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Abstract
Identifying clusters of similar elements in a set is a common task in data analysis. With the immense
growth of data and physical limitations on single processor speed, it is necessary to find efficient
parallel algorithms for clustering tasks. In this paper, we study the problem of correlation clustering
in bounded arboricity graphs with respect to the Massively Parallel Computation (MPC) model.
More specifically, we are given a complete graph where the edges are either positive or negative,
indicating whether pairs of vertices are similar or dissimilar. The task is to partition the vertices
into clusters with as few disagreements as possible. That is, we want to minimize the number of
positive inter-cluster edges and negative intra-cluster edges.

Consider an input graph G on n vertices such that the positive edges induce a λ-arboric graph.
Our main result is a 3-approximation (in expectation) algorithm to correlation clustering that
runs in O (log λ · poly (log log n)) MPC rounds in the strongly sublinear memory regime. This is
obtained by combining structural properties of correlation clustering on bounded arboricity graphs
with the insights of Fischer and Noever (SODA ’18) on randomized greedy MIS and the PIVOT
algorithm of Ailon, Charikar, and Newman (STOC ’05). Combined with known graph matching
algorithms, our structural property also implies an exact algorithm and algorithms with worst case
(1 + ε)-approximation guarantees in the special case of forests, where λ = 1.
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1 Introduction

Graphs are a versatile abstraction of datasets and clustering on graphs is a common unsu-
pervised machine learning task for data-analytical purposes such as community detection
and link prediction [14, 11].

Here, we study the correlation clustering problem which aims at grouping elements of a
dataset according to their similarities. Consider the setting where we are given a complete
signed graph G = (V, E = E+ ∪ E−) where edges are given positive (E+) or negative (E−)
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15:2 Massively Parallel Correlation Clustering in Bounded Arboricity Graphs

labels, signifying whether two points are similar or not. The task is to find a partitioning of
the vertex set V into clusters C1, C2, . . . , Cr, where r is not fixed by the problem statement
but can be chosen freely by the algorithm.1 If endpoints of a positive edge belong to the same
cluster, we say that the edge is a positive agreement; and a positive disagreement otherwise.
Meanwhile, if endpoints of a negative edge belong to the same cluster, we say that the edge
is a negative disagreement; and a negative agreement otherwise. The goal of correlation
clustering is to obtain a clustering that maximizes agreements or minimizes disagreements.

As pointed out by Chierichetti, Dalvi and Kumar [15], the positive degrees of vertices are
typically bounded in many applications. This motivates the study of parallel algorithms for
correlation clustering as a function of the maximum degree of the input graph. However,
many real life networks, such as those modelled by scale-free network models (such as
Barabási-Albert), admit structures with a few high degree nodes and a small average degree.
To capture such graphs, we generalize the study of bounded degree graphs to the study
of low arboricity graphs in this work. In particular, we focus on the case of minimizing
disagreements when the positive edges of the input graph induces a λ-arboric graph.

In the complete signed graph setting, one can perform cost-charging arguments via “bad
triangles” to prove approximation guarantees. A set of 3 vertices {u, v, w} is a bad triangle
if {u, v}, {v, w} ∈ E+ and {u, w} ∈ E−. As edges of any bad triangle induce at least one
disagreement in any clustering, one can lower bound the cost of any optimum clustering
by the number of edge-disjoint bad triangles in the input graph. PIVOT [2] is a well-known
algorithm that provides a 3-approximation (in expectation) to the problem of minimizing
disagreements in the sequential setting by using a cost-charging argument on bad triangles. It
works as follows: as long as the graph is non-empty, pick a vertex v uniformly at random and
form a new cluster using v and its “positive neighbors” (i.e. joined by a positive edge). One
can view PIVOT as simulating greedy MIS with respect to a uniform-at-random permutation
of vertices.2

Many of the known distributed algorithms for the correlation clustering problem adapt
the PIVOT algorithm. The basic building block is to fix a random permutation and to
create the clusters by finding, in parallel, local minimums according to the permutation. The
ParallelPIVOT, C4 and ClusterWild! algorithms [15, 33] all obtain constant approximations
in O(log n · log ∆) synchronous rounds, where ∆ stands for the maximum positive degree.3
Meanwhile, with a tighter analysis of randomized greedy MIS algorithm [21], one can obtain
a 3-approximation in O(log n) rounds by directly simulating PIVOT. All above approximation
guarantees are in expectation.

1.1 Computational model
We consider the Massive Parallel Computation (MPC) model [30, 8] which serves as a
theoretical abstraction of several popular massively parallel computation frameworks such as
Dryad [29], Hadoop [36], MapReduce [18], and Spark [37].

1 This is in contrast to, for example, the classic k-means clustering where k is an input problem parameter.
2 A subset M ⊆ V is a maximal independent set (MIS) if (1) for any two vertices u, v ∈ M , u and v are

not neighbors, and (2) for any vertex v ∈ V , either v ∈ M or v has a neighbor in M . Given a vertex
ordering π : [n] → V , greedy MIS refers to the process of iterating through π(1), . . . , π(n) and adding
each vertex to M if it has no neighbor of smaller ordering.

3 Technically speaking, ParallelPIVOT does not compute a greedy MIS. Instead, it computes random
independent sets in each phase and only uses the initial random ordering to perform tie-breaking. i.e. if
a vertex u has more than one positive neighbor in the independent set, then vertex u joins the cluster
defined by the neighbor with the smallest assigned order.
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In the MPC model, we have M machines, each with memory size S, and we wish to solve
a problem given an input of size N . In the context of correlation clustering, we may think of
N = |E+|, since the negative edges can be inferred from missing positive edges. Typically,
the local memory bound S is assumed to be significantly smaller than N . We focus on the
strongly sublinear memory regime, where S = Õ

(
nδ

)
for some constant δ < 1. Ideally, the

total memory S ·M is not much larger than N .
The computation in the MPC model proceeds in synchronous rounds. In each round,

each machine can perform arbitrary computation on the data that resides on it.4 Then, each
machine communicates in an all-to-all fashion with all other machines conditioned on sending
and receiving messages of size at most O(S). This concludes the description of an MPC
round. Since communication costs are typically the bottleneck, the metric for evaluating the
efficiency of an MPC algorithm is the number of rounds required.

