\]

Let \( \{e_i, e_j^T \otimes q_k q_l^T\} \) be a basis for the set of \( p^2 \times p^2 \) matrices. Then

\[
\text{var}(A) = \sum_{i,j,k,l} \tau_{ijkl} e_i e_j^T \otimes q_k q_l^T = \sum_{i,j,k,l} \tau_{ijkl} q_i^* q_j^T \otimes q_k q_l^H
\]

where \( \tau_{ijkl} = \text{var}(a_{ki}, a_{lj}) \). By choosing \( q_m = j_{em} \) where \( j \) is the imaginary unit and \( q_r = e_r \) for some \( m \neq r \), we must have \( \tau_{ijkl} = 0 \) unless \( i = j = k = l \), \( i = j \neq k = l \), or \( i = k \neq j = l \). Denote \( \tau_0 = \tau_{iiii} = \text{var}(a_{ii}) \), \( \tau_1 = \tau_{ijij} = \text{var}(a_{ij}) \) and \( \tau_2 = \tau_{ijij} = \text{cov}(a_{ii}, a_{jj}) \). Then

\[
\text{var}(A) = \sum_{i,j} \tau_1 e_i e_j^T \otimes e_i e_j^T + \sum_{i,j} \tau_2 e_i e_j^T \otimes e_i e_j^T
\]

\[
+ (\tau_0 - \tau_1 - \tau_2) \sum_i e_i e_i^T \otimes e_i e_i^T.
\]

Note that

\[
\sum_{i,j} e_i e_j^T \otimes e_i e_j^T = I
\]

\[
\sum_{i,j} e_i e_j^T \otimes e_j e_i^T = \text{vec}(I) \otimes \text{vec}(I)^T.
\]

Furthermore,

\[
(Q^*Q) \sum_{i,j} e_i e_j^T \otimes e_j e_i^T = \text{vec}(I)^T \otimes \text{vec}(I)^T
\]

\[
((Q^*Q) \sum_{i,j} e_i e_j^T \otimes e_i e_j^T) \neq \text{vec}(I)^T \otimes \text{vec}(I)^T
\]

\[
((Q^*Q) \sum_{i,j} e_i e_j^T \otimes e_i e_j^T) \neq \text{vec}(I)^T \otimes \text{vec}(I)^T
\]

From the last inequality, we must have \( \tau_0 = \tau_1 = \tau_2 = 0 \) and var\( (A) = \tau_0 I + \tau_2 \text{vec}(I)^T \text{vec}(I)^T \).

Regarding the pseudo-covariance, for any unitary \( Q \),

\[
p\text{var}(A) = (Q^*Q) \sum_{i,j} \text{vec}(Q^H) \text{vec}(A)) (Q^TQ^H)
\]

which implies

\[
p\text{var}(A) = \sum_{i,j} \tau_i e_i e_j^T \otimes e_j e_i^T = \sum_{i,j} \tau_{ijkl} q_i^* q_j^T \otimes q_k q_l^H
\]

where \( \tau_{ijkl} = \text{pcov}(a_{ki}, a_{lj}) \). By choosing \( q_m = j_{em} \) and \( q_r = e_r \) for some \( m \neq r \), we must have \( \tau_{ijkl} = 0 \) except when \( i = j = k = l \), \( i = j \neq k = l \), or \( i = k \neq j = l \). Let \( \tau_0 = \text{pcov}(a_{ii}) \), \( \tau_1 = \text{pcov}(a_{ij}, a_{ji}) \) and \( \tau_2 = \text{pcov}(a_{ii}, a_{jj}) \). Then

\[
p\text{var}(A) = \sum_{i,j} \tau_i e_i e_j^T \otimes e_j e_i^T + \sum_{i,j} \tau_2 e_i e_j^T \otimes e_i e_j^T
\]

\[
+ (\tau_0 - \tau_1 - \tau_2) \sum_i e_i e_i^T \otimes e_i e_i^T
\]

\[
= \tau_1 K_{pp} + \tau_2 \text{vec}(I)^T \text{vec}(I)^T
\]

