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Differentially Private Bayesian Inference for Generalized Linear Models

Tejas Kulkarni 1 Joonas Jälkö 1 Antti Koskela 2 Samuel Kaski 1 3 Antti Honkela 2

Abstract
Generalized linear models (GLMs) such as logis-
tic regression are among the most widely used
arms in data analyst’s repertoire and often used
on sensitive datasets. A large body of prior works
that investigate GLMs under differential privacy
(DP) constraints provide only private point esti-
mates of the regression coefficients, and are not
able to quantify parameter uncertainty.

In this work, with logistic and Poisson regres-
sion as running examples, we introduce a generic
noise-aware DP Bayesian inference method for
a GLM at hand, given a noisy sum of summary
statistics. Quantifying uncertainty allows us to
determine which of the regression coefficients
are statistically significantly different from zero.
We provide a tight privacy analysis and experi-
mentally demonstrate that the posteriors obtained
from our model, while adhering to strong privacy
guarantees, are close to the non-private posteriors.

1. Introduction
Differential privacy (DP) (Dwork et al., 2006) provides a
strong framework for protecting the privacy of data sub-
jects against privacy violations via models trained on their
personal data. DP protection requires injecting noise to
the learning process. Bayesian inference is a natural com-
plement to DP, because it seeks to quantify the impact of
noise to inference result in terms of quantifying the un-
certainty of the result. In our work we seek to develop a
Bayesian method to perform inference under DP and quan-
tify the uncertainty caused by the injected noise for the
widely used class of regression models, generalised linear
models (GLMs). This method allows statistical inference
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on the regression coefficients, such as determining which
coefficients can be confidently inferred to be different from
zero.

Using Bayesian inference to counter the noise injected to
ensure DP was first proposed by Williams and McSherry
(2010). The process is fairly straightforward for models
where the joint distribution Pr[D,θ,Z] over the data D,
all parameters θ and possible latent variables Z of interest
is specified as part of the model. This was demonstrated by
Bernstein and Sheldon (2018), who presented an efficient
inference method for exponential family models of this
form.

The problem becomes significantly more difficult for dis-
criminative models such as regression models, where the
model does not specify a distribution over the input data
X but only target outputs Y and parameters Pr[Y ,θ |X].
This is because we also consider input X as private infor-
mation, and thus we cannot observe it directly. On the other
hand, the model does not specify a natural prior forX either.
In order to solve this issue, we need to augment the model
to include a prior for X . This was first demonstrated by
Bernstein and Sheldon (2019), who developed a method for
linear regression by placing a Gaussian prior on X . The
method relies on the ability to express the model via a suffi-
cient statistic of fixed size, and hence only applies to linear
regression.

In our work we extend this sufficient statistics based noise-
aware DP Bayesian inference framework for a much broader
class of regression models, GLMs. These include many of
the most widely used statistical models, such as logistic
regression and Poisson regression. As GLMs typically have
no sufficient statistics, this is achieved by approximating the
joint distribution of the inputs and outputs under the GLM
using a finite number of moments as approximate sufficient
statistics and fitting the model parameters to match these
moments.

Related work. Linear models have received a huge amount
of attention under DP since its proposal. The techniques
for point estimates for regression parameters fall to five
main categories, a) objective perturbation (Chaudhuri et al.,
2011; Kifer and Machanavajjhala, 2011; Zhang et al., 2012;
Iyengar et al., 2019), b) output perturbation (Wu et al.,
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2017; Zhang et al., 2017), c) gradient perturbation (Bassily
et al., 2014; Abadi et al., 2016), d) subsample and aggre-
gate (Smith, 2008; Dwork and Smith, 2010; Barrientos et al.,
2019), and e) sufficient statistic perturbation (SSP) (McSh-
erry and Mironov, 2009; Vu and Slavkovic, 2009; Sheffet,
2017; Wang, 2018). Other representative works that specif-
ically study generalized linear models (GLMs) more gen-
erally under various DP models include (Kifer et al., 2012;
Jain and Thakurta, 2014; Pihur et al., 2018; Wang et al.,
2019; 2021). Only a handful of these works, e.g. (Sheffet,
2017; Barrientos et al., 2019), quantify the uncertainty in
the model parameter estimates via frequentist tools such as
confidence intervals and hypothesis testing.

To quantify the uncertainty beyond the frequentist tools,
many Bayesian inference techniques under DP setting have
been proposed, starting from the seminal work of Williams
and McSherry (2010). The field can be roughly clustered
into three broad categories:

1. sufficient statistics perturbation based inference
(Foulds et al., 2016; Zhang et al., 2016; Honkela et al.,
2018; Bernstein and Sheldon, 2018; 2019; Park et al.,
2020)

2. gradient perturbation based Markov chain Monte
Carlo (MCMC) (Wang et al., 2015; Zhang et al., 2016;
Li et al., 2019a) and variational inference (VI) (Jälkö
et al., 2017)

3. DP posterior sampling (Dimitrakakis et al., 2014;
Foulds et al., 2016; Zhang et al., 2016; Heikkilä et al.,
2019; Yıldırım and Ermiş, 2019).