1.2 Our contributions
Our goal is to obtain efficient algorithms for correlation clustering in the sublinear memory
regime of MPC (see Model 1) when given a complete signed graph G, with maximum
positive degree ∆, where the set of positive edges E+ induces a λ-arboric graph. Our main
contributions are the following:
1. By combining known techniques, we show that one can compute a randomized greedy MIS,

with respect to a uniform-at-random permutation of vertices, in O
(
log ∆ · log3 log n

)
MPC rounds. If we allow extra global memory (see Model 2), this can be sped up to
O (log ∆ · log log n) MPC rounds. See Theorem 6 for details.
We believe that this result is of independent interest beyond applications to correlation
clustering. To the best of our knowledge, our algorithm for greedy MIS improves upon
the state-of-the-art for any ∆ ∈ o(n1/ log3 log n).

2. Our main result (Theorem 12) is that one can effectively ignore vertices of degrees
larger than O(λ) when computing a correlation clustering. Then, the overall runtime
and approximation guarantees are inherited from the choice of algorithm used to solve
correlation clustering on the remaining bounded degree subgraph.5

3. Using our main result, we show how to obtain efficient correlation clustering algorithms
for bounded arboricity graphs. By simulating PIVOT on a graph with maximum degree
O(λ) via Theorem 6, we get

(i) A 3-approximation (in expectation) algorithm in O
(
log λ · log3 log n

)
MPC rounds.

(ii) A 3-approximation (in expectation) algorithm in O (log λ · log log n) MPC rounds,
possibly using extra global memory.

In the special case of forests (where λ = 1), we show that the optimum correlation
clustering is equivalent to computing a maximum matching. Let 0 < ε ≤ 1 be a constant.
By invoking three different known algorithms (one for maximum matching and two for
maximal matching), and hiding 1/ε factors in Oε(·), we obtain
(iii) An exact randomized algorithm that runs in Õ (log n) MPC rounds.
(iv) A (1 + ε)-approx. (worst case) det. algo. that runs in Oε (log log∗ n) MPC rounds.
(v) A (1 + ε)-approx. (worst case) randomized algo. that runs in Oε(1) MPC rounds.

Finally, for low-arboricity graphs, the following result may be of interest:
(vi) An O

(
λ2)

-approx. (worst case) deterministic algo. that runs in O(1) MPC rounds.
For more details and an in-depth discussion about our techniques, see Section 2.

4 Although there is no hard computation constraint in the MPC model, all known MPC algorithms spend
polynomial time on each machine in any given round.

5 In some works, “bounded degree” is synonymous with “maximum degree O(1)”. Here, we mean that
the maximum degree is O(λ).
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1.3 Outline and notation
1.3.1 Outline
Before diving into formal details, we highlight the key ideas behind our results in Section 2.
Section 3 shows how to efficiently compute a randomized greedy MIS. Our structural result
about correlation clustering in bounded arboricity graphs is presented in Section 4. We
combine this structural insight with known algorithms in Section 5 to yield efficient correlation
clustering algorithms. Finally, we conclude with some open questions in Section 6.

Please see the full version6 for formal proofs.

1.3.2 Notation
In this work, we only deal with complete signed graphs G = (V, E = E+ ∪ E−) where
|V | = n, |E| =

(
n
2
)
, and E+ and E− denote the sets of positively and negatively labeled edges

respectively. For a vertex v, the sets N+(v) ⊆ V and N−(v) ⊆ V denote vertices that are
connected to v via positive and negative edges, respectively. We write ∆ = maxv∈V |N+(v)|
as the maximum positive degree in the graph. The k-hop neighborhood of a vertex v is the
set of vertices that have a path from v involving at most k positive edges.

A clustering C is a partition of the vertex set V . That is, C is a set of sets of vertices
such that (i) A∩B = ∅ for any two sets A, B ∈ C and (ii) ∪A∈CA = V . For a cluster C ⊆ V ,
N+

C (v) = N+(v) ∩ C is the set of positive neighbors of v that lie within cluster C. We write
d+

C(v) = |N+(v) ∩ C| to denote the positive degree of v within C. If endpoints of a positive
edge do not belong to the same cluster, we say that the edge is a positive disagreement.
Meanwhile, if endpoints of a negative edge belong to the same cluster, we say that the edge
is a negative disagreement. Given a clustering C, the cost of a clustering cost(C) is defined as
the total number of disagreements.

The arboricity λG of a graph G = (V, E) is defined as λG = maxS⊆V

⌈
|E(S)|
|S|−1

⌉
, where

E(S) is the set of edges induced by S ⊆ V . We drop the subscript G when it is clear from
context. A graph with arboricity λ is said to be λ-arboric. We denote the set {1, 2, . . . , n} by
[n]. We hide absolute constant multiplicative factors and multiplicative factors logarithmic in
n using standard notations: O(·), Ω(·), and Õ(·). The notation log∗ n refers to the smallest
integer t such that the t-iterated logarithm of n is at most 1.7 An event E on a n-vertex graph
holds with high probability if it happens with probability at least 1− n−c for an arbitrary
constant c > 1, where c may affect other constants (e.g. those hidden in the asymptotics).

We now fix the parameters in our model of computation. Model 1 is the standard definition
of strongly sublinear MPC regime while Model 2 is a relaxed variant which guarantees that
there are at least M ≥ n machines. While the latter model may utilize more global memory
than the standard strongly sublinear regime, it facilitates conceptually simpler algorithms.

▶ Model 1 (Strongly sublinear MPC regime). Consider the MPC model. The input graph
with n vertices is of size N ∈ Ω(n). We have M ∈ Ω (N/S) machines, each having memory
size S ∈ Õ

(
nδ

)
, for some constant 0 < δ < 1. The total global memory usage is M · S ≥ N .