Fig. 1. The value of \( \beta_o \) as a function of \( \kappa \), when \( n = p = 10 \) and \( \gamma = 2 \).
by similar arguments as with $\text{var}(A)$. Then note that, $\tau_1 = \text{var}(a_{ij}) = p\text{cov}(a_{ij}, a_{ij}) = \tau_1^2 \geq 0$ and $\tau_2 = \text{cov}(a_{ij}, a_{ij}) = p\text{cov}(a_{ij}, a_{ij}) = \tau_2^2$. Lastly, since $\text{var}(A)$ is positive semidefinite and $\tau_1 \geq 0$, $\text{var}(A) = |\tau_1 I + \tau_2 \text{vec}(I)\text{vec}(I)^T| = (\tau_1 + \tau_2 p)^{-1} \geq 0$ implies $\tau_2 \geq -\tau_1/p$. \hfill $\square$

B. Proof of Theorem 2

Since $\Sigma(X)$ is affine equivariant, from (10) we have $\text{var}(\Sigma(X)) = \text{var}(\Sigma^{1/2} \Sigma(Z) \Sigma^{1/2})$

$$= ((\Sigma^{1/2})^* \otimes \Sigma^{1/2}) \text{var}(\Sigma(Z))((\Sigma^{1/2})^* \otimes \Sigma^{1/2}).$$

From Theorem 1, $\text{var}(\Sigma(Z))$ is of the form (7). Since $((\Sigma^{1/2})^* \otimes \Sigma^{1/2})I((\Sigma^{1/2})^* \otimes \Sigma^{1/2}) = (\Sigma^* \otimes \Sigma)$ and

$$((\Sigma^{1/2})^* \otimes \Sigma^{1/2})\text{vec}(I)\text{vec}(I)^T((\Sigma^{1/2})^* \otimes \Sigma^{1/2})$$

$$= \text{vec}(\Sigma)\text{vec}(\Sigma)^T,$$

we obtain (11). Similarly,$$
\text{var}(\Sigma(X)) = \text{var}(\Sigma^{1/2} \Sigma(Z) \Sigma^{1/2})$$

$$= ((\Sigma^{1/2})^* \otimes \Sigma^{1/2}) \text{var}(\Sigma(Z))((\Sigma^{1/2})^* \otimes (\Sigma^{1/2})^*),$$

where $\text{var}(\Sigma(Z))$ is of the form (8). Since $((\Sigma^{1/2})^* \otimes \Sigma^{1/2})K_{p,p}((\Sigma^{1/2})^* \otimes (\Sigma^{1/2})^*) = (\Sigma^* \otimes \Sigma)K_{p,p}$

$$((\Sigma^{1/2})^* \otimes \Sigma^{1/2})\text{vec}(I)\text{vec}(I)^T((\Sigma^{1/2})^* \otimes (\Sigma^{1/2})^*)$$

$$= \text{vec}(\Sigma)\text{vec}(\Sigma)^T,$$

we obtain (12). \hfill $\square$

C. Proof of Theorem 3

The proof is similar to the proof of [12, Theorem 2] that was derived for the real-valued case. Write the SCM as $S = (s_{ij}) = (n - 1)^{-1}X^\topHX$, where $H = I - \frac{1}{n}11^\top$ is the centering matrix. Write $a = Xe_1$ and $b = Xe_r$ for $r \neq 1$. Then note that $s_{qr} = (n - 1)^{-1}a^\top HB^*$. Hence,

$$\tau_1 = \text{var}(s_{qr}) = \text{var}((n - 1)^{-1}a^\top HB^*)$$

$$= (n - 1)^{-2} \text{var}(a^\top HB^*).$$

Then note that

$$\text{var}(a^\top HB^*) = \text{var}(\text{tr}(HB^a^\top))$$

$$= \text{var}(\text{vec}(H)\text{vec}(b^a^\top))$$

$$= \text{vec}(H)\text{vec}(\text{vec}(b^a^\top))\text{vec}(H)^T. $$

(16)