Categories 2 and 3 aim to provide a general-purpose solution
for differentially private Bayesian inference. However, the
output of these mechanisms is an approximation of the poste-
rior distribution where the impact of added uncertainty from
privacy is not quantified. Category 1 is most closely related
to our work. In these works, posterior distribution of the
model parameters is captured through perturbed sufficient
statistics, but also here many approaches fail to quantify the
impact of the added uncertainty from privacy.

Among the several approaches proposed, inference tech-
niques based on sufficient statistics perturbation stand out
due to their computational efficiency and accuracy (Wang,
2018). Unlike DP variants of general purpose MCMC meth-
ods, the privacy cost of training in a sufficient statistics
based model is typically invariant to the number of iter-
ations/posterior samples. We only pay once to perturbs
the sum of sufficient statistics and then rely on the post-
processing property of DP to run iterative inference without
additional privacy cost.

Main contributions. The main contributions of this work
are as follows:

• We derive noise-aware DP Bayesian inference for
GLMs based on approximate sufficient statistics from
low-order polynomials.

• We prove tight (ε, δ)-DP bounds for releasing the ap-
proximate sufficient statistics.

• We demonstrate accurate privacy-preserving inference
of which regression coefficients are significantly differ-
ent from zero.

• We demonstrate high degree of similarity between the
privacy-preserving and non-private posterior distribu-
tions for GLMs even under strong privacy for moder-
ately sized data.

2. Background
2.1. Differential Privacy (DP)

Assume a generic dataset D ∈ RN×d containing d-
dimensional records of N individuals. We define neigh-
bourhood relationD ∼D′ whenD′ can be obtained from
D by replacing a single record. Dwork et al. (2006) pro-
posed the following notion:

Definition 2.1. For ε ≥ 0, δ ≥ 0, a randomized mechanism
M satisfies (ε, δ)-differential privacy if for all neighbouring
datasets D ∼ D′, and for all outputs O ⊆ Range(M),
the following constraint holds:

Pr[M(D) ∈ O] ≤ exp(ε)× Pr[M(D′) ∈ O] + δ. (1)

Lower values of ε and δ provide stronger privacy.

The condition (1) can often be satisfied, for example, by
adding Gaussian noise to a function of the dataset such that
every individual’s contribution is masked. A key property
of DP is its robustness to post-processing: the privacy loss
of M cannot be increased by applying any randomized
function independent of the data toM’s output.

The concept of sensitivity measures the worst-case impact
of an individual’s record on the output of a function.

Definition 2.2. The L2-sensitivity ∆t of a function t :
RN×d → Rm is defined as ∆t = maxD∼D′ ||t(D) −
t(D′)||2.

Analytic Gaussian Mechanism (Balle and Wang, 2018).
Balle and Wang (2018) proposed an algorithmic noise cali-
bration strategy based on the Gaussian cumulative density
function (CDF) to obtain a mechanism that adds the least
amount of Gaussian noise needed for (ε, δ)-DP.

Definition 2.3. (Analytic Gaussian Mechanism) For any
ε ≥ 0, δ ∈ [0, 1], a mechanismM(D) = t(D) + ζ with
sensitivity ∆t satisfies (ε, δ)-DP with ζ ∼ N (0, σ2I) iff

Φ

(
∆t

2σ
− εσ

∆t

)
− exp(ε)Φ

(
−∆t

2σ
− εσ

∆t

)
≤ δ. (2)
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We use the implementation based on Algorithm 1 of Balle
and Wang (2018) to find a minimal σ that satisfies the con-
dition (2).

2.2. Bayesian inference based on sufficient statistics

For certain statistical models, the information about data
needed for parameter inference can be captured by a lim-
ited number of sufficient statistics. Sufficient statistics are
available for exponential family models, such as linear re-
gression. For Bayesian linear regression, the sufficient statis-
tics are s =

∑N
i=1 t(xi, yi) = [XTX,XTy,yTy], where

X ∈ RN×d. With access to s (O(N) operation), we can
evaluate the total log-likelihood log(

∏N
i=1 Pr[yi|xi,θ]) =∑N

i=1 log(Pr[yi|xi,θ]) or its gradients in nearly a constant
time. As a consequence, running time of a training algo-
rithm taking K passes over data reduces substantially to
O(N +K) from O(NK).