▶ Model 2 (Strongly sublinear MPC regime with at least n machines). Consider the MPC
model. The input graph with n vertices is of size N ∈ Ω(n). We have M ≥ n machines and
each vertex is given access to a machine with memory size S ∈ Õ

(
nδ

)
, for some constant

0 < δ < 1. The total global memory usage is max{Õ
(
n1+δ

)
, M · S} ≥ N .

6 Available at https://arxiv.org/abs/2102.11660.
7 That is, log(t) n ≤ 1. For all practical values of n, one may treat log∗ n ≤ 5.

https://arxiv.org/abs/2102.11660
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To avoid unnecessary technical complications for Model 2, we assume throughout the
paper that ∆ ∈ O(S). This assumption can be lifted using the virtual communication tree
technique described by Ghaffari and Uitto [26].

▶ Remark 3 (Role and motivation for Model 2). From an algorithmic design perspective, the
slightly relaxed Model 2 allows one to focus on keeping the amount of “local memory required
by each vertex” to the sublinear memory regime. Oftentimes8, algorithms are first described
in relaxed models (such as Model 2, or by simply allowing more total global memory used)
with a simple-to-understand analysis before using further complicated argument/analysis to
show that it in fact also works in Model 1.9

1.4 Further related work
Correlation clustering on complete signed graphs was introduced by Bansal, Blum and
Chawla [4].10 They showed that computing the optimal solution to correlation clustering is
NP-complete, and explored two different optimization problems: maximizing agreements, or
minimizing disagreements. While the optimum clusterings to both problems are the same (i.e.
a clustering minimizes disagreements if and only if it maximizes agreements), the complexity
landscapes of their approximate versions are wildly different.

Maximizing agreements is known to admit a polynomial time approximation scheme
in complete graphs [4]. Furthermore, Swamy [35] gave a 0.7666-approximation on general
weighted graphs via semidefinite programming.

On the other hand, for minimizing disagreements, the best known approximation ratio for
complete graphs is 2.06, due to CMSY [13], via probabilistic rounding of a linear program (LP)
solution. This 2.06-approximation uses the same LP as the one proposed by Ailon, Charikar
and Newman [2] but performs probabilistic rounding more carefully, nearly matching the
integrality gap of 2 shown by Charikar, Guruswami and Wirth [12]. In general weighted
graphs, the current state of the art, due to DEFI [19], gives an O(log n)-approximation
through an LP rounding scheme.

In a distributed setting, PPORRJ [33] presented two random algorithms (C4 and
ClusterWild!) to address the correlation clustering problem in the case of complete
graphs, aiming at better time complexities than KwikCluster. The C4 algorithm gives a 3-
approximation in expectation, with a polylogarithmic number of rounds where the greedy MIS
problem is solved on each round. The ClusterWild! algorithm gives up on the independence
property in order to speed up the process, resulting in a (3 + ε)-approximation. Both those
algorithms are proven to terminate after O

( 1
ϵ · log n · log ∆

)
rounds with high probability. A

third distributed algorithm for solving correlation clustering is given by Chierichetti, Dalvi
and Kumar [15] for the MapReduce model. Their algorithm, ParallelPivot, also gives

8 As a warm-up description of their algorithm, Ghaffari and Uitto [26, Assumption (2) on page 6] uses
more machines than just M = N/S. Meanwhile, using slightly more global memory, the algorithm
of ASSWZ [3] is straightforward to understand (e.g. see Ghaffari [22, Section 3.3]) and can achieve
conjecturally optimal running time, with respect to the Ω(log D) conditional lower bound for solving
graph connectivity in MPC via the 2-cycle problem.

9 In our case, we first designed Algorithm 3 in Model 2 but were unable to show that it also works in
Model 1. Thus, we designed Algorithm 2 that works in Model 1. However, we decided to keep the
description and analysis of the simpler Algorithm 3 in the paper – it is algorithmically very clean and
we hope that it is easier to understand the technicalities of the more involved Algorithm 3 after seeing
the structure and analysis of the simpler Algorithm 2.

10 For relevant prior work, we try our best to list all authors when there are three or less, and use their
initials when there are more (e.g. CMSY, PPORRJ, BBDFHKU). While this avoids the use of et al. in
citations in favor of an equal mention of all authors’ surnames, we apologize for the slight unreadability.

DISC 2021



15:6 Massively Parallel Correlation Clustering in Bounded Arboricity Graphs

a constant approximation in polylogarithmic time, without solving a greedy MIS in each
round. Using a tighter analysis, Fischer and Noever [21] showed that randomized greedy
MIS terminates in O(log n) round with high probability, which directly implies an O(log n)
round simulation of PIVOT in various distributed computation models.

For our approach, the randomized greedy MIS plays a crucial role in terms of the approxim-
ation ratio. Blelloch, Fineman and Shun [10] showed that randomized greedy MIS terminates
in O(log2 n) parallel rounds with high probability. This was later improved to O(log n)
rounds by Fischer and Noever [21]. Faster algorithms are known for finding an MIS that may
not satisfy the greedy property. For example, Ghaffari and Uitto [26] showed that there is an
MIS algorithm running in O

(√
log ∆ · log log ∆ +

√
log log n

)
MPC rounds. This algorithm

was later adapted to bounded arboricity with runtime of O
(√

log λ · log log λ + log2 log n
)

by
BBDFHKU [9] and improved to O

(√
log λ · log log λ + log log n

)
by Ghaffari, Grunau and

Jin [24]. There is also a deterministic MIS algorithm that runs in O (log ∆ + log log n) MPC
rounds due to Czumaj, Davies and Parter [16].

2 Techniques

In this section, we highlight the key ideas needed to obtain our results described in Section 1.2.
We begin by explaining some computational features of the MPC model so as to set up the
context needed to appreciate our algorithmic results. By exploiting these computational
features together with a structural result of randomized greedy MIS by Fischer and Noever [21],
we explain how to compute a randomized greedy MIS in O (log ∆ · log log n) MPC rounds.
We conclude this section by explaining how to obtain our correlation clustering results by
using our structural lemma that reduces the maximum degree of the input graph to O(λ).

2.1 Computational features of MPC

2.1.1 Detour: The classical models of LOCAL and CONGEST

To better appreciate of the computational features of MPC, we first describe the classical
distributed computational models of LOCAL and CONGEST [32, 34].