Since for $x_i \sim \mathcal{C}_p(X, 0, I)$ we have $x_i \overset{d}{=} x_i u_i$, where $x_i \overset{d}{=} |x_i|$ is independent of $u_i = (u_{i1}, \ldots, u_{ip})^\top \sim \mathcal{U}(\mathbb{C}^p)$, we can write $a = Xe_1 = (\tau_1 u_{i1}, \tau_2 u_{i2}, \ldots, \tau_n u_{in})^\top$, and similarly for $b$. The $k$th element of the $i$th block (i.e., the $ij$th element) of the $n^2 \times n^2$ matrix $\text{vec}(b^a^\top)$ is

$$\text{cov}(b^1_{i1}a^1_{j1}, b^2_{i2}a^2_{j2}) = \mathbb{E}\left[\tau_1 u_{i1}\tau_1 r_{ij}u_{t_{kr}}u_{t_{kj}}\right].$$

where we used that $\mathbb{E}[b^a^\top] = 0$. Then note that

$$\mathbb{E}\left[|u_{i1}|^2|u_{i2}|^2\right] = \frac{1}{p(p+1)},$$

$$\mathbb{E}\left[|u_{i1}|^4\right] = \frac{1}{p},$$

and $\mathbb{E}\left[|u_{i1}|^4\right] = \frac{2}{p(p+1)}$, while all other moments up to fourth-order vanish. This and the fact that $\mathbb{E}[r_{ij}^2] = (1 + \kappa)p(p + 1)$ due to (4), implies that the only non-zero elements of $\text{var}(\text{vec}(b^a^\top))$ are

$$\mathbb{E}[r_{ij}^2]\mathbb{E}[|u_{i1}|^2|u_{i2}|^2] = 1 + \kappa \quad \text{for } i = j = k = l,$$

$$\mathbb{E}[r_{i1}^2]\mathbb{E}[|u_{i1}|^2]\mathbb{E}[|u_{i2}|^2] = 1 \quad \text{for } i \neq j \neq k = l,$$

and hence

$$\text{var}(\text{vec}(b^a^\top)) = I + \kappa \sum_{i=1}^n e_i e_i^\top \otimes e_i e_i^\top.$$  (19)

This together with (16) and (18) yields

$$\tau_1 = \frac{1}{(n - 1)^2} \text{vec}(H)\text{vec}(\text{vec}(\Sigma))\text{vec}(H)^T$$

$$= 1 - \frac{\kappa}{n},$$

where we used $\text{vec}(H)\text{vec}(H) = n - 1$ and

$$\sum_{i=1}^n \text{vec}(H)\text{vec}(\Sigma)\text{vec}(H) = \sum_{i=1}^n h_{ii}^2 = \frac{(n - 1)^2}{n}.$$  

Next, we find the expression for $\tau_2 = \text{cov}(s_{qr}, s_{rr}) = (n - 1)^{-2} \text{cov}(a^\top HA^1, b^\top HB^1)$. Since $E[s_{qr}] = E[(n - 1)^{-1}a^\top HA^1] = 1$ for any $q$,

$$\tau_2 = (n - 1)^{-2} \text{cov}(a^\top HA^1, b^\top HB^1)$$

$$= (n - 1)^{-2} \text{tr}(H)\text{vec}(b^a^\top)\text{vec}(b^a^\top)^T) - 1$$

$$= (n - 1)^{-2} \text{tr}(H)\text{vec}(b^a^\top)\text{vec}(b^a^\top)^T) - 1.$$ 

The expression in the expectation is equal to (19), and so

$$\tau_2 = \frac{1}{(n - 1)^2} \text{tr}(H)\text{vec}(b^a^\top)\text{vec}(b^a^\top)^T) - 1$$

$$= \frac{\kappa}{n},$$

where we used that $\text{tr}(H)\text{vec}(b^a^\top)\text{vec}(b^a^\top)^T) = (n - 1)^2$ and

$$\sum_{i=1}^n \text{tr}(H)\text{vec}(b^a^\top)\text{vec}(b^a^\top)^T) = h_{ii}^2.$$ 

This completes the proof for $\tau_1$ and $\tau_2$. By Theorem 2, we have $\text{var}(S) = \tau_1(\Sigma^* \otimes \Sigma) + \tau_2\text{vec}(\Sigma)\text{vec}(\Sigma)^T$, and hence

$$\text{MSE}(S) = \text{tr}(\text{var}(S))$$

$$= \text{tr}(\tau_1(\Sigma^* \otimes \Sigma) + \tau_2\text{vec}(\Sigma)\text{vec}(\Sigma)^T)$$

$$= \tau_1\text{tr}(\Sigma^* \otimes \Sigma) + \tau_2\text{tr}(\Sigma^T),$$

where the last identity follows from using $\text{tr}(\Sigma^* \otimes \Sigma) = \text{tr}(\Sigma^T)$. This gives the stated expression for the MSE. \hfill $\square$

REFERENCES