2.3. Privacy-preserving posterior inference with
sufficient statistics

Consider a conditional probabilistic model Pr[y|θ,X]
where the information in (X,y) needed for inference of
θ can be represented by sufficient statistics s ∈ Rm. Let
θ ∈ Rd denote the regression parameters. In order to adapt
the model for DP, we need to make additional assumptions
on X . Following Bernstein and Sheldon (2019), we as-
sume X ∼ N (0,Σ), where Σ ∈ Rd×d is an additional
parameter denoting the input data covariance matrix. We
guarantee privacy by operating solely on the perturbed suffi-
cient statistics, denoted by z ∈ Rm. The noise-aware joint
posterior distribution of the model parameters θ,Σ, given
noisy sufficient statistics z is

Pr[θ,Σ|z] ∝ Pr[θ,Σ, z] =

∫
s

Pr[θ,Σ, s, z] ds

=

∫
s

Pr[θ] Pr[Σ] Pr[s | θ,Σ] Pr[z | s] ds,

(3)

where Pr[θ] and Pr[Σ] are the priors for model parameters
and the privacy inducing noise is quantified by the term
Pr[z | s]. Figure 1 depicts above model. The remaining
challenge is to define the probabilistic model for the latent
sufficient statistics s.

Normal approximation of s. We obtain the sufficient
statistic distribution Pr[s | θ,Σ] by marginalizing over
the data: Pr[s | θ,Σ] =

∫
X,y:t(X,y)=s

Pr[X,y |
θ,Σ] dX dy. However, this integral is in general in-
tractable due to (possibly infinite) number of combina-
tions of X ∈ RN×d,y ∈ RN that produce the sufficient
statistic s. As s is a sum of individual sufficient statistics
t(xi, yi), Bernstein and Sheldon (2019) proposed to ap-
proximate Pr[s | θ,Σ] as a multivariate normal distribution

N (s | Nµs, NΣs), according to the central limit theorem,1

with mean µs = E[s] and covariance Σs = Cov[s].

2.4. Generalized linear models

Generalized linear models (GLMs, Nelder and Wedderburn,
1972) include some of the most commonly used statisti-
cal models. GLMs extend linear regression by allowing
for the possibility of more general outcome distributions
such as binary, count, and heavy-tailed observations, and
using a linear model for the mean parameter of the outcome
distribution.

Denoting the input x ∈ Rd and unknown regression pa-
rameter θ ∈ Rd, GLMs use a link function g to associate
the linear model xTθ to the mean of a response variable
y ∈ R as E[y] = µ = g−1(xTθ), where g−1 : R → R
is the inverse link function. Typical examples of GLMs
include logistic regression with binomial model for y and
logistic link g(µ) = log( µ

1−µ ), as well as Poisson regres-
sion with Poisson distribution for y, usually combined with
the log-link g(µ) = log(µ).

GLMs do not generally admit finite sufficient statistics. Hug-
gins et al. (2017) propose the PASS-GLM framework to
develop polynomial approximations of degree m to GLMs
that admit sufficient statistics. Sufficient statistics for such a
polynomial approximation can be seen as summary statistics
or approximate sufficient statistics for the original GLM.

Σθ

Xy

s

z

Figure 1: Differentially Private Bayesian GLM

3. Privacy-preserving Bayesian inference for
GLMs

3.1. Model and problem formulation

We consider the usual centralised DP setting where a dataset
D = {X,y} = {(x1, y1), . . . , (xN , yN )} is a multiset of
N observations. Motivated by the PASS-GLM approach,
we summarise the data using low-order moments ofD that
are useful for inference of the particular GLM.

1The central limit theorem ensures the asymptotic accuracy of
this approximation.
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The data holder computes the sum of summary statistics
s for D and releases a perturbed version z = s + ζ =∑N
i=1 t(xi, yi) + ζ with noise ζ drawn from the analytic

Gaussian mechanism defined in Section 2.1. The data holder
also releases the details of the target GLM and DP mech-
anism. With access to z and the noise mechanism, our
goal is to design a noise-aware method for inferring the
posterior distributions of the model parameters θ and Σ for
representative GLMs — logistic and Poisson regression.

3.2. Normal approximation of the summary statistics

Following Bernstein and Sheldon (2019), we model xi ∈
Rd as xi ∼ N d(0,Σ), with an unknown covariance matrix
Σ ∈ Rd×d. This assumption can also be justified from the
maximum entropy principle.

Recall that we approximate the distribution of the sum of
summary statistics Pr[s | θ,Σ] with a normal approxima-
tion Pr[s | θ,Σ] ≈ N (s | Nµs, NΣs). Next we show
how to obtain the mean and covariance of the summary
statistics analytically under our model. Note that we could
also estimate these moments numerically, which might be
easier for certain models, but creates an extra computational
cost.