In the LOCAL model, all vertices are treated as individual computation nodes and are
given a unique identifier – some binary string of length O(log n). Computation occurs in
synchronous rounds where each vertex does the following: perform arbitrary local compu-
tations, then send messages (of unbounded size) to neighbors. As the LOCAL model does
not impose any restrictions on computation or communication costs (beyond a topological
restriction), the performance of LOCAL algorithms is measured in the number of rounds
used. Furthermore, since nodes can send unbounded messages, every vertex can learn about
its k-hop neighborhood in k LOCAL rounds.

The CONGEST model is identical to the LOCAL model with an additional restriction:
the size of messages that can be sent or received per round can only be O(log n) bits across
each edge. This means that CONGEST algorithms may no longer assume that they can
learn about the k-hop topology for every vertex in k CONGEST rounds.

Since the MPC model does not restrict computation within a machine, one can directly
simulate any k-round LOCAL or CONGEST algorithm in O(k) MPC rounds, as long as each
machine sends and receives messages of size at most O(S). This often allows us to directly
invoke existing LOCAL and CONGEST algorithms in a black-box fashion.
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2.1.2 Round compression
First introduced by CŁMMOSP [17], the goal of round compression is to simulate multiple
rounds of an iterative algorithm within a single MPC round. To do so, one gathers “sufficient
amount of information” into a single machine. For example, if an iterative algorithm A only
needs to know the k-hop neighborhood to perform r steps of an algorithm, then these r steps
can be compressed into a single MPC round once the k-hop neighborhood has been gathered.

2.1.3 Graph exponentiation
One way to speed up computation in an all-to-all communication setting (such as MPC) is
the well-known graph exponentiation technique of Lenzen and Wattenhofer [31]. The idea
is as follows: Suppose each vertex is currently aware of its 2k−1-hop neighborhood, then
by sending this 2k−1 topology to all their current neighbors, each vertex learns about their
respective 2k-hop neighborhoods in one additional MPC round. In other words, every vertex
can learn about its k-hop neighborhood in O(log k) MPC rounds, as long as the machine
memory is large enough. See Figure 1 for an illustration. This technique is motivated by
the fact that once a vertex has gathered its k-hop neighborhood, it can execute any LOCAL
algorithm that runs in k rounds in just a single MPC round.

u v u v
kth round2k−1 2k−1

2k

u learns from v

Figure 1 After round k, vertex u knows the graph topology within its 2k-hop neighborhood.

2.1.4 Combining graph exponentiation with round compression
Suppose we wish to execute a k-round LOCAL algorithm but the machine memory of a
single machine is too small to contain entire k-hop neighborhoods. To get around this, one
can combine graph exponentiation with round compression:
1. All vertices collect the largest possible neighborhood using graph exponentiation.
2. Suppose ℓ-hop neighborhoods were collected, for some ℓ < k. All vertices simulate ℓ steps

of the LOCAL algorithm in a single MPC round using round compression.
3. All vertices update their neighbors about the status of their computation.
4. Repeat steps 2-3 for O(k/ℓ) phases.
This essentially creates a virtual communication graph where vertices are connected to their
ℓ-hop neighborhoods. This allows a vertex to derive, in one round of MPC, all the messages
that reaches it in the next ℓ rounds of message passing. Using one more MPC round and the
fact that local computation is unbounded, a vertex can inform all its neighbors in the virtual
graph about its current state in the simulated message passing algorithm. See Figure 2.

DISC 2021
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Vertices gather ℓ-hop neighborhood

via graph exponentiation

u w v

u w v

Figure 2 Suppose ℓ = 2. After each vertex collects their ℓ-hop neighborhood, computation
within each collected neighborhood can be performed in a single compressed MPC round. While
the vertices u and v were originally 8 hops apart, they can communicate in 2 MPC rounds through
vertex w’s collected neighborhood in the virtual communication graph. Observe that this virtual
communication graph has a smaller effective diameter compared to the original input graph.

▶ Remark 4. In Section 2.1.4, we make the implicit assumption that the states of the vertices
are small and hence can be communicated with small messages. In many algorithms (e.g.
for solving MIS, matching, coloring), including ours, the vertices maintain very small states.
Hence, we omit discussion of individual message sizes in the scope of this paper.

2.1.5 Broadcast / Convergecast trees
Broadcast trees are a useful MPC data structure introduced by Goodrich, Sitchinava and
Zhang [27] that allow us to perform certain aggregation tasks in O (1/δ) MPC rounds, which
is essentially O(1) for constant δ. Suppose we have O(N) global memory and S = O

(
nδ

)
local memory.11 We build an S-ary virtual communication tree over the machines. That is,
within one MPC round, the parent machine can send O(1) numbers to each of its S children
machines, or collect one number from each of its S children machines. In O (logS N) ⊆ O (1/δ)
rounds, for all vertices v in parallel, one can:

broadcast a message from v to all neighboring vertices in N(v);
compute f(N(v)), the value of a distributive aggregate function f on set of vertices N(v).

An example of such a function f is computing the sum/min/max of numbers that were
originally distributed across all machines. We use broadcast trees in the MPC implementation
of the algorithm described in Corollary 32.

2.2 Randomized greedy MIS on bounded degree graphs
The following result of Fischer and Noever [21] states that each vertex only needs the ordering
of the vertices within its O(log n)-hop neighborhood in order to compute its own output
status within a randomized greedy MIS run.12

▶ Theorem 5 (Fischer and Noever [21]). Given a uniform-at-random ordering of vertices,
with high probability, the MIS status of any vertex is determined by the vertex orderings
within its O(log n)-hop neighborhood.

11 We borrow some notation from Ghaffari and Nowicki [25, Lemma 3.5]. For n-vertex graphs, N ∈ O(n2).
12 More specifically, they analyzed the “longest length of a dependency path” and showed that it is O(log n)

with high probability, which implies Theorem 5.
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Let π : [n] → V be a uniform-at-random ordering of vertices and G be a graph with
maximum degree ∆. In Section 3, we show that one can compute greedy MIS (with respect
to π) in O (log ∆ · log log n) MPC rounds.

▶ Theorem 6 (Randomized greedy MIS (Informal)). Let G be a graph with maximum degree
∆. Then, randomized greedy MIS can be computed in O

(
log ∆ · log3 log n

)
MPC rounds in

Model 1, or in O (log ∆ · log log n) MPC rounds in Model 2.

Algorithm 1 works in phases. In each phase, we process a prefix graph Gprefix defined
by vertices indexed by a prefix of π, where the maximum degree is O(log n) by Chernoff
bounds. Algorithm 2 and Algorithm 3 are two subroutines to process prefix graph Gprefix.
The latter subroutine is faster by a log2 log n factor but assumes access to more machines.
For a sufficiently large prefix of π, the maximum degree of the input graph after processing
Gprefix drops to ∆/2 with high probability. This concludes a phase. Since the maximum
degree in the original graph is halved, we can process more vertices in subsequent phases
and thus process all n vertices after O(log ∆) phases. See Figure 3 for an illustration.
▶ Remark 7 (Discussion about maximum degree). We implicitly assume that ∆ > 1, which
can be checked in O(1) rounds. Otherwise, when ∆ = 1, the graph only contain pairs of
vertices and isolated vertices and greedy MIS can be trivially simulated in one round.

Algorithm 1 Greedy MIS in sublinear memory regime of the MPC model.

1: Input: Graph G = (V, E) with maximum degree ∆
2: Let π : [n]→ V be an ordering of vertices chosen uniformly at random.
3: for i = 0, 1, 2, . . . ,O (log ∆) do ▷ O (log ∆) phases, or until G is empty
4: Let prefix size ti = O

(
n log n
∆/2i

)
and prefix offset oi =

∑i−1
z=0 tz.

5: Gi ← Prefix graph induced by vertices π(oi + 1), . . . , π(oi + ti) with max. degree ∆′.
6: Process Gi using Algorithm 2 or Algorithm 3. ▷ By Chernoff bounds, ∆′ ∈ O(log n)
7: end for
8: Process any remaining vertices in G using additional O(log log n) MPC rounds.

Algorithm 2 Greedy MIS on n-vertex graph in O
(
log2 ∆ · log log n

)
MPC rounds in Model 1.

1: Input: Vertex ordering π, graph G on n vertices with maximum degree ∆
2: for i = 0, 1, 2, . . . , ⌈log2 ∆⌉ do ▷ O (log ∆) phases, or until G is empty
3: Let chunk size ci = 2i

100∆ · n. ▷ Chunk size doubles per phase
4: for j = 1, 2, . . . , 2000 log ∆ do ▷ O (log ∆) iterations, or until G is empty
5: Let offset oi,j = ci · (j − 1) +

∑i−1
z=0 cz · 2000 log ∆.

6: Let chunk graph Gi,j be the graph induced by vertices π (oi,j) , ..., π (oi,j + ci).
7: Process chunk graph Gi,j .
8: end for
9: end for

▶ Remark 8 (Discussion about Algorithm 2). Our algorithm is inspired by the idea of graph
shattering introduced by BEPS [6]. We break up the simulation of greedy MIS on Gprefix
into O(log ∆) phases that process chunks of increasing size within the prefix graph. By
performing O(log ∆) iterations within a phase, we can argue that any vertex in the remaining
prefix graph has “low degree” with high probability in ∆. This allows us to prove that
the connected components while processing every chunk of vertices is at most O(log n) and
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each vertex can learn (within the global memory limits) about the topology of its connected
component in O(log log n) rounds via graph exponentiation. The constants 100 and 2000 are
chosen for a cleaner analysis. While the algorithm indexes more than n vertices, we simply
terminate after processing the last vertex in the permutation.13

Algorithm 3 Greedy MIS on n-vertex graph in O (log log n + log ∆) MPC rounds in Model 2.

1: Input: Vertex ordering π, graph G on n vertices with maximum degree ∆
2: Assign a machine to each vertex. ▷ In Model 2, we have ≥ n machines.
3: Graph exponentiate and gather R-hop neighborhood, where R ∈ O

(
log n
log ∆

)
.

4: Simulate greedy MIS (with respect to π) in O (log ∆) MPC rounds.

▶ Remark 9 (Discussion about Algorithm 3). We know from Theorem 5 that it suffices for
each vertex know its O(log n)-hop neighborhood in order to determine whether it is in the
greedy MIS. However, the O(log n)-hop neighborhoods may not fit in a single machine. So,
we use Section 2.1.4 to obtain a running time of O

(
log R + log n

R

)
⊆ O (log log n + log ∆).

▶ Remark 10 (Comparison with the work of Blelloch, Fineman and Shun (BFS) [10]). The
algorithm of BFS [10] also considered prefixes of increasing size and they have a similar
lemma as our Lemma 22. However, their work does not immediately imply ours. The focus
of BFS [10] was in the PRAM model in which the goal is to obtain an algorithm that is
small work-depth – they gave implementation of their algorithms that does a linear amount
of work with polylogarithmic depth. In this work, we are interested in studying the MPC
model, in particular the sublinear memory regime. Directly simulating their algorithm in
MPC yields an algorithm that runs in O(log ∆ · log n) rounds. Here, we crucially exploit
graph exponentiation and round compression to speed up the greedy MIS simulation prefix
graphs, enabling us to obtain algorithms that have an exponentially better dependency on n,
i.e. that run in O(log ∆ · poly(log log n)) rounds.

2.3 Correlation clustering on bounded arboricity graphs
Our algorithmic results for correlation clustering derive from the following key structural
lemma that is proven by arguing that a local improvement to the clustering cost is possible
if there exists large clusters.

▶ Lemma 11 (Structural lemma for correlation clustering (Informal)). There exists an optimum
correlation clustering where all clusters have size at most 4λ− 2.

This structural lemma allows us to perform cost-charging arguments against some op-
timum clustering with bounded cluster sizes. In particular, if a vertex has degree much larger
than λ, then many of its incident edges incur disagreements. This insight yields the following
algorithmic implication: we can effectively ignore high-degree vertices.