Closed forms for the entries of µs and Σs for logistic
regression.

Assuming yi ∈ {−1, 1}, the logistic regression model can
be written as

Pr[yi|xi,θ] = σ(xTi θ)
1+yi

2 (1− σ(xTi θ))
1−yi

2 , (4)

where σ(x) = 1
1+exp(−x) denotes the sigmoid function. Mo-

tivated by the success of a second order PASS-GLM approx-
imation for logistic regression, we use the same summary
statistic, presented in Figure 2. We begin our calculations
by computing the a-th moment of y:

E[ya | x] = (−1)a
(

exp(xT θ)
1+exp(xT θ)

)
+ (1)a 1

1+exp(xT θ)

=

{
1, for even a’s
1−exp(xT θ)
1+exp(xT θ)

, for odd a’s.

(5)

The entries in µs and Σs are indexed by the non-negative
integer exponents a, b, c, d such that a + b = m, c + d =
m,m ≤ 2. Therefore, for all i, jth co-ordinates in x, the
corresponding entries in µs and Σs can be populated using
Equation 5 as below:

1. E[xai y
axbjy

b] = Ex[xai x
b
jEy|x[ya+b]]

=

{
Ex[xai x

b
j ], for even a+b’s

Ex[xai x
b
j
1−exp(xT θ)
1+exp(xT θ)

] for odd a+b’s

2. Cov[xai x
b
jy
a+b, xckx

d
l y
c+d] =

Ex[xai x
b
jx
c
kx

d
l y
a+b+c+d]−E[xai x

b
jy
a+b]E[xckx

d
l y
c+d]

We can further simplify the covariance entries based
on the parity of a+ b+ c+ d.

(a) When both a+ b and c+ d are even.

Cov[xai x
b
jy
a+b, xckx

d
l y
c+d]

= Ex[xai x
b
jx
c
kx

d
l ]− Ex[xai x

b
j ]Ex[xckx

d
l ]

(b) When both a+ b and c+ d are odd.

Cov[xai x
b
jy
a+b, xckx

d
l y
c+d]

= Ex[xai x
b
jx
c
kx

d
l

(1− exp(xTθ)

1 + exp(xTθ)

)
]

− Ex[xai x
b
j

(1− exp(xTθ)

1 + exp(xTθ)

)
]

Ex[xckx
d
l

(1− exp(xTθ)

1 + exp(xTθ)

)
]

(c) When a+ b is even and c+ d is odd.

Cov[xai x
b
jy
a+b, xckx

d
l y
c+d]

= Ex[xai x
b
jx
c
kx

d
l

(1− exp(xTθ)

1 + exp(xTθ)

)
]

− Ex[xai x
b
j ]Ex

[
xckx

d
l

(1− exp(xTθ)

1 + exp(xTθ)

)]
(d) Case a+ b is odd and c+ d is even follows iden-

tically from the previous case.

Taylor series expansion. The non-linear term 1−exp(xT θ)
1+exp(xT θ)

makes the expectation in previous formulas intractable. We
approximate this using a truncated Taylor series. The first
two terms of the Taylor series approximation for 1−exp(xT θ)

1+exp(xT θ)

are −x
T θ
2 + (xT θ)3

24 . This approximation is reasonably ac-
curate as long as xTθ ∈ [−1, 1]. We now approximate one
of the expectations from the cases above:

Ex[xai x
b
jx
c
kx

d
l

(1− exp(xTθ)

1 + exp(xTθ)

)
]

≈ Ex[xai x
b
jx
c
kx

d
l

[
− x

Tθ

2
+

(xTθ)3

24

]
]

= −
Ex[xai x

b
jx
c
kx

d
l (x

Tθ)]

2
+

Ex[xai x
b
jx
c
kx

d
l (x

Tθ)3]

24

=
−
∑d
n=1 θnEx[xai x

b
jx
c
kx

d
l xn]

2
+∑

e:
∑d
o=1 eo=3

(
d
e

)
(
∏d
n=1 θ

en
n )(Ex[xai x

b
jx
c
kx

d
l

∏d
n=1 x

en
n ])

24
.

In the derivation above, the term (xTθ)3 is expanded
using the multinomial theorem. We can approximate
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t(x, y) =
[
1, x1y, x2y, x3y, x4y, x

2
1y

2, x22y
2, x23y

2, x24y
2, x1x2y

2, x1x3y
2, x1x4y

2, x2x3y
2, x2x4y

2, x3x4y
2
]

Figure 2: An example of a second order (i.e. m = 2) approximate sufficient statistic t(x, y) for logistic regression when
d = 4.

Ex[xai x
b
j

(
1−exp(xT θ)
1+exp(xT θ)

)
] using similar calculations. The cor-

responding calculations for Poisson regression are found in
the Supplement.