▶ Theorem 12 (Algorithmic implication (Informal)). Let G be a graph where E+ induces
a λ-arboric graph. Form singleton clusters with vertices with degrees O (λ/ε). Run an
α-approximate algorithm A on the remaining subgraph. Then, the union of clusters is a
max{1 + ε, α}-approximation. The runtime and approximation guarantees of the overall
algorithm follows from the guarantees of A (e.g. in expectation / worst case, det. / rand.).

13 After all phases, we would have processed
∑⌈log2 ∆⌉

j=0 cj ·2000 log ∆ ≥ 2⌈log2 ∆⌉

∆ ·n ·2000 log ∆ ≥ n vertices.
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Phase 1
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Phase 2
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O (log ∆)
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Process with Algorithm 2 or Algorithm 3

Process with Algorithm 2 or Algorithm 3

Process with Algorithm 2 or Algorithm 3

π(1) . . . π(t1) . . . π(n)

π(t1 + 1) . . . π(t1 + t2) . . . π(n)

π(t1 + t2 + 1) . . . π(n)

π(n)

Figure 3 Illustration of Algorithm 1 given an initial graph G on n vertices with maximum
degree ∆. Let i ∈ {1, . . . , O(log ∆)} and define ti = O

(
n log n
∆/2i

)
. For each i, with high probability,

the induced subgraph Gi has maximum degree poly(log n). To process Gi, apply Algorithm 2 in
O(log3 log n) MPC rounds, or Algorithm 3 in O(log log n) MPC rounds while using extra global
memory. By our choice of ti, Lemma 22 tells us that remaining subgraph Hi has maximum degree
∆/2i. We repeat this argument until the final subgraph Hfinal involving poly(log n) vertices, which
can be processed in another call to Algorithm 2 or Algorithm 3.

Observe that PIVOT essentially simulates a randomized greedy MIS with respect to a
uniform-at-random ordering of vertices. By setting ε = 2 in Theorem 12 and ∆ = O(λ)
in Theorem 6, we immediately obtain a 3-approximation (in expectation) algorithm for
correlation clustering in O (log λ · poly(log log n)) MPC rounds. Note that we always have
λ ≤ ∆ ≤ n, and that λ can be significantly smaller than ∆ and n in general. Many sparse
graphs have λ ∈ O(1) while having unbounded maximum degrees, including planar graphs
and bounded treewidth graphs. As such, for several classes of graphs, our result improves
over directly simulating PIVOT in O(log n) rounds.

▶ Corollary 13 (General algorithm (Informal)). Let G be a complete signed graph such that E+

induces a λ-arboric graph. There exists an algorithm that, with high probability, produces a
3-approximation (in expectation) for correlation clustering of G in O

(
log λ · log3 log n

)
MPC

rounds in Model 1, or O (log λ · log log n) MPC rounds in Model 2.

▶ Remark 14 (On converting “in expectation” to “with high probability”). Note that one can
run O(log n) copies of Corollary 13 in parallel and output the best clustering. Applying this
standard trick converts the “in expectation” guarantee to a “with high probability” guarantee
with only a logarithmic factor increase in memory consumption.

For forests with λ = 1, Lemma 11 states that the optimum correlation clustering cost
corresponds to the number of edges minus the size of the maximum matching. Instead of
computing a maximum matching, Lemma 15 tells us that using an approximate matching
suffices to obtain an α-approximation (not necessarily maximal) to the correlation clustering
problem. Note that maximal matchings are 2-approximations and they always apply.
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▶ Lemma 15 (Approximation via approximate matchings (Informal)). Let G be a complete
signed graph such that E+ induces a forest. Suppose that the maximum matching size on
E+ is |M∗|. If M is a matching on E+ such that α · |M | ≥ |M∗|, for some 1 ≤ α ≤ 2, then
clustering using M yields an α-approximation to the optimum correlation clustering of G.

Thus, it suffices to apply known maximum/approximate matching algorithms in sublinear
memory regime of MPC to obtain correlation clustering algorithms in the special case of
λ = 1. More specifically, we consider the following results.

Using dynamic programming, BBDHM [7] compute a maximum matching (on trees) in
O(log n) MPC rounds.
In the LOCAL model, EMR [20] deterministically solve (1 + ε)-approx. matching in
O

(
∆O( 1

ε ) + 1
ε2 · log∗ n

)
rounds.

In the CONGEST model, BCGS [5] give an O
(

2O(1/ε) · log ∆
log log ∆

)
round randomized

algorithm for (1 + ε)-approx. matching.
These approximation results are heavily based on the Hopcroft-Karp framework [28], where
independent sets of augmenting paths are iteratively flipped. Since λ = 1 and ε is a constant,
we have a subgraph of constant maximum degree by ignoring vertices with degrees O(λ/ε).
On this constant degree graph, each vertex only needs polylogarithmic memory when we
perform graph exponentiation, satisfying the memory constraints of Model 1. Applying these
matching algorithms together with Theorem 12 and Lemma 15 yields the following result.

▶ Corollary 16 (Forest algorithm (Informal)). Let G be a complete signed graph such that E+

induces a forest and 0 < ε ≤ 1 be a constant. Hiding factors in 1/ε using Oε(·), there exists:
1. An optimum randomized algorithm that runs in O(log n) MPC rounds.
2. A (1 + ε)-approximation (worst case) det. algo. that runs in Oε (log log∗ n) MPC rounds.
3. A (1 + ε)-approximation (worst case) randomized algo. that runs in Oε (1) MPC rounds.

Finally, we give a simple O
(
λ2)

-approximate (worst-case) algorithm in O(1) MPC rounds.

▶ Corollary 17 (Simple algorithm (Informal)). Let G be a complete signed graph such that
E+ induces a λ-arboric graph. Then, there exists an O

(
λ2)

-approximation (worst case)
deterministic algorithm that runs in O(1) MPC rounds.