Evaluation of higher-order Gaussian moments. Now
that our closed forms for the entries of µs and Σs only
include the sum of monomials, what remains is the actual
evaluation of these Gaussian moments. We use the Isserlis’
theorem (Wick, 1950) to compute these moments. This
theorem presents even-degree moments of a zero-centered
multivariate Gaussian variable as a sum of products of Σ
entries.

Theorem 3.1. Isserlis’ theorem (Wick, 1950). Let x ∼
N d(0,Σ) be a d−dimensional random variable. Then

E[x1, · · · , xd] =
∑
p∈P 2

d

∏
{i,j}∈p

E[xixj ] =
∑
p∈P 2

d

∏
{i,j}∈p

Σij ,

where d is assumed to be an even number and P is the set
of all possible ways of partitioning {1, · · · , d} in to pairs
{i, j}. For odd d’s, E[x1, · · · , xd] = 0.

A few examples of moment calculations using Isserlis’ the-
orem are found in the Supplement.

Computational complexity for moment population. For
a normal approximation of a second order summary statis-
tics, we require moments of degree 2, 4, and 6 to popu-
late (d+1)2(d+2)2

8 + (d+1)(d+2)
2 ∈ O(d

4

8 ) unique entries in
µs,Σs. Under a normal model for X , these can all be
computed from the covariance ofX .

Proposition 3.2. To evaluate a moment with degree 2k,
Theorem 3.1 generates (2k−1)!

2k−1(k−1)! partitions (number of
summands) each containing k entries.

Applying Proposition 3.2, we calculate that for a single
degree 2, 4 and 6 moment, we need to perform at-most 1, 6,
and 45 unique multiplications. However, modern hardware
can compute each moment in nearly a constant time with
clever caching and indexing tricks. So a very loose upper
bound on the order of operations performed in each iteration
is O(d4).

3.3. Satisfying DP

The last step in our model is to define Pr[z|s]. In order
to bound the global sensitivity, we assume that each input
instance has a bounded L2-norm, i.e. ||x||2 ≤ R.

3.3.1. LOGISTIC REGRESSION

Sensitivity analysis. Recall that the approximate suffi-
cient statistics for logistic regression contain both linear
and quadratic terms. To this end, we define the functions
t1 : Rd → Rd and t2 : Rd → R(d+2

2 ) as

t1(x) = x,

t2(x) =
[
x21 . . . x2d

√
2x1x2 . . .

√
2xd−1xd

]T
.

(6)

Using this notation, the approximate sufficient statistics are
given as [1, yt1(x), y2t2(x)], which due to y ∈ {−1, 1}
yields t(x, y) = [1, yt1(x), t2(x)]. We consider a Gaussian
mechanism where we release the linear and quadratic terms
simultaneously. When compared to individual releases of
yt1(x) and t2(x), this leads to a better utility.

Lemma 3.3. Let t1 and t2 be defined as in (6) and
let σ1, σ2 > 0. Let s1 =

∑N
i=1 yit1(xi) and s2 =∑N

i=1 t2(xi). Consider the mechanism

M(s) =
[s1s2]+N

(
0,

[
σ2
1Id 0
0 σ2

2Id2

])
,

where d2 =
(
d+2
2

)
. Assuming ||x||2 ≤ R, the tight (ε, δ)-

DP forM is obtained by considering a Gaussian mecha-
nism with noise variance σ2

1 and sensitivity

∆ =

√
σ2
2

2σ2
1

+ 2R2 + 2
σ2
1

σ2
2

R4.

Proof. Let (x, y), (x′, y′) be the neighboring inputs. For
the first order terms we have

||yt1(x)− y′t1(x′)||22 = ||yx||2 + ||y′x′||2 − 2〈yx, y′x′〉
= ||x||2 + ||x′||2 − 2yy′〈x,x′〉
≤ 2R2 − 2yy′〈x,x′〉,

(7)
and for the second order terms (see the Supplements)

||t2(x)− t2(x′)||22 = ||x||4 + ||x′||4 − 2〈x,x′〉2

≤ 2R4 − 2〈x,x′〉2.
(8)

For a single input (x, y), we have that

M(x) ∼
[
yt1(x)
t2(x)

]
+N

(
0,

[
σ2
1Id 0
0 σ2

2Id2

])
∼
[
Id 0
0 σ2

σ1
Id2

]([
yt1(x)
σ1

σ2
t2(x)

]
+ Id+d2N (0, σ2

1)

)
.
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The matrix
[
Id 0
0 σ2

σ1
Id2

]
is a constant scaling and does not

impact the sensitivity of M. After discarding it, we see
that the equivalent mechanism is M(x) =

[
yt1(x)
σ1
σ2
t2(x)

]
+

Id+d2N (0, σ2
1). Define

F (x, y) =
[
yt1(x)
σ1
σ2
t2(x)

]
.

From (7) and (8) we see that for the sensitivity of the mech-
anism is given by,

∆ =
√
‖F (x, y)− F (x′, y′)‖22

≤
√
−2ct2 − 2yy′t+ 2cR4 + 2R2,

where we denote c =
σ2
1

σ2
2

, t = 〈x,x′
〉
. The bound has its

maximum at t = −yy
′

2c , which leads to the claim.

Corollary 3.4. In the special caseR = 1 and σ1 = σ2 = σ,
by Lemma 3.3, the optimal (ε, δ) is obtained by consider-
ing the Gaussian mechanism with noise variance σ2 and

sensitivity ∆ =
√

4 1
2 .

The general case. When using a higher order polynomial
(i.e. m > 2), each tm(x) has to include all monomials of
the form

xk1i1 · · ·x
km′
im′

for all combinations of positive integers (k1, . . . , km′) such
that k1+ . . . km′ = m. Multiplying each monomial with the
multinomial coefficient

√(
m

k1,...,km′

)
and assuming tm(x)

contains the monomials of order m, we find that (see the
Supplements)

||tm(x)− tm(x′)||22 = ||x||2m + ||x′||2m − 2〈x,x′〉m.

Finding the sensitivity upper bounds can then be carried
out as in the case m = 2. For example, adding Gaussian
noise with covariance σ2I to all terms, we need to bound
the sensitivity of the function [ t1(x)T ... tm(x)T ]

T for which
we have

∆2 ≤
∑m

i=1
2R2i − 2〈x,x′〉i.

Maximum of the right hand side is found by minimising the
polynomial

∑m
i=1 t

i. For example, for m = 6, we find that
the upper bound is attained for 〈x,x′〉 ≈ −0.67 and then
∆ ≈

√
12.72.

3.3.2. POISSON REGRESSION

In case of Poisson regression, in addition to t1(x)
and t2(x), sufficient statistics requires releasing y ∈
N≥0. Let s1 =

∑N
i=1 t1(x), s2 =

∑N
i=1 t2(x), s3 =∑N

i=1 yit1(xi), s4 =
∑N
i=1 yit2(xi). Similarly to

Lemma 3.3, we can show the following:

Lemma 3.5. Let t1, t2 and s1, s2, s3, s4 be defined as
above and in (6) and let σ1, σ2, σ3, σ4 > 0. Suppose
||x||2 ≤ Rx and y ≤ Ry . Consider the mechanism

M(x) =

[
s1
s2
s3
s4

]
+N

0,

 σ2
1Id 0 0 0

0 σ2
2Id2 0 0

0 0 σ2
3Id1 0

0 0 0 σ2
4Id2

 .

Then, the tight (ε, δ)-DP forM is obtained by considering a
Gaussian mechanism with noise variance σ2

1 and sensitivity

∆ =
2(c2 + c4)R2

x + c3 + 1√
2(c2 + c4)

,

where c2 =
σ2
1

σ2
2

, c3 =
σ2
1

σ2
3
R2
y and c4 =

σ2
1

σ2
4
R2
y .

Proof. Similar to Lemma 3.3, we consider mechanismM
for a single input {x, y}.

M(x) ∼

 t1(x)
t2(x)
yt1(x)
yt2(x)

+N

0,

σ
2
1Id 0 0 0
0 σ2

2Id2 0 0
0 0 σ2

3Id1 0
0 0 0 σ2

4Id2




∼


Id 0 0 0
0
σ2Id2
σ1

0 0

0 0 σ3Id
σ1

0

0 0 0
σ4Id2
σ1




t1(x)
σ1t2(x)
σ2

σ1yt1(x)
σ3

σ1yt2(x)
σ4

+N (0, σ2
1I)

 .

Removing the constant scaling, we see that it is equivalent
to consider the mechanism

M(x) =


t1(x)
σ2

σ1
t2(x)

σ1

σ3
yt1(x)

σ1

σ4
yt2(x)

+N (0, σ2
1I).