The simple algorithm is as follows: connected components which are cliques form clusters,
and all other vertices form individual singleton clusters. This can be implemented in O(1)
MPC rounds using broadcast trees. We now give an informal argument when the input
graph is a single connected component but not a clique. By Lemma 11, there will be ≥ n/λ

clusters and so the optimal number of disagreements is ≥ n/λ. Meanwhile, the singleton
clusters incurs errors on all positive edges, i.e. ≤ λ · n since E+ induces a λ-arboric graph.
Thus, the worst possible approximation ratio is ≈ λ2.

3 Randomized greedy MIS on bounded degree graphs

In this section, we explain how to efficiently compute a randomized greedy MIS in the
sublinear memory regime of the MPC model. We will first individually analyze Algorithm 2
and Algorithm 3 and then show how to use them as black-box subroutines in Algorithm 1.
Both Algorithm 2 and Algorithm 3 rely on the result of Fischer and Noever [21] that it
suffices for each vertex to know the π ordering of its O(log n)-hop neighborhood.

Algorithm 2 is inspired by the graph shattering idea introduced by BEPS [6]. Our analysis
follows a similar outline as the analysis of the maximal independent set of BEPS [6] but
is significantly simpler as our “vertex sampling process” in each step simply follows the
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uniform-at-random vertex permutation π: we do not explicitly handle high-degree vertices at
the end, but we argue that connected components are still small even if π chooses some of
them. The key crux of our analysis is to argue that, for appropriately defined step sizes, the
connected components considered are of size O(log n).

▶ Lemma 18. Consider Algorithm 2. With high probability in n, the connected components
in any chunk graph Gi,j have size O(log n).

This allows us to argue that all vertices involved can learn the full topology of their
connected components via graph exponentiation in O(log log n) MPC rounds in Model 1.

▶ Lemma 19. Consider Algorithm 2 in Model 1. Fix an arbitrary chunk graph Gi,j. If
connected components in Gi,j have size at most poly(log n), then every vertex can learn the
full topology of its connected component in O(log log n) MPC rounds.

▶ Lemma 20. Consider Algorithm 2 in Model 1. Suppose G = (V, E) has n vertices with
maximum degree ∆. Let π be a uniform-at-random ordering of V . Then, with high probability,
one can simulate greedy MIS on G (with respect to π) in O

(
log2 ∆ · log log n

)
MPC rounds.

By using at least n machines, Algorithm 3 presents a simpler and faster algorithm for
computing greedy MIS compared to Algorithm 2. It exploits computational features of the
MPC model such as graph exponentiation and round compression to speed up computation.

▶ Lemma 21. Consider Algorithm 3 in Model 2. Suppose G = (V, E) has n vertices with
maximum degree ∆. Let π be a uniform-at-random ordering of V . Then, with high probability,
one can simulate greedy MIS on G (with respect to π) in O (log log n + log ∆) MPC rounds.

Recall that Algorithm 1 uses Algorithm 2 or Algorithm 3 as subroutines to compute
the greedy MIS on a subgraph induced by some prefix of π’s ordering in each phase. We
first prove Lemma 22 which bounds the maximum degree of the remaining subgraph after
processing t ≤ n vertices. By our choice of prefix sizes, we see that the maximum degree is
halved with high probability in each phase and thus O(log ∆) phases suffice.

▶ Lemma 22. Let G be a graph on n vertices and π : [n] → V be a uniform-at-random
ordering of vertices. For t ∈ [n], consider the subgraph Ht obtained after processing vertices
{π(1), . . . , π(t)} via greedy MIS (with respect to π). Then, with high probability, the maximum
degree in Ht is at most O

(
n log n

t

)
.

▶ Remark 23. Similar statements to Lemma 21 and Lemma 22 were previously known.14

▶ Theorem 24. Let G be a graph with n vertices of maximum degree ∆ and π : [n] → V

be a uniform-at-random ordering of vertices. Then, with high probability, one can com-
pute greedy MIS (with respect to π) in O

(
log ∆ · log3 log n

)
MPC rounds in Model 1, or

O (log ∆ · log log n) MPC rounds in Model 2.

4 Structural properties for correlation clustering

In this section, we prove our main result (Theorem 26) about correlation clustering by ignoring
high-degree vertices. To do so, we first show a structural result of optimum correlation
clusterings (Lemma 25): there exists an optimum clustering with bounded cluster sizes. This
structural lemma also implies that in the special case of forests (i.e. λ = 1), a maximum
matching on E+ yields an optimum correlation clustering of G (Corollary 27).

14 E.g. see GGKMR [23, Section 3], ACGMW [1, Lemma 27], and BFS [10, Lemma 3.1].
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▶ Lemma 25 (Structural lemma for correlation clustering). Let G be a complete signed graph
such that positive edges E+ induce a λ-arboric graph. Then, there exists an optimum
correlation clustering where all clusters have size at most 4λ− 2.

Proof sketch. The proof involves performing local updates by repeatedly removing vertices
from large clusters while arguing that the number of disagreements does not increase (it may
not strictly decrease but may stay the same). ◀

▶ Theorem 26 (Algorithmic implication of Lemma 25). Let G be a complete signed graph such
that positive edges E+ induce a λ-arboric graph. For ε > 0, let

H =
{

v ∈ V : d(v) >
8(1 + ε)

ε
· λ

}
⊆ V

be the set of high-degree vertices, and G′ ⊆ G be the subgraph obtained by removing high-
degree vertices in H. Suppose A is an α-approximate correlation clustering algorithm and
cost(OPT (G)) is the optimum correlation clustering cost. Then,

cost ({{v} : v ∈ H} ∪ A(G′)) ≤ max {1 + ε, α} · cost(OPT (G))

where {{v} : v ∈ H} ∪A(G′) is the clustering obtained by combining the singleton clusters of
high-degree vertices with A’s clustering of G′. See Algorithm 4 for a pseudocode. Furthermore,
if A is α-approximation only in expectation, then the above inequality holds only in expectation.

Proof sketch. Fix an optimum clustering OPT (G) of G where each cluster has size at most
4λ− 2. Such a clustering exists by Lemma 25. One can then show that cost(OPT (G)) ≥

1
1+ε · |M

+|+ (disagreements in U), where |M+| is the number of positive edges adjacent to
high-degree vertices and U is the set of edges not adjacent to any high-degree vertex. The
result follows by combining singleton clusters of high-degree vertices H and the α-approximate
clustering on low-degree vertices U using A. ◀

Algorithm 4 Correlation clustering for G such that E+ induces a λ-arboric graph.