Let x,x′ ∈ Rd such that ||x||2 ≤ Rx and ||x′||2 ≤ Rx be
the neighboring inputs. Define

F (x) =


t1(x)
σ1

σ2
t2(x)

σ1

σ3
yt1(x)

σ1

σ4
yt2(x)

 .
Since

||t1(x)− t1(x′)||22 = ||x||2 + ||x′||2 − 2〈x,x′〉
≤ 2R2

x − 2〈x,x′〉,
||t2(x)− t2(x′)||22 = ||x||4 + ||x′||4 − 2〈x,x′〉2

≤ 2R4
x − 2〈x,x′〉2,
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we have that

‖F (x)− F (x′)‖2 = ‖t1(x)− t1(x′)‖2

+
σ2
1

σ2
2

‖t2(x)− t2(x′)‖2

+
σ2
1

σ2
3

‖yt1(x)− y′t1(x′)‖2

+
σ2
1

σ2
4

‖yt2(x)− y′t2(x′)‖2

≤ −2t+ 2R2
x − 2c2t

2 + 2c2R
4
x

− 2c3t+ 2c3R
2
x − 2c4t

2 + 2c4R
4
x,

where c2 =
σ2
1

σ2
2

, c3 =
σ2
1

σ2
3
R2
y, c4 =

σ2
1

σ2
4
R2
y and t = 〈x,x′

〉
.

The right hand side of this inequality has its maximum at

t = − 1 + c3
2(c2 + c4)

which shows that

‖F (x)− F (x′)‖2 ≤ (2(c2 + c4)R2
x + c3 + 1)2

2(c2 + c4)
.

This gives sensitivity bound of the claim.

Corollary 3.6. In the special case Rx = 1 and σ1 = . . . =
σ4 = σ, the optimal (ε, δ) is obtained by considering the
Gaussian mechanism with noise variance σ2 and sensitivity

∆ =
√

4 1
2 (1 +R2

y).

4. Experiments
In this Section we present experiments on logistic regression.
Additional experiments on Poisson regression are included
in the Supplement.

4.1. Default settings and implementation

Throughout our experiments, we use the first two central
moments of joint (X, y) as the summary statistics. Both
noise-aware and non-private baseline models for logistic
regression are specified in Stan (Carpenter et al., 2017)
using its Python interface. We use Stan’s default No-U-
Turn (Homan and Gelman, 2014) sampler, which is a variant
of Hamiltonian Monte Carlo. We run 4 Markov chains in
parallel and discard the first 50% as warm-up samples. We
fix R = 1 to use Corollary 3.4. The Gelman-Rubin conver-
gence statistic (Brooks and Gelman, 1998) was consistently
below 1.1 for all Stan experiments. For brevity we provide
comparisons only for the θ’s in our figures.

Datasets. We use Adult (Blake and Merz, 1998) and Dia-
betes (Kahn, 1994) datasets from UCI repository as these
are standard and easy to explain. To reduce the training time

to be more manageable, we chose 6/13 and 14/20 features
from Adult and Diabetes datasets. The selected features had
a significant effect on the target variable.

Since error in the centralized model is proportional toO( 1
N ),

we do not want to attribute higher accuracy from our model
to larger sample size (N ). Therefore, for the Adult dataset,
we trained our model on randomly sampled 8000/40,000
records for a fair evaluation.

Setting priors for model parameters θ and Σ. For
the data covariance matrix Σ we gave a scaled
LKJ (Lewandowski et al., 2009) prior. We scale a posi-
tive definite correlation matrix from the LKJ correlation
distribution of shape η = 2 from both sides with a diago-
nal matrix with N (0, 2.5) distributed diagonal entries. The
probabilistic model is:

Ω ∼ LKJ(2), τ ∼ N (0, 2.5 · I),

Σ = diag(τ ) Ω diag(τ ).

In order to prevent the inference from sampling θ’s with
large magnitudes, we gave the regression coefficients’ ori-
entation a uniform prior, and the squared norm a truncated
Chi-square prior. We treat the upper-bound for the trunca-
tion as a hyper-parameter, which was set to 2 or 3 times
the square of non-private θ′s norm. The exact probabilistic
model is:

p ∼ N (0, I), ρ ∼ χ2(d)

θ =
√

max(ρ, s)
p

||p||2
.

In reality, the upper bound s could be obtained in a DP
way or its approximate value could be known from domain
expertise. The question of designing a better prior that does
not require such truncation bound is left as a future exercise.

Private Baseline. We compare our method with a Python
implementation of general-purpose DP posterior inference
DP-SGLD (Wang et al., 2015; Li et al., 2019b), using the
Fourier accountant (Koskela et al., 2020) for tight DP ac-
counting. In each iteration, DP-SGLD samples a mini-batch
of records and perturb the aggregated (and clipped) gradi-
ents of the posterior distribution. Updated weights at the
end of each iteration can be treated as posterior samples.
The total privacy budget in DP-SGLD scales proportional
to the number of iterations, whereas, we only pay a small
upfront privacy cost for perturbing the sum of sufficient
statistics and enjoy posterior samples for free. DP-SGLD
may provide unsatisfactory utility for strong privacy param-
eters regimes because the noise (which is already quite large
for smaller privacy budgets) is further amplified due to un-
certainty induced by batch sub-sampling, destroying signal
in the gradients. We run DP-SGLD with batch-size

√
N (as

suggested by Abadi et al., 2016) for 10,000 iterations and
discard the first 6000 samples as burn-in.
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Figure 3: Comparison of differentially private posteriors from our model (blue) and DP-SGLD (black) with non-private
posteriors for θ for the UCI Diabetes (Kahn, 1994) dataset (N = 758) for ε = 0.1, δ = 10−5 (top) and ε = 0.3, δ = 10−5

(bottom) after 10, 000 iterations. The batch size and the learning rate chosen for DP-SGLD were 28 and 10−1. The posteriors
from DP-SGLD are more biased and either exhibit a much higher variance or fail to quantify the expected uncertainty.