1: Input: Graph G, ε > 0, α-approximate algorithm A
2: Let H =

{
v ∈ V : d(v) > 8(1+ε)

ε · λ
}
⊆ V be the set of high-degree vertices.

3: Let G′ ⊆ G be a bounded degree subgraph obtained by removing high-degree vertices H.
4: Let A(G′) be the clustering obtained by running A on the subgraph G′.
5: Return Clustering {{v} : v ∈ H} ∪ A(G′).

▶ Corollary 27 (Maximum matchings yield optimum correlation clustering in forests). Let G

be a complete signed graph such that positive edges E+ induce a forest (i.e. λ = 1). Then,
clustering using a maximum matching on E+ yields an optimum cost correlation clustering.

5 Minimizing disagreements in bounded arboricity graphs and forests

We now describe how to use our main result (Theorem 26) to obtain efficient correlation
clustering algorithms in the sublinear memory regime of the MPC model. Theorem 26 implies
that we can focus on solving correlation clustering on graphs with maximum degree O(λ).
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For general λ-arboric graphs, we simulate PIVOT by invoking Theorem 24 to obtain
Corollary 28. For forests, Corollary 27 states that a maximum matching on E+ yields an
optimal correlation clustering. Then, Lemma 29 tells us that if one computes an approximate
matching (not necessarily maximal) instead of a maximum matching, we still get a reasonable
cost approximation to the optimum correlation clustering. By invoking existing matching
algorithms, we show how to obtain three different correlation clustering algorithms (with
different guarantees) in Corollary 31. Finally, Corollary 32 gives a deterministic constant
round algorithm that yields an O(λ2) approximation.

▶ Corollary 28. Let G be a complete signed graph such that positive edges E+ induce a λ-
arboric graph. With high probability, there exists an algorithm that produces a 3-approximation
(in expectation) for correlation clustering of G in O

(
log λ · log3 log n

)
MPC rounds in Model 1,

or O (log λ · log log n) MPC rounds in Model 2.

▶ Lemma 29. Let G be a complete signed graph such that positive edges E+ induce a forest.
Suppose |M∗| is the size of a maximum matching on E+ and M is an approximate matching
on E+ where α · |M | ≥ |M∗| for some 1 ≤ α ≤ 2. Then, clustering using M yields an
α-approximation to the optimum correlation clustering of G.

▶ Remark 30. The approximation ratio of Lemma 29 tends to 1 as |M | tends to |M∗|. The
worst ratio possible is 2 and this approximation ratio is tight: consider a path of 4 vertices
and 3 edges with |M∗| = 2 and maximal matching |M | = 1.

▶ Corollary 31. Consider Model 1. Let G be a complete signed graph such that positive edges
E+ induce a forest. Let 0 < ε ≤ 1 be a constant. Then, there exists the following algorithms
for correlation clustering:
1. An optimum randomized algorithm that runs in Õ(log n) MPC rounds.
2. A (1 + ε)-approx. (worst case) deterministic algo. that runs in O

( 1
ε ·

(
log 1

ε + log log∗ n
))

MPC rounds.
3. A (1 + ε)-approx. (worst case) randomized algo. that runs in O

(
log log 1

ε

)
MPC rounds.

▶ Corollary 32. Consider Model 1. Let G be a complete signed graph such that positive edges
E+ induce a λ-arboric graph. Then, there exists a deterministic algorithm that produces an
O(λ2)-approximation (worst case) for correlation clustering of G in O(1) MPC rounds.

▶ Remark 33. The approximation analysis in Corollary 32 is tight (up to constant factors):
consider the barbell graph where two cliques Kλ (cliques on λ vertices) are joined by a
single edge. The optimum clustering forms a cluster on each Kλ and incurs one external
disagreement. Meanwhile, forming singleton clusters incurs ≈ λ2 positive disagreements.

6 Conclusions and open questions

In this work, we present a structural result on correlation clustering of complete signed
graphs such that the positive edges induce a bounded arboricity graph. Combining this with
known algorithms, we obtain efficient algorithms in the sublinear memory regime of the MPC
model. We also showed how to compute a randomized greedy MIS in O (log ∆ · log log n)
MPC rounds. As intriguing directions for future work, we pose the following questions:

▶ Question 1. For graphs with maximum degree ∆ ∈ poly(log n), can one compute greedy
MIS in O (log log n) MPC rounds in the sublinear memory regime of the MPC model?
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For graphs with maximum degree ∆ ∈ poly(log n), Algorithm 2 runs in O
(
log3 log n

)
MPC

rounds and Algorithm 3 runs in O (log log n) MPC rounds assuming access to at least
n machines. Is it possible to achieve running time of O (log log n) MPC rounds without
additional global memory assumptions?

▶ Question 2. Can a randomized greedy MIS be computed in O (log ∆ + log log n) or
O

(√
log ∆ + log log n

)
MPC rounds?

This would imply that a 3-approximate (in expectation) correlation clustering al-
gorithm in the same number of MPC rounds. We posit that a better running time than
O (log ∆ · log log n) should be possible. The informal intuition is as follows: Fischer and
Noever’s result [21] tells us that most vertices do not have long dependency chains in every
phase, so “pipelining arguments” might work.

▶ Question 3. Is there an efficient distributed algorithm to minimize disagreements with an
approximation guarantee strictly better than 3 (in expectation), or worst-case guarantees for
general graphs?

For minimizing disagreements in complete signed graphs, known algorithms (see Sec-
tion 1.4) with approximation guarantees strictly less than 3 (in expectation) are based on
probabilistic rounding of LPs. Can one implement such LPs efficiently in a distributed
setting, or design an algorithm that is amenable to a distributed implementation with provable
guarantees strictly better than 3? In this work, we gave algorithms with worst-case approx-
imation guarantees when the graph induced by positive edges is a forest. Can one design
algorithms that give worst-case guarantees for general graphs?
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