4.2. Posterior recovery

We trained our logistic regression model on 8000 pre-
processed random records from the UCI Adult dataset with
features age, workclass, education, martial-status, occu-
pation, relationship, and gender to predict whether a per-
son’s income exceeds $50k. Furthermore, we also train
on abridged version of a much smaller pre-processed UCI
Diabetes dataset with dimensions age, number of pregnan-
cies, diabetes pedigree function, and insulin levels to pre-
dict whether a person has diabetes or not. Figures 3 and 4
illustrate the outcome of these experiments for DP param-
eters in a strong-privacy regime. We verify that for both
datasets, private posteriors from our model are close to the
non-private posteriors. The posteriors obtained from DP-
SGLD are highly variable, ranging from highly biased to
hugely underconfident to massively overconfident.

Looking at inference of statistical significance of regression
coefficients based on zero not being included in the high
probability intervals, extra noise from DP causes DP-GLM
to just miss significance at ε = 0.3 with Diabetes (Figure 3)
but perfectly match non-private results at ε = 0.1 with Adult
(Figure 4). DP-SGLD results are highly unstable.

4.3. Varying privacy requirements

We now test the accuracy of our methods against a verity of
privacy settings. Figure 5 compares the posterior empirical
cumulative distribution functions (CDFs) of private and non-
private θ’s for a synthetic dataset with a randomly sampled
positive definite non-identity co-variance matrix with true θ
as [−0.9,−0.5, 0.3]. We see that the private and non-private
CDFs are almost overlapping for ε > 0.1. In the right-
most column, we additionally plot the Kolmogorov-Smirnov
scores (maximum absolute difference between two CDFs)
for 10 equally spaced ε values in the range [0.001,1.1]. Once
again, we note a general non-increasing trend.

These results demonstrate that our model is accurate for
datasets with small true θ’s for moderate to large sample
sizes even when privacy requirements are strict.

5. Limitations
In additional internal experiments on synthetic datasets, we
studied accuracy as a function of L2-norm of true θ, fixing
other parameters, and found that the accuracy decreases
sharply when ||θ||2 ≥ 3, when using the proposed approxi-
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Figure 4: Comparison of differentially private posteriors from our model (DP) and DP-SGLD with non-private posteriors for
θ for randomly sampled 8000 records in the UCI Adult dataset (Blake and Merz, 1998) for ε = 0.1, δ = 10−5 after 10, 000
iterations. The batch size and the learning rate chosen for DP-SGLD were 89 and 10−2. DP-SGLD posteriors are biased
and overestimate the uncertainty even at such large sample size.

Figure 5: Comparison of differentially private and non-private empirical CDFs for θ’s posteriors for a synthetic dataset with
N = 1000 after 30, 000 iterations and 20 repetitions while fixing δ = 10−5 for various ε values. The rightmost column
shows the Kolmogorov-Smirnov scores between non-private and private empirical CDFs for various ε values.

mations. We suspect this is due the truncation in the Taylor
series, used to reduce the computational complexity. The
bound on theta norm essentially means that the predicted
probabilities can differ by at most a modest number of lo-
gistic units. While this may sound limiting, it may not be a
serious issue for real datasets, where the signal is not very
strong. With a proper prior, the model would most likely
simply underfit in such cases. The implications on inference
of the signs of the regression coefficients would also likely
be limited.

6. Concluding Remarks
This work formulates a noise-aware model for GLMs for
performing DP Bayesian inference and demonstrates its
efficacy for datasets with regression coefficients of small
magnitudes. Our method combines a normal approximation
based on the central limit theorem with moment match-
ing for perturbed low order data moments. We carry out
a sensitivity analysis for the DP mechanisms which gives
tight bounds and leads to high utility. This is also reflected
in the experimental results on the logistic regression. Our

sensitivity analysis also shows that we can increase utility
by simultaneously releasing the linear and quadratic terms.
Since computation of approximate sufficient statistics is a
transformation of data, it seems possible to develop sim-
ilar noise-aware models in distributed learning scenarios
such as federated learning (Kairouz et al., 2021) and local
differential privacy (Cormode et al., 2018).
